Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Funct ; 12(6): 2693-2702, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33667291

RESUMO

This study aimed to investigate the role and underlying molecular mechanism of quercetin in regulating skeletal muscle fiber type transition. We found that dietary quercetin supplementation in mice significantly increased oxidative fiber-related gene expression, slow-twitch fiber percentage and succinic dehydrogenase (SDH) activity. By contrast, quercetin decreased lactate dehydrogenase (LDH) activity, fast MyHC protein expression, fast-twitch fiber percentage, and MyHC IIb mRNA expression. Furthermore, quercetin significantly increased serum adiponectin (AdipoQ) concentration, and the expression levels of AdipoQ and AdipoR1. However, inhibition of adiponectin signaling by AdipoR1 siRNA significantly attenuated the effects of quercetin on muscle fiber type-related gene expression, the percentages of slow MyHC-positive and fast MyHC-positive fibers, and metabolic enzyme activity in C2C12 myotubes. Together, our data indicated that quercetin could promote skeletal fiber switching from glycolytic type II to oxidative type I through AdipoQ signaling.


Assuntos
Adiponectina/metabolismo , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Quercetina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Suplementos Nutricionais , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fibras Musculares de Contração Rápida/química , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/química , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Quercetina/administração & dosagem
2.
Nutrients ; 13(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546195

RESUMO

Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is expressed in skeletal muscles and regulates systemic metabolism. Thus, nutraceuticals targeting skeletal muscle PGC-1α have attracted attention to modulate systemic metabolism. As auraptene contained in citrus fruits promotes lipid metabolism and improves mitochondrial respiration, it could increase mitochondrial function through PGC-1α. Therefore, we hypothesized that PGC-1α is activated by auraptene and investigated its effect using Citrus hassaku extract powder (CHEP) containing >80% of auraptene. C2C12 myotubes were incubated with vehicle or CHEP for 24 h; C57BL/6J mice were fed a control diet or a 0.25% (w/w) CHEP-containing diet for 5 weeks. PGC-1α protein level and mitochondrial content increased following CHEP treatment in cultured myotubes and skeletal muscles. In addition, the number of oxidative fibers increased in CHEP-fed mice. These findings suggest that CHEP-mediated PGC-1α upregulation induced mitochondrial biogenesis and fiber transformation to oxidative fibers. Furthermore, as CHEP increased the expression of the protein sirtuin 3 and of phosphorylated AMP-activated protein kinase (AMPK) and the transcriptional activity of PGC-1α, these molecules might be involved in CHEP-induced effects in skeletal muscles. Collectively, our findings indicate that CHEP mediates PGC-1α expression in skeletal muscles and may serve as a dietary supplement to prevent metabolic disorders.


Assuntos
Citrus/química , Mitocôndrias Musculares/efeitos dos fármacos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Mioblastos , Oxirredução , Pós , Regulação para Cima/efeitos dos fármacos
3.
Biomed Pharmacother ; 133: 110977, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33249280

RESUMO

Puerarin is an isoflavonoid extracted from Pueraria lobate with extensive pharmacological effects in traditional Chinese medicine. The evidence implicates that puerarin mitigates hyperglycemia and various relevant complications. Here, the effect of puerarin on skeletal muscle wasting induced by type 1 diabetes (T1D) was explored. Streptozotocin (STZ)-induced T1D male Sprague Dawley (SD) rats were used in this study. Muscle strength, weight and size were measured. L6 rat skeletal muscle cells were applied for in vitro study. Our results showed that eight-week oral puerarin administration (100 mg/kg) increased muscle strengths and weights accompanied by enhanced skeletal muscle cross-sectional areas in diabetic rats. Simultaneously, puerarin also reduced expressions of several muscle wasting marker genes including F-box only protein 32 (Atrogin-1) and muscle-specific RING-finger 1 (Murf-1) in diabetic group both in vitro and in vivo. Transformation from type I fibers (slow muscle) to type II fibers (fast muscle) were also observed under puerarin administration in diabetic rats. Puerarin promoted Akt/mTOR while inhibited LC3/p62 signaling pathway in skeletal muscle cells. In conclusion, our study showed that puerarin mitigated skeletal muscle wasting in T1D rats and closely related with Akt/mTOR activation and autophagy inhibition. Whether this effect in murine applies to humans remains to be determined.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Isoflavonas/farmacologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Animais , Glicemia/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/induzido quimicamente , Masculino , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/patologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Força Muscular/efeitos dos fármacos , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Estreptozocina , Serina-Treonina Quinases TOR/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Biomed Res ; 41(3): 139-148, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32522931

