Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37531568

RESUMO

Melatonin has been reported to play crucial roles in regulating meat quality, improving reproductive properties, and maintaining intestinal health in animal production, but whether it regulates skeletal muscle development in weaned piglet is rarely studied. This study was conducted to investigate the effects of melatonin on growth performance, skeletal muscle development, and lipid metabolism in animals by intragastric administration of melatonin solution. Twelve 28-d-old DLY (Duroc × Landrace × Yorkshire) weaned piglets with similar body weight were randomly divided into two groups: control group and melatonin group. The results showed that melatonin supplementation for 23 d had no effect on growth performance, but significantly reduced serum glucose content (P < 0.05). Remarkably, melatonin increased longissimus dorsi muscle (LDM) weight, eye muscle area and decreased the liver weight in weaned piglets (P < 0.05). In addition, the cross-sectional area of muscle fibers was increased (P < 0.05), while triglyceride levels were decreased in LDM and psoas major muscle by melatonin treatment (P < 0.05). Transcriptome sequencing showed melatonin induced the expression of genes related to skeletal muscle hypertrophy and fatty acid oxidation. Enrichment analysis indicated that melatonin regulated cholesterol metabolism, protein digestion and absorption, and mitophagy signaling pathways in muscle. Gene set enrichment analysis also confirmed the effects of melatonin on skeletal muscle development and mitochondrial structure and function. Moreover, quantitative real-time polymerase chain reaction analysis revealed that melatonin supplementation elevated the gene expression of cell differentiation and muscle fiber development, including paired box 7 (PAX7), myogenin (MYOG), myosin heavy chain (MYHC) IIA and MYHC IIB (P < 0.05), which was accompanied by increased insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 5 (IGFBP5) expression in LDM (P < 0.05). Additionally, melatonin regulated lipid metabolism and activated mitochondrial function in muscle by increasing the mRNA abundance of cytochrome c oxidase subunit 6A (COX6A), COX5B, and carnitine palmitoyltransferase 2 (CPT2) and decreasing the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG), acetyl-CoA carboxylase (ACC) and fatty acid-binding protein 4 (FABP4) (P < 0.05). Together, our results suggest that melatonin could promote skeletal muscle growth and muscle fiber hypertrophy, improve mitochondrial function and decrease fat deposition in muscle.


Due to its extensive biological functions, melatonin has been widely used in animal production in recent years. The purpose of this study was to investigate the effects of melatonin on growth performance, muscle development, and lipid metabolism of weaned piglets. Twelve 28-d-old DLY (Duroc × Landrace × Yorkshire) weaned piglets were randomly divided into two groups: control group and melatonin group. The results showed that melatonin supplementation daily had no effect on growth performance, but increased muscle weight, eye muscle area, and decreased the liver weight in weaned piglets. Consistently, the cross-sectional area of myofiber increased, while triglyceride levels decreased in muscle. Melatonin induced the expression of genes related to skeletal muscle hypertrophy and fatty acid oxidation in muscle through transcriptome sequencing. Additionally, melatonin regulated cholesterol metabolism, protein digestion and absorption, and mitophagy signaling pathways in muscle. Gene set enrichment analysis also confirmed the effects of melatonin on skeletal muscle development and mitochondrial function. Moreover, melatonin supplementation elevated the gene expression of cell differentiation and muscle fiber development. Additionally, melatonin inhibited the mRNA expression related to fat synthesis while improved mitochondrial function in muscle. Together, our results suggest melatonin could promote skeletal muscle growth and muscle fiber hypertrophy, enhance mitochondrial function and decrease fat deposition in muscle.


Assuntos
Melatonina , Doenças dos Suínos , Animais , Suínos , Metabolismo dos Lipídeos , Melatonina/farmacologia , Melatonina/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/fisiologia , RNA Mensageiro/genética , Suplementos Nutricionais , Hipertrofia/veterinária , Doenças dos Suínos/metabolismo
2.
Nutrients ; 14(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36364820

RESUMO

The non-classical role of vitamin D has been investigated in recent decades. One of which is related to its role in skeletal muscle. Satellite cells are skeletal muscle stem cells that play a pivotal role in skeletal muscle growth and regeneration. This systematic review aims to investigate the effect of vitamin D on satellite cells. A systematic search was performed in Scopus, MEDLINE, and Google Scholar. In vivo studies assessing the effect of vitamin D on satellite cells, published in English in the last ten years were included. Thirteen in vivo studies were analyzed in this review. Vitamin D increases the proliferation of satellite cells in the early life period. In acute muscle injury, vitamin D deficiency reduces satellite cells differentiation. However, administering high doses of vitamin D impairs skeletal muscle regeneration. Vitamin D may maintain satellite cell quiescence and prevent spontaneous differentiation in aging. Supplementation of vitamin D ameliorates decreased satellite cells' function in chronic disease. Overall, evidence suggests that vitamin D affects satellite cells' function in maintaining skeletal muscle homeostasis. Further research is needed to determine the most appropriate dose of vitamin D supplementation in a specific condition for the optimum satellite cells' function.