RESUMO

Radix astragali is a popular traditional herbal medicine that provides significant protection against tissue injury in various models of oxidative stress-related diseases. In this study, we aimed to investigate whether administration of Radix astragali prevented atrophy in both slow- and fast-twitch muscles following cast immobilization. Twenty-seven 12-week-old male F344 rats were divided into three experimental groups: control (CON), immobilized (IM), and immobilized with Radix astragali administration (IM+AR). Rats in the IM and IM+AR groups were subjected to immobilization of both lower extremities using casting-tape for 14 days. Rats in the IM+AR group were orally administered a decoction of Radix astragali daily for 21 days beginning 7 days before cast immobilization. As expected, rats in the IM group showed significant decreases (P < 0.05) in soleus and plantaris muscle-to-body weight ratios by 74.3% and 70.5%, respectively, compared with those in the CON group. Administration of Radix astragali significantly reversed (+35.5%) the weight reduction observed in soleus muscle, but not in the plantaris muscle, compared with that in the IM group. Furthermore, administration of Radix astragali inhibited MuRF1 mRNA expression only in the soleus muscle during cast immobilization. Our results demonstrated that administration of Radix astragali suppressed the immobilization-induced reductions in skeletal muscle mass and expression of MuRF1 mRNA in slow-twitch soleus muscles, but not in fast-twitch plantaris muscles.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Animais , Astragalus propinquus , Expressão Gênica , Membro Posterior , Imobilização/efeitos adversos , Imobilização/métodos , Masculino , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/patologia , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Tamanho do Órgão/efeitos dos fármacos , Fitoterapia/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Proteínas com Motivo Tripartido/antagonistas & inibidores , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
J Nutr Biochem ; 61: 155-162, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30236872

RESUMO

This study investigated the effect of arginine on skeletal muscle fiber type transformation in mice and in C2C12 myotubes. Our data showed that dietary supplementation of arginine in mice significantly up-regulated the slow myosin heavy chain (MyHC), troponin I-SS, sirtuin1 (Sirt1) and peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α) protein expressions, as well as significantly down-regulated the fast MyHC protein expression. In C2C12 myotubes, arginine significantly increased the protein level of slow MyHC and the number of slow MyHC-positive cells, as well as significantly decreased the protein level of fast MyHC and the number of fast MyHC-positive cells. We also showed that arginine increased the activities of succinic dehydrogenase and malate dehydrogenase and decreased the activity of lactate dehydrogenase in mice and in C2C12 myotubes. Here we found that AMP-activated protein kinase (AMPK) was activated by arginine in mice and in C2C12 myotubes. However, inhibition of AMPK activity by compound C significantly attenuated the effects of arginine on slow MyHC and fast MyHC expressions in C2C12 myotubes. Finally, we showed that inhibition of Sirt1 expression by EX527 attenuated arginine-induced increase in the protein levels of phospho-AMPK and slow MyHC, the mRNA level of nitric oxide synthase (NOS) and the contents of NOS and NO, as well as decrease in fast MyHC protein level. Together, our findings indicated that arginine promotes skeletal muscle fiber type switching from fast-twitch to slow-twitch via Sirt1/AMPK pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Arginina/farmacologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Sirtuína 1/metabolismo , Animais , Arginina/metabolismo , Suplementos Nutricionais , Enzimas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Fosforilação/efeitos dos fármacos
6.
Nutrients ; 9(10)2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28954428

RESUMO

As a widely distributed and natural existing antioxidant, ferulic acid and its functions have been extensively studied in recent decades. In the present study, hypertrophic growth of fast skeletal myofibers was observed in adult zebrafish after ferulic acid administration for 30 days, being reflected in increased body weight, body mass index (BMI), and muscle mass, along with an enlarged cross-sectional area of myofibers. qRT-PCR analyses demonstrated the up-regulation of relative mRNA expression levels of myogenic transcriptional factors (MyoD, myogenin and serum response factor (SRF)) and their target genes encoding sarcomeric unit proteins involved in muscular hypertrophy (skeletal alpha-actin, myosin heavy chain, tropomyosin, and troponin I). Western blot analyses detected a higher phosphorylated level of zTOR (zebrafish target of rapamycin), p70S6K, and 4E-BP1, which suggests an enhanced translation efficiency and protein synthesis capacity of fast skeletal muscle myofibers. These changes in transcription and translation finally converge and lead to higher protein contents in myofibers, as confirmed by elevated levels of myosin heavy chain (MyHC), and an increased muscle mass. To the best of our knowledge, these findings have been reported for the first time in vivo and suggest potential applications of ferulic acid as functional food additives and dietary supplements owing to its ability to promote muscle growth.