Assuntos
Células Satélites de Músculo Esquelético , Vitamina D/farmacologia , Regeneração , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/fisiologia , Diferenciação Celular/fisiologia , Músculo Esquelético , Vitaminas/farmacologia
3.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35955635

RESUMO

AIM: Mild heat stress can improve mitochondrial respiratory capacity in skeletal muscle. However, long-term heat interventions are scarce, and the effects of heat therapy need to be understood in the context of the adaptations which follow the more complex combination of stimuli from exercise training. The purpose of this work was to compare the effects of 6 weeks of localized heat therapy on human skeletal muscle mitochondria to single-leg interval training. METHODS: Thirty-five subjects were assigned to receive sham therapy, short-wave diathermy heat therapy, or single-leg interval exercise training, localized to the quadriceps muscles of the right leg. All interventions took place 3 times per week. Muscle biopsies were performed at baseline, and after 3 and 6 weeks of intervention. Mitochondrial respiratory capacity was assessed on permeabilized muscle fibers via high-resolution respirometry. RESULTS: The primary finding of this work was that heat therapy and exercise training significantly improved mitochondrial respiratory capacity by 24.8 ± 6.2% and 27.9 ± 8.7%, respectively (p < 0.05). Fatty acid oxidation and citrate synthase activity were also increased following exercise training by 29.5 ± 6.8% and 19.0 ± 7.4%, respectively (p < 0.05). However, contrary to our hypothesis, heat therapy did not increase fatty acid oxidation or citrate synthase activity. CONCLUSION: Six weeks of muscle-localized heat therapy significantly improves mitochondrial respiratory capacity, comparable to exercise training. However, unlike exercise, heat does not improve fatty acid oxidation capacity.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias Musculares , Mitocôndrias , Citrato (si)-Sintase/metabolismo , Temperatura Alta/uso terapêutico , Humanos , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Oxirredução
4.
Phytomedicine ; 91: 153658, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34332284

RESUMO

BACKGROUND: 2,6-Dimethoxy-1,4-benzoquinone (DMBQ), a natural phytochemical present in fermented wheat germ, has been reported to exert anti-cancer, anti-inflammatory, and anti-adipogenic effects. However, the effect of DMBQ on muscle hypertrophy and myoblast differentiation has not been elucidated. PURPOSE: We investigated the effect of DMBQ on skeletal muscle mass and muscle function and then determined the possible mechanism of DMBQ. METHODS: To examine myogenic differentiation and hypertrophy, confluent C2C12 cells were incubated in differentiation medium with or without various concentrations of DMBQ for 4 days. In animal experiments, C57BL/6 mice were fed DMBQ-containing AIN-93 diet for 7 weeks. Grip strength, treadmill, microscopic evaluation of muscle tissue, western blotting, and quantitative real-time PCR were performed. RESULTS: DMBQ significantly increased fusion index, myotube size, and the protein expression of myosin heavy chain (MHC). DMBQ increased the phosphorylation of protein kinase B (AKT) and p70 ribosomal protein S6 kinase (S6K), whereas the phosphorylation of these proteins was abolished by the phosphoinositide 3-kinase inhibitor LY294002 in C2C12 cells. In addition, DMBQ treatment increased peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), which programs mitochondrial biogenesis, protein levels compared with control C2C12 cells. DMBQ significantly increased maximal respiration and spare respiratory capacity in C2C12 cells. In animal experiments, DMBQ increased skeletal muscle weights and skeletal muscle fiber size compared with the control group values. In addition, the DMBQ group showed increased grip strength and running distance on an accelerating treadmill. The protein expression of total MHC, MHC1, MHC2A, and MHC2B in skeletal muscle was upregulated by DMBQ supplementation. We found that DMBQ increased the phosphorylation of AKT and mammalian target of rapamycin (mTOR), as well as downstream S6K and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) in skeletal muscle. DMBQ also stimulated mRNA expression of PGC1α, accompanied by an increase in mitochondrial DNA content, oxidative phosphorylation (OXPHOS) proteins, and oxidative enzyme activity. CONCLUSION: Collectively, DMBQ was shown to increase skeletal muscle mass and performance by regulating the AKT/mTOR signaling pathway and enhancing mitochondrial function, which might be useful for the treatment and prevention of skeletal muscle atrophy.