Assuntos
Ácidos Cumáricos/farmacologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Animais , Índice de Massa Corporal , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertrofia , Masculino , Modelos Animais , Fibras Musculares de Contração Rápida/metabolismo , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Tamanho do Órgão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Ativação Transcricional/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos , Peixe-Zebra , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética
7.
Diabetes ; 66(3): 674-688, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28028076

RESUMO

Exercise is an effective intervention for the prevention and treatment of type 2 diabetes. Skeletal muscle combines multiple signals that contribute to the beneficial effects of exercise on cardiometabolic health. Inorganic nitrate increases exercise efficiency, tolerance, and performance. The transcriptional regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) coordinates the exercise-stimulated skeletal muscle fiber-type switch from glycolytic fast-twitch (type IIb) to oxidative slow-twitch (type I) and intermediate (type IIa) fibers, an effect reversed in insulin resistance and diabetes. We found that nitrate induces PGC1α expression and a switch toward type I and IIa fibers in rat muscle and myotubes in vitro. Nitrate induces the release of exercise/PGC1α-dependent myokine FNDC5/irisin and ß-aminoisobutyric acid from myotubes and muscle in rats and humans. Both exercise and nitrate stimulated PGC1α-mediated γ-aminobutyric acid (GABA) secretion from muscle. Circulating GABA concentrations were increased in exercising mice and nitrate-treated rats and humans; thus, GABA may function as an exercise/PGC1α-mediated myokine-like small molecule. Moreover, nitrate increased circulating growth hormone levels in humans and rodents. Nitrate induces physiological responses that mimic exercise training and may underlie the beneficial effects of this metabolite on exercise and cardiometabolic health.


Assuntos
Fibronectinas/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Nitratos/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/efeitos dos fármacos , Condicionamento Físico Animal , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Idoso , Ácidos Aminoisobutíricos , Animais , Beta vulgaris , Cromatografia Líquida , Método Duplo-Cego , Feminino , Fibronectinas/metabolismo , Sucos de Frutas e Vegetais , Cromatografia Gasosa-Espectrometria de Massas , Hormônio do Crescimento/metabolismo , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Resistência à Insulina , Masculino , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Wistar , Transcriptoma , Ácido gama-Aminobutírico/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-25668741

RESUMO

This study determined whether estradiol (E2) or the phytoestrogens genistein and daidzein regulate expression of growth-related and lipogenic genes in rainbow trout. Juvenile fish (5 mon, 65.8±1.8 g) received intraperitoneal injections of E2, genistein, or daidzein (5 µg/g body weight) or a higher dose of genistein (50 µg/g body weight). Liver and white muscle were harvested 24h post-injection. In liver, expression of vitellogenin (vtg) and estrogen receptor alpha (era1) increased in all treatments and reflected treatment estrogenicity (E2>genistein (50 µg/g)>genistein (5 µg/g)=daidzein (5 µg/g)). Estradiol and genistein (50 µg/g) reduced components of the growth hormone (GH)/insulin-like growth factor (IGF) axis in liver, including increased expression of IGF binding protein-2b1 (igfbp2b1) and reduced igfbp5b1. In liver E2 and genistein (50 µg/g) affected expression of components of the transforming growth factor beta signaling mechanism, reduced expression of ppar and rxr transcription factors, and increased expression of fatty acid synthesis genes srebp1, acly, fas, scd1, and gpat and lipid binding proteins fabp3 and lpl. In muscle E2 and genistein (50 µg/g) increased era1 and erb1 expression and decreased erb2 expression. Other genes responded to phytoestrogens in a manner that suggested regulation by estrogen receptor-independent mechanisms, including increased ghr2, igfbp2a, igfbp4, and igfbp5b1. Expression of muscle regulatory factors pax7 and myod was increased by E2 and genistein. These data indicate that genistein and daidzein affect expression of genes in rainbow trout that regulate physiological mechanisms central to growth and nutrient retention.