Assuntos
Benzoquinonas/farmacologia , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Transdução de Sinais , Animais , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
5.
Clin Neurophysiol ; 132(2): 323-331, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33450554

RESUMO

OBJECTIVE: To investigate the impact of stimulus duration on motor unit (MU) thresholds and alternation within compound muscle action potential (CMAP) scans. METHODS: The stimulus duration (0.1, 0.2, 0.6, and 1.0 ms) in thenar CMAP scans and individual MUs of 14 healthy subjects was systematically varied. We quantified variability of individual MU's thresholds by relative spread (RS), MU thresholds by stimulus currents required to elicit target CMAPs of 5% (S5), 50% (S50) and 95% (S95) of the maximum CMAP, and relative range (RR) by 100*[S95-S5]/S50. We further assessed the strength-duration time constant (SDTC). Experimental observations were subsequently simulated to quantify alternation. RESULTS: RS, unaffected by stimulus duration, was 1.65% averaged over all recordings. RR increased for longer stimulus duration (11.4% per ms, p < 0.001). SDTC shortened with higher target CMAPs (0.007 ms per 10% CMAP, p < 0.001). Experiments and simulations supported that this may underlie the increased RR. A short compared to long stimulus duration recruited relative more MUs at S50 (more alternation) than at the tails (less alternation). CONCLUSIONS: The stimulus duration significantly affects MU threshold distribution and alternation within CMAP scans. SIGNIFICANCE: Stimulation settings can be further optimized and their standardization is preferred when using CMAP scans for monitoring neuromuscular diseases.


Assuntos
Potenciais de Ação , Fibras Musculares Esqueléticas/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Adulto , Eletromiografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Contração Muscular , Tempo
6.
Anim Biotechnol ; 32(2): 246-253, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32134354

RESUMO

This study aimed to investigate effects of apple polyphenols (APPs) on myofiber-type transformation in longissimus dorsi muscle of finishing pigs and its mechanism. In this study, 36 healthy castrated Duroc × Landrace × Yorkshire pigs with an average body weight of 71.25 ± 2.40 kg were randomly divided into three treatment groups (control, 0.04% APPs, 0.08% APPs). The experiment lasted for 49 days. Results showed that dietary APP supplementation increased the protein expression of MyHC I and the activities of succinic dehydrogenase and malate dehydrogenase, as well as decreased the protein expression of MyHC IIb and the activity of lactate dehydrogenase, suggesting that APPs promoted muscle fiber-type transformation from fast-twitch to slow-twitch in finishing pigs. We also showed that dietary 0.08% APP supplementation increased the expressions of mitochondrial biogenesis and function-related proteins PGC-1α, Sirt1 and Cytc. In addition, dietary supplementation with 0.08% APPs increased the activities of T-SOD, GSH-PX and CAT and decreased the MDA content. Together, we provided the first evidence that APP promotes muscle fiber-type transformation from fast-twitch to slow-twitch in finishing pigs, which may be achieved by improving the mitochondrial biogenesis and function and increasing the antioxidant capacity of skeletal muscle.


Assuntos
Ração Animal/análise , Dieta/veterinária , Malus/química , Fibras Musculares Esqueléticas/efeitos dos fármacos , Polifenóis/farmacologia , Suínos/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Suplementos Nutricionais , Masculino , Fibras Musculares Esqueléticas/fisiologia , Polifenóis/química
7.
Br J Nutr ; 126(3): 321-336, 2021 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32718370

RESUMO

In the current research, a 60-d experiment was conducted with the purpose of exploring the impacts of methionine (Met) on growth performance, muscle nutritive deposition, muscle fibre growth and type I collagen synthesis as well as the related signalling pathway. Six diets (iso-nitrogenous) differing in Met concentrations (2·54, 4·85, 7·43, 10·12, 12·40 and 15·11 g/kg diets) were fed to 540 grass carp (178·47 (SD 0·36) g). Results showed (P < 0·05) that compared with Met deficiency, optimal level of dietary Met (1) increased feed intake, feed efficiency, specific growth rate and percentage weight gain (PWG); (2) increased fish muscle protein, lipid and free amino acid contents and improved fish muscle fatty acid profile as well as increased protein content in part associated with the target of rapamycin complex 1 (TORC1)/S6K1 signalling pathway; (3) increased the frequency distribution of muscle fibre with >50 µm of diameter; (4) increased type I collagen synthesis partly related to the transforming growth factor-ß1/Smads and CK2/TORC1 signalling pathways. In conclusion, dietary Met improved muscle growth, which might be due to the regulation of muscle nutritive deposition, muscle fibre growth and type I collagen synthesis-related signal molecules. Finally, according to PWG and muscle collagen content, the Met requirements for on-growing grass carp (178-626 g) were estimated to be 9·56 g/kg diet (33·26 g/kg protein of diet) and 9·28 g/kg diet (32·29 g/kg of dietary protein), respectively.