Assuntos
Estradiol/farmacologia , Genisteína/farmacologia , Isoflavonas/farmacologia , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Fitoestrógenos/farmacologia , Animais , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Receptores de Estrogênio/metabolismo
9.
Nitric Oxide ; 48: 38-43, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25280991

RESUMO

Nitrate (NO3(-)) supplementation via beetroot juice (BR) preferentially improves vascular conductance and O2 delivery to contracting skeletal muscles comprised predominantly of type IIb + d/x (i.e. highly glycolytic) fibers following its reduction to nitrite and nitric oxide (NO). To address the mechanistic basis for NO3(-) to improve metabolic control we tested the hypothesis that BR supplementation would elevate microvascular PO2 (PO2mv) in fast twitch but not slow twitch muscle. Twelve young adult male Sprague-Dawley rats were administered BR ([NO3(-)] 1 mmol/kg/day, n = 6) or water (control, n = 6) for 5 days. PO2mv (phosphorescence quenching) was measured at rest and during 180 s of electrically-induced 1-Hz twitch contractions (6-8 V) of the soleus (9% type IIb +d/x) and mixed portion of the gastrocnemius (MG, 91% type IIb + d/x) muscles. In the MG, but not the soleus, BR elevated contracting steady state PO2mv by ~43% (control: 14 ± 1, BR: 19 ± 2 mmHg (P < 0.05)). This higher PO2mv represents a greater blood-myocyte O2 driving force during muscle contractions thus providing a potential mechanism by which NO3(-) supplementation via BR improves metabolic control in fast twitch muscle. Recruitment of higher order type II muscle fibers is thought to play a role in the development of the VO2 slow component which is inextricably linked to the fatigue process. These data therefore provide a putative mechanism for the BR-induced improvements in high-intensity exercise performance seen in humans.


Assuntos
Músculo Esquelético/metabolismo , Nitratos/farmacologia , Oxigênio/metabolismo , Animais , Suplementos Nutricionais , Masculino , Contração Muscular/efeitos dos fármacos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Nitratos/sangue , Ratos Sprague-Dawley
10.
Acta Vet Scand ; 55: 85, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24267720

RESUMO

BACKGROUND: It was recently shown that niacin supplementation counteracts the obesity-induced muscle fiber transition from oxidative type I to glycolytic type II and increases the number of type I fibers in skeletal muscle of obese Zucker rats. These effects were likely mediated by the induction of key regulators of fiber transition, PPARδ (encoded by PPARD), PGC-1α (encoded by PPARGC1A) and PGC-1ß (encoded by PPARGC1B), leading to type II to type I fiber transition and upregulation of genes involved in oxidative metabolism. The aim of the present study was to investigate whether niacin administration also influences fiber distribution and the metabolic phenotype of different muscles [M. longissimus dorsi (LD), M. semimembranosus (SM), M. semitendinosus (ST)] in sheep as a model for ruminants. For this purpose, 16 male, 11 wk old Rhoen sheep were randomly allocated to two groups of 8 sheep each administered either no (control group) or 1 g niacin per day (niacin group) for 4 wk. RESULTS: After 4 wk, the percentage number of type I fibers in LD, SM and ST muscles was greater in the niacin group, whereas the percentage number of type II fibers was less in niacin group than in the control group (P < 0.05). The mRNA levels of PPARGC1A, PPARGC1B, and PPARD and the relative mRNA levels of genes involved in mitochondrial fatty acid uptake (CPT1B, SLC25A20), tricarboxylic acid cycle (SDHA), mitochondrial respiratory chain (COX5A, COX6A1), and angiogenesis (VEGFA) in LD, SM and ST muscles were greater (P < 0.05) or tended to be greater (P < 0.15) in the niacin group than in the control group. CONCLUSIONS: The study shows that niacin supplementation induces muscle fiber transition from type II to type I, and thereby an oxidative metabolic phenotype of skeletal muscle in sheep as a model for ruminants. The enhanced capacity of skeletal muscle to utilize fatty acids in ruminants might be particularly useful during metabolic states in which fatty acids are excessively mobilized from adipose tissue, such as during the early lactating period in high producing cows.