Assuntos
Carpas , Colágeno Tipo I/biossíntese , Metionina/administração & dosagem , Fibras Musculares Esqueléticas/fisiologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Carpas/crescimento & desenvolvimento , Dieta/veterinária , Suplementos Nutricionais , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais
8.
J Vis Exp ; (166)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33346186

RESUMO

The neuromuscular junction (NMJ) is a specialized synapse that transmits action potentials from the motor neuron to skeletal muscle for mechanical movement. The architecture of the NMJ structure influences the functions of the neuron, the muscle and the mutual interaction. Previous studies have reported many strategies by co-culturing the motor neurons and myotubes to generate NMJ in vitro with complex induction process and long culture period but have struggled to recapitulate mature NMJ morphology and function. Our in vitro NMJ induction system is constructed by differentiating human iPSC in a single culture dish. By switching the myogenic and neurogenic induction medium for induction, the resulting NMJ contained pre- and post- synaptic components, including motor neurons, skeletal muscle and Schwann cells in the one month culture. The functional assay of NMJ also showed that the myotubes contraction can be triggered by Ca++ then inhibited by curare, an acetylcholine receptor (AChR) inhibitor, in which the stimulating signal is transmitted through NMJ. This simple and robust approach successfully derived the complex structure of NMJ with functional connectivity. This in vitro human NMJ, with its integrated structures and function, has promising potential for studying pathological mechanisms and compound screening.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Junção Neuromuscular/citologia , Animais , Curare , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Junção Neuromuscular/ultraestrutura , Células de Schwann/citologia , Células de Schwann/metabolismo
9.
J Nutr Biochem ; 84: 108462, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32738732

RESUMO

Transformation of skeletal muscle fiber type from fast twitch to slow twitch has significances for sustained contractile and stretchable events, energy homeostasis and antifatigue ability. However, the regulation of skeletal muscle fiber type transformation through nutritional intervention is still not fully spelled out. Grape seed proanthocyanidin extract (GSPE) has been widely reported to play a broader role in many aspects of diseases with its various pharmacological and health-promoting effects. In this study, we found that GSPE significantly improved the fatigue resistance in mice. GSPE up-regulated slow myosin heavy chain (MyHC) and down-regulated fast MyHC, accompanied by increases in activities of succinic dehydrogenase and malate dehydrogenase and by decreased lactate dehydrogenase activity in muscle of mice and in C2C12 myotubes. The AMP-activated protein kinase (AMPK) signaling can be activated by GSPE. Several upstream and downstream factors of AMPK signaling such as liver kinase B1, nuclear respiratory factor 1, calcium calmodulin-dependent protein kinase kinase ß, sirtuin1 and peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α) were also up-regulated by GSPE. Specific inhibition of AMPK signaling by AMPK inhibitor compound C or by AMPKα1 siRNA significantly abolished the GSPE-induced the activation of AMPK and the increase of PGC-1α, and attenuated the GSPE-induced increase of slow MyHC and decrease of fast MyHC in C2C12 myotubes. Taken together, we revealed that GSPE promotes skeletal muscle fiber type transformation from fast twitch to slow twitch through AMPK signaling pathway, and this GSPE-induced fiber type transformation may contribute to increased fatigue resistance.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Extrato de Sementes de Uva/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proantocianidinas/farmacologia , Animais , Linhagem Celular , Masculino , Camundongos Endogâmicos BALB C , Contração Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/fisiologia , Transdução de Sinais/efeitos dos fármacos
10.
J Anim Sci ; 98(7)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32619223

RESUMO

A randomized complete block design experiment with 32 yearling crossbred steers (average body weight [BW] = 442 ± 17.0 kg) fed a steam-flaked corn-based diet was used to evaluate the effects of dietary Zn (KemTRACE Zn propionate 27; Kemin Industries, Inc., Des Moines, IA) supplementation on live growth performance, skeletal muscle fiber, and beta-adrenergic receptor (ß-AR) characteristics during the finishing phase. Steers were blocked by BW (n = 4 blocks; 8 steers/block), assigned to pens (n = 4 steers/pen), and randomly assigned to the following treatments: control (CON; 0.0 g/[head (hd) · d] of additional Zn) or additional dietary Zn (ZnP; 1.0 g/[hd · d] additional Zn). The basal diet contained Zn (60 ppm dry matter basis) from ZnSO4; additional Zn was top-dressed at feeding. Ractopamine hydrochloride (RH; Optaflexx: Elanco Animal Health, Greenfield, IN) was included at 300 mg/(hd · d) for the final 28 d of the 111-d feeding period. Longissimus muscle biopsy samples, BW, and blood were obtained on days 0, 42, 79, and 107. Final BW was collected prior to shipping on day 111. Biopsy samples were used for immunohistochemical (IHC), mRNA, and protein analysis. Serum urea nitrogen (SUN) and nonesterified fatty acid (NEFA) concentrations were measured. Steers fed ZnP had a greater average daily gain (P = 0.02) and gain to feed ratio (G:F; P = 0.03) during the RH feeding period compared with CON. There were no differences (P > 0.05) in other growth performance variables, carcass traits, mRNA abundance, or relative protein concentration for fiber type and ß-AR. Fiber types I and IIA had no differences in the cross-sectional area; however, the IIX area was greater for CON (P < 0.04) compared with ZnP and increased (P < 0.02) over time. There were no differences between treatments for the ß1-AR density (P > 0.05) in skeletal muscle tissue throughout the study. A treatment × day interaction was observed in ß2-AR density (P = 0.02) and ß3-AR density (P = 0.02) during the RH feeding period, where the abundance of the receptors increased with ZnP but did not change in CON. Compared with CON, ZnP had greater (P < 0.01) mean NEFA concentrations. Mean SUN concentrations did increase by day (P < 0.01). Additional dietary Zn, supplied as Zn propionate, upregulates ß2-AR and ß3-AR and improves growth performance in feedlot steers during the RH feeding period, likely through a shift of resource utilization from lipogenesis to muscle maintenance and hypertrophy.


Assuntos
Bovinos , Suplementos Nutricionais , Fibras Musculares Esqueléticas/efeitos dos fármacos , Propionatos/farmacologia , Ração Animal/análise , Animais , Nitrogênio da Ureia Sanguínea , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Bovinos/crescimento & desenvolvimento , Bovinos/metabolismo , Dieta/veterinária , Fibras na Dieta/metabolismo , Masculino , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fenetilaminas/administração & dosagem , Fenetilaminas/farmacologia , Propionatos/administração & dosagem
11.
Am J Sports Med ; 48(10): 2429-2437, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32631074

RESUMO

BACKGROUND: Anterior cruciate ligament (ACL) injuries and reconstruction (ACLR) promote quadriceps muscle atrophy and weakness that can persist for years, suggesting the need for more effective rehabilitation programs. Whether neuromuscular electrical stimulation (NMES) can be used to prevent maladaptations in skeletal muscle size and function is unclear. PURPOSE: To examine whether early NMES use, started soon after an injury and maintained through 3 weeks after surgery, can preserve quadriceps muscle size and contractile function at the cellular (ie, fiber) level in the injured versus noninjured leg of patients undergoing ACLR. STUDY DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: Patients (n = 25; 12 men/13 women) with an acute, first-time ACL rupture were randomized to NMES (5 d/wk) or sham (simulated microcurrent electrical nerve stimulation; 5 d/wk) treatment to the quadriceps muscles of their injured leg. Bilateral biopsies of the vastus lateralis were performed 3 weeks after surgery to measure skeletal muscle fiber size and contractility. Quadriceps muscle size and strength were assessed 6 months after surgery. RESULTS: A total of 21 patients (9 men/12 women) completed the trial. ACLR reduced single muscle fiber size and contractility across all fiber types (P < .01 to P < .001) in the injured compared with noninjured leg 3 weeks after surgery. NMES reduced muscle fiber atrophy (P < .01) through effects on fast-twitch myosin heavy chain (MHC) II fibers (P < .01 to P < .001). NMES preserved contractility in slow-twitch MHC I fibers (P < .01 to P < .001), increasing maximal contractile velocity (P < .01) and preserving power output (P < .01), but not in MHC II fibers. Differences in whole muscle strength between groups were not discerned 6 months after surgery. CONCLUSION: Early NMES use reduced skeletal muscle fiber atrophy in MHC II fibers and preserved contractility in MHC I fibers. These results provide seminal, cellular-level data demonstrating the utility of the early use of NMES to beneficially modify skeletal muscle maladaptations to ACLR. CLINICAL RELEVANCE: Our results provide the first comprehensive, cellular-level evidence to show that the early use of NMES mitigates early skeletal muscle maladaptations to ACLR. REGISTRATION: NCT02945553 (ClinicalTrials.gov identifier).


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Terapia por Estimulação Elétrica , Músculo Quadríceps/fisiologia , Lesões do Ligamento Cruzado Anterior/cirurgia , Feminino , Humanos , Masculino , Contração Muscular , Fibras Musculares Esqueléticas/fisiologia , Força Muscular , Tamanho do Órgão
12.
PLoS One ; 15(5): e0233531, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32453807