Assuntos
Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Niacina/farmacologia , Ovinos/fisiologia , Animais , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , Hipolipemiantes/farmacologia , Masculino , Fibras Musculares de Contração Rápida/metabolismo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ovinos/genética , Ovinos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Iran Biomed J ; 17(1): 29-35, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23279832

RESUMO

BACKGROUND: Metabolic derangements in type 2 diabetes mellitus (T2DM) are likely to affect skeletal muscle contractile functions adversely. Levo-carnitine improves muscle contractile functions in healthy humans and rats and corrects metabolic derangements in T2DM. Therefore, it is likely to improve muscle contractile functions in T2DM as well. This study was designed to determine the effect of levo-carnitine on serum levo-carnitine levels, oxidative stress and contractile parameters of fast muscle in T2DM. METHODS: Ninety Sprague-Dawley rats were randomly divided into three equal groups. Healthy rats served as the controls, while T2DM was induced in diabetic and carnitine groups. The carnitine group was administered levo-carnitine 200 mg/kg/day intraperitoneally for 6 days. At 28th day, extensor digitorum longus muscles were removed and their functions were assessed using iWorx data acquisition unit (AHK/214). Blood obtained by intra-cardiac sampling at 28th day was used for estimation of serum malondialdehyde (MDA) and levo-carnitine levels. RESULTS: Maximum isometric twitch tension, time-to-peak twitch tension and time-to-relax to 50% of the peak twitch tension were not significantly different amongst the groups. Carnitine group showed significant improvement in maximum fused tetanic tension, maximum fused tetanic tension after fatigue protocol and recovery from fatigue after 5 minutes of rest period compared to the diabetic group. Serum MDA levels were reduced, while serum levo-carnitine levels were elevated significantly in carnitine group as compared to the diabetic group. CONCLUSION: Levo-carnitine supplementation increases serum levo-carnitine levels which decreases oxidative stress. This action improves contractile force but delays fatigue in fast muscles of diabetic rats.


Assuntos
Carnitina/sangue , Carnitina/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Malondialdeído/sangue , Contração Muscular/fisiologia , Fadiga Muscular/efeitos dos fármacos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Ratos , Ratos Sprague-Dawley
12.
Homeopathy ; 101(3): 154-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22818232

RESUMO

BACKGROUND: Nile tilapia (Oreochromis niloticus), are widely used in fish farming, hormonal treatments are used to increase productivity. Studies of the characteristics of the fiber types are important in species that have well developed muscle mass, such as Nile tilapia. METHODS: A total of 4800 post-larval fish were randomly assigned by tank to receive one of three treatments: Control (30°GL alcohol), Homeopathic complex (Homeopatila RS) or Hormone (17-α-methyltestosterone) supplemented in the feed for 28 days. Survival and morphological parameters were measured at day 45. RESULTS: At day 45, the survival rates were 54.1% (Control), 87.8% (Homeopathy), 50.3% (Hormone). The mean final weight for Homeopathy was statistically significantly lower (1.07 g) than the other two groups: Control (1.81 g) and Hormone (2.04 g). Mean total lengths were Control (4.75 cm), Hormone (4.49 cm), statistically significantly different from Homeopathy (3.83 cm). Average partial length, trunk length, height and body width were significantly lower for Homeopathy than Control or Hormone (p<0.05) Homeopathy treated fish had significantly greater muscle fiber diameter than the other two groups. CONCLUSIONS: Fish treated with the homeopathic complex had improved survival and muscle fiber hypertrophy, but were smaller (probably related to increased survival and overcrowding) compared to fingerlings treated with synthetic hormone or control.


Assuntos
Ciclídeos , Homeopatia , Metiltestosterona/farmacologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Animais , Ciclídeos/fisiologia , Fibras Musculares de Contração Rápida/patologia
13.
J Physiol ; 590(15): 3575-83, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22687611

RESUMO

Dietary inorganic nitrate has profound effects on health and physiological responses to exercise. Here, we examined if nitrate, in doses readily achievable via a normal diet, could improve Ca(2+) handling and contractile function using fast- and slow-twitch skeletal muscles from C57bl/6 male mice given 1 mm sodium nitrate in water for 7 days. Age matched controls were provided water without added nitrate. In fast-twitch muscle fibres dissected from nitrate treated mice, myoplasmic free [Ca(2+)] was significantly greater than in Control fibres at stimulation frequencies from 20 to 150 Hz, which resulted in a major increase in contractile force at ≤ 50 Hz. At 100 Hz stimulation, the rate of force development was ∼35% faster in the nitrate group. These changes in nitrate treated mice were accompanied by increased expression of the Ca(2+) handling proteins calsequestrin 1 and the dihydropyridine receptor. No changes in force or calsequestrin 1 and dihydropyridine receptor expression were measured in slow-twitch muscles. In conclusion, these results show a striking effect of nitrate supplementation on intracellular Ca(2+) handling in fast-twitch muscle resulting in increased force production. A new mechanism is revealed by which nitrate can exert effects on muscle function with applications to performance and a potential therapeutic role in conditions with muscle weakness.


Assuntos
Cálcio/fisiologia , Contração Muscular/efeitos dos fármacos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Nitratos/administração & dosagem , Animais , Canais de Cálcio Tipo L/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Calsequestrina/fisiologia , Dieta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares de Contração Rápida/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia
14.
PLoS One ; 7(1): e30063, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22253880

RESUMO

Increased utrophin expression is known to reduce pathology in dystrophin-deficient skeletal muscles. Transgenic over-expression of PGC-1α has been shown to increase levels of utrophin mRNA and improve the histology of mdx muscles. Other reports have shown that PGC-1α signaling can lead to increased oxidative capacity and a fast to slow fiber type shift. Given that it has been shown that slow fibers produce and maintain more utrophin than fast skeletal muscle fibers, we hypothesized that over-expression of PGC-1α in post-natal mdx mice would increase utrophin levels via a fiber type shift, resulting in more slow, oxidative fibers that are also more resistant to contraction-induced damage. To test this hypothesis, neonatal mdx mice were injected with recombinant adeno-associated virus (AAV) driving expression of PGC-1α. PGC-1α over-expression resulted in increased utrophin and type I myosin heavy chain expression as well as elevated mitochondrial protein expression. Muscles were shown to be more resistant to contraction-induced damage and more fatigue resistant. Sirt-1 was increased while p38 activation and NRF-1 were reduced in PGC-1α over-expressing muscle when compared to control. We also evaluated if the use a pharmacological PGC-1α pathway activator, resveratrol, could drive the same physiological changes. Resveratrol administration (100 mg/kg/day) resulted in improved fatigue resistance, but did not achieve significant increases in utrophin expression. These data suggest that the PGC-1α pathway is a potential target for therapeutic intervention in dystrophic skeletal muscle.


Assuntos
Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/patologia , Distrofia Muscular Animal/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Transativadores/metabolismo , Animais , Fenômenos Biomecânicos , Peso Corporal/efeitos dos fármacos , Dependovirus/efeitos dos fármacos , Dependovirus/metabolismo , Suplementos Nutricionais , Técnicas de Transferência de Genes , Camundongos , Camundongos Endogâmicos mdx , Contração Muscular , Fadiga Muscular , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Distrofia Muscular Animal/complicações , Miosinas/metabolismo , Tamanho do Órgão , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Recuperação de Função Fisiológica/efeitos dos fármacos , Resveratrol , Estilbenos/administração & dosagem , Estilbenos/farmacologia , Fatores de Transcrição
15.
J Appl Physiol (1985) ; 112(5): 728-36, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22174397

RESUMO

There is considerable interest in potential ergogenic and therapeutic effects of increasing skeletal muscle carnosine content, although its effects on excitation-contraction (EC) coupling in human muscle have not been defined. Consequently, we sought to characterize what effects carnosine, at levels attained by supplementation, has on human muscle fiber function, using a preparation with all key EC coupling proteins in their in situ positions. Fiber segments, obtained from vastus lateralis muscle of human subjects by needle biopsy, were mechanically skinned, and their Ca(2+) release and contractile apparatus properties were characterized. Ca(2+) sensitivity of the contractile apparatus was significantly increased by 8 and 16 mM carnosine (increase in pCa(50) of 0.073 ± 0.007 and 0.116 ± 0.006 pCa units, respectively, in six type I fibers, and 0.063 ± 0.018 and 0.103 ± 0.013 pCa units, respectively, in five type II fibers). Caffeine-induced force responses were potentiated by 8 mM carnosine in both type I and II fibers, with the potentiation in type II fibers being entirely explicable by the increase in Ca(2+) sensitivity of the contractile apparatus caused by carnosine. However, the potentiation of caffeine-induced responses caused by carnosine in type I fibers was beyond that expected from the associated increase in Ca(2+) sensitivity of the contractile apparatus and suggestive of increased