RESUMO

Several studies have investigated the use of invasive and non-invasive stimulation methods to enhance nerve regeneration, and varying degrees of effectiveness have been reported. However, due to the use of different parameters in these studies, a fair comparison between the effectiveness of invasive and non-invasive stimulation methods is not possible. The present study compared the effectiveness of invasive and non-invasive stimulation using similar parameters. Eighteen Sprague Dawley rats were classified into three groups: the iES group stimulated with fully implantable device, the tES group stimulated with transcutaneous electrical nerve stimulation (TENS), and the injury group (no stimulation). The iES and tES groups received stimulation for 6 weeks starting immediately after the injury. Motor function was evaluated using the sciatic functional index (SFI) every week. The SFI values increased over time in all groups; faster and superior functional recovery was observed in the iES group than in the tES group. Histological evaluation of the nerve sections and gastrocnemius muscle sections were performed every other week. The axon diameter and muscle fiber area in the iES group were larger, and the g-ratio in the iES group was closer to 0.6 than those in the tES group. To assess the cause of the difference in efficiency, a 3D rat anatomical model was used to simulate the induced electric fields in each group. A significantly higher concentration and intensity around the sciatic nerve was observed in the iES group than in the tES group. Vector field distribution showed that the field was orthogonal to the sciatic nerve spread in the tES group, whereas it was parallel in the iES group; this suggested that the tES group was less effective in nerve stimulation. The results indicated that even though rats in the TENS group showed better recovery than those in the injury group, it cannot replace direct stimulation yet because rats stimulated with the invasive method showed faster recovery and superior outcomes. This was likely attributable to the greater concentration and parallel distribution of electric field with respect to target nerve.


Assuntos
Lesões por Esmagamento/terapia , Regeneração Nervosa/fisiologia , Neuropatia Ciática/terapia , Estimulação Elétrica Nervosa Transcutânea , Animais , Axônios/efeitos da radiação , Lesões por Esmagamento/fisiopatologia , Lesões por Esmagamento/cirurgia , Modelos Animais de Doenças , Humanos , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/efeitos da radiação , Músculo Esquelético/fisiopatologia , Músculo Esquelético/efeitos da radiação , Compressão Nervosa/métodos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/crescimento & desenvolvimento , Nervo Isquiático/fisiopatologia , Nervo Isquiático/cirurgia , Neuropatia Ciática/fisiopatologia , Neuropatia Ciática/cirurgia
13.
Am J Chin Med ; 48(3): 631-650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32329640

RESUMO

The loss of skeletal muscle mass and function is a serious consequence of chronic diseases and aging. BST204 is a purified ginseng (the root of Panax ginseng) extract that has been processed using ginsenoside-ß-glucosidase and acid hydrolysis to enrich ginsenosides Rg3 and Rh2 from the crude ginseng. BST204 has a broad range of health benefits, but its effects and mechanism on muscle atrophy are currently unknown. In this study, we have examined the effects and underlying mechanisms of BST204 on myotube formation and myotube atrophy induced by tumor necrosis factor-α (TNF-α). BST204 promotes myogenic differentiation and multinucleated myotube formation through Akt activation. BST204 prevents myotube atrophy induced by TNF-α through the activation of Akt/mTOR signaling and down-regulation of muscle-specific ubiquitin ligases, MuRF1, and Atrogin-1. Furthermore, BST204 treatment in atrophic myotubes suppresses mitochondrial reactive oxygen species (ROS) production and regulates mitochondrial transcription factors such as NRF1 and Tfam, through enhancing the activity and expression of peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α). Collectively, our findings indicate that BST204 improves myotube formation and PGC1α-mediated mitochondrial function, suggesting that BST204 is a potential therapeutic or neutraceutical remedy to intervene muscle weakness and atrophy.


Assuntos
Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Panax/química , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Animais , Atrofia/induzido quimicamente , Atrofia/tratamento farmacológico , Humanos , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/fisiologia , Fator 1 Nuclear Respiratório/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Extratos Vegetais/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estimulação Química , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa
14.
J Anim Physiol Anim Nutr (Berl) ; 104(2): 570-578, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31975464

RESUMO

As one of the key points related to meat quality, skeletal muscle fibre type is determined by energy metabolism and genetic factors, but its transformation could be also greatly influenced by many factors. Thymol, the primary effective ingredients of thyme, is well known for its anti-oxidation and anti-inflammatory, while little is known about its effect on skeletal muscle oxidative metabolism and fibre type switch. Therefore, in order to investigate its effects and possibility to be applied in livestock production, 36 150-day-old fattening Pigs were fed with different diet for six-week experiment. As a result, the drip loss ratio of longissimus dorsi (LD) was significantly reduced (p < .05). Oxidative metabolism-related enzyme activity, the mRNA levels and protein expression of COX5B and PGC1α, mRNA level of myosin heavy chain I (MyHC I) and protein level of MyHC IIa were significantly upregulated (p < .05). While compared with control group, the protein expression of MyHC IIb was significantly decreased (p < .05). The result revealed that thymol could promote the oxidative metabolism in the muscle of pigs and improve the meat quality to a certain extent.


Assuntos
Ração Animal/análise , Suplementos Nutricionais , Carne/análise , Fibras Musculares Esqueléticas/classificação , Timol/farmacologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/fisiologia , Suínos , Timol/administração & dosagem , Aumento de Peso/efeitos dos fármacos
16.
Int J Sports Med ; 40(12): 803-809, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31476781

RESUMO

The use of injections to treat structural muscle injuries is controversially discussed. In our controlled in vitro study, we investigated the biological impact of Actovegin and Traumeel alone and in combination on primary human skeletal muscle cells. Cells were characterized by immunofluorescence staining for myogenic factor 5 (Myf5) and MyoD, and cultured with or without Actovegin and / or Traumeel. The effects of these agents were assayed by cell viability and gene expression of the specific markers MyoD, Myf5, neural adhesion molecule (NCAM), and CD31. Myotube formation was determined by myosin staining. Neither Actovegin nor Traumeel showed toxic effects or influenced cell viability significantly. High volumes of Actovegin down-regulated gene expression of NCAM after 3 days but had no effect on MyoD, Myf5, and CD31 gene expression. High volumes of Traumeel inhibited MyoD gene expression after 3 days, whereas after 7 days MyoD expression was significantly up-regulated. The combination of both agents did not significantly influence cell viability or gene expression. This is the first study demonstrating that Actovegin and Traumeel potentially modulate human skeletal muscle cells. The relevance of these in vitro findings has to be highlighted in further in vivo studies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Heme/análogos & derivados , Minerais/farmacologia , Fibras Musculares Esqueléticas/fisiologia , Extratos Vegetais/farmacologia , Adulto , Idoso , Antígeno CD56/efeitos dos fármacos , Antígeno CD56/genética , Sobrevivência Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação para Baixo , Heme/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteína MyoD/efeitos dos fármacos , Proteína MyoD/genética , Fator Regulador Miogênico 5/efeitos dos fármacos , Fator Regulador Miogênico 5/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/efeitos dos fármacos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética
17.
IEEE Trans Neural Syst Rehabil Eng ; 27(9): 1875-1882, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31352346

RESUMO

Individuals with neurological disorders, such as stroke or spinal cord injury, often have weakness and/or spasticity in their hand and wrist muscles, which can lead to impaired ability to extend their fingers and wrists. Functional electrical stimulation can help to restore these motor functions. However, the conventional stimulation method can lead to fast muscle fatigue and limited movements due to a non-physiological recruitment of motor units and a limited recruitment of deep muscles. In this paper, we investigated the feasibility of eliciting various hand opening and wrist extension movement patterns through a transcutaneous electrical stimulation array, which targeted the proximal segment of the radial nerve bundle proximal to the elbow. The wrist and finger joint kinematics were used to classify the different movement patterns through a cluster analysis, and electromyogram signals from the wrist and finger extensors were recorded to investigate the muscle activation patterns. The results showed that the finger and wrist motions can be elicited both independently and in a coordinated manner, by changing the stimulation intensity and stimulation location. H-reflex activity was also observed, which demonstrated the potential of recruiting motor units in a physiological order. Our approach could be further developed into a rehabilitative/assistive tool for individuals with impaired hand opening and/or wrist extension.


Assuntos
Dedos/fisiologia , Nervo Radial/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Punho/fisiologia , Adulto , Fenômenos Biomecânicos , Cotovelo , Eletromiografia , Feminino , Reflexo H/fisiologia , Mãos , Voluntários Saudáveis , Humanos , Masculino , Neurônios Motores/fisiologia , Fadiga Muscular , Fibras Musculares Esqueléticas/fisiologia , Adulto Jovem
18.
Cell Calcium ; 80: 91-100, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30999217

RESUMO

Skeletal muscle deficiency in the 3-phosphoinositide (PtdInsP) phosphatase myotubularin (MTM1) causes myotubular myopathy which is associated with severe depression of voltage-activated sarcoplasmic reticulum Ca2+ release through ryanodine receptors. In the present study we aimed at further understanding how Ca2+ release is altered in MTM1-deficient muscle fibers, at rest and during activation. While in wild-type muscle fibers, SR Ca2+ release exhibits fast stereotyped kinetics of activation and decay throughout the voltage range of activation, Ca2+ release in MTM1-deficient muscle fibers exhibits slow and unconventional kinetics at intermediate voltages, suggestive of partial loss of the normal control of ryanodine receptor Ca2+ channel activity. In addition, the diseased muscle fibers at rest exhibit spontaneous elementary Ca2+ release events at a frequency 30 times greater than that of control fibers. Eighty percent of the events have spatiotemporal properties of archetypal Ca2+ sparks while the rest take either the form of lower amplitude, longer duration Ca2+ release events or of a combination thereof. The events occur at preferred locations in the fibers, indicating spatially uneven distribution of the parameters determining spontaneous ryanodine receptor 1 opening. Spatially large Ca2+ release sources were obviously involved in some of these events, suggesting that opening of ryanodine receptors in one cluster can activate opening of ryanodine receptors in a neighboring one. Overall results demonstrate that opening of Ca2+-activated ryanodine receptors is promoted both at rest and during excitation-contraction coupling in MTM1-deficient muscle fibers. Because access to this activation mode is denied to ryanodine receptors in healthy skeletal muscle, this may play an important role in the associated disease situation.


Assuntos
Cálcio/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Mutação/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Retículo Sarcoplasmático/metabolismo , Animais , Sinalização do Cálcio , Acoplamento Excitação-Contração , Masculino , Potenciais da Membrana , Camundongos , Camundongos Knockout , Miopatias Congênitas Estruturais/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
19.
Skelet Muscle ; 8(1): 30, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231928

RESUMO

BACKGROUND: The skeletal muscle fiber has a specific and precise intracellular organization which is at the basis of an efficient muscle contraction. Microtubules are long known to play a major role in the function and organization of many cells, but in skeletal muscle, the contribution of the microtubule cytoskeleton to the efficiency of contraction has only recently been studied. The microtubule network is dynamic and is regulated by many microtubule-associated proteins (MAPs). In the present study, the role of the MAP6 protein in skeletal muscle organization and function has been studied using the MAP6 knockout mouse line. METHODS: The presence of MAP6 transcripts and proteins was shown in mouse muscle homogenates and primary culture using RT-PCR and western blot. The in vivo evaluation of muscle force of MAP6 knockout (KO) mice was performed on anesthetized animals using electrostimulation coupled to mechanical measurement and multimodal magnetic resonance. The impact of MAP6 deletion on microtubule organization and intracellular structures was studied using immunofluorescent labeling and electron microscopy, and on calcium release for muscle contraction using Fluo-4 calcium imaging on cultured myotubes. Statistical analysis was performed using Student's t test or the Mann-Whitney test. RESULTS: We demonstrate the presence of MAP6 transcripts and proteins in skeletal muscle. Deletion of MAP6 results in a large number of muscle modifications: muscle weakness associated with slight muscle atrophy, alterations of microtubule network and sarcoplasmic reticulum organization, and reduction in calcium release. CONCLUSION: Altogether, our results demonstrate that MAP6 is involved in skeletal muscle function. Its deletion results in alterations in skeletal muscle contraction which contribute to the global deleterious phenotype of the MAP6 KO mice. As MAP6 KO mouse line is a model for schizophrenia, our work points to a possible muscle weakness associated to some forms of schizophrenia.


Assuntos
Proteínas Associadas aos Microtúbulos/genética , Fibras Musculares Esqueléticas/metabolismo , Animais , Sinalização do Cálcio , Células Cultivadas , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Contração Muscular , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Retículo Sarcoplasmático/metabolismo
20.
J Neural Eng ; 15(6): 066010, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30179163

RESUMO

OBJECTIVE: Conventional electrical stimulation techniques targeting the motor points often induce early muscle fatigue onset that can limit clinical applications. In our current study, we evaluated the muscle activation and force generation during fatigue using a novel stimulation technique. APPROACH: Clustered subthreshold 80 µs current pulses at 10 kHz (high-frequency mode, HF) were delivered transcutaneously to activate the median and ulnar nerve bundles and induce dispersed activations of motor units. Conventional stimulation technique with 800 µs pulses at 30 Hz (low-frequency mode, LF) served as a control condition. Fatigue was evoked by delivering the stimuli continuously for 5 min, with matched initial contraction force (approximately 30% of maximal voluntary contraction) between the HF and LF modes. The elicited finger flexion forces and the muscle activation patterns quantified by high-density electromyogram (EMG) from the finger flexor muscles were compared. MAIN RESULTS: Our results revealed that the elicited force was prolonged under the HF stimulation mode, manifested as a slower decay of the force, a smaller absolute force decline, a higher force plateau, and a larger force-time integral, in comparison with the LF mode. The force-to-EMG ratio under the HF stimulation was also consistently higher than that under the LF mode. In addition, the EMG spatial distribution showed that the muscle activation tended to be more spread-out under the HF mode compared with the LF mode. These results indicated that the HF stimulation induced a higher efficiency of muscle activation, which can potentially reduce muscle fatigue. SIGNIFICANCE: Our findings revealed that the subthreshold kilohertz nerve stimulation can induce temporally and spatially dispersed activation of different motor units with more efficient activation patterns. The reduced muscle fatigue can have a prominent advantage in neural rehabilitation involving transcutaneous electrical nerve stimulations.


Assuntos
Estimulação Elétrica/métodos , Fadiga Muscular/fisiologia , Nervos Periféricos/fisiologia , Adulto , Eletromiografia , Feminino , Dedos/fisiologia , Voluntários Saudáveis , Humanos , Masculino , Nervo Mediano/fisiologia , Neurônios Motores/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Estimulação Elétrica Nervosa Transcutânea , Nervo Ulnar/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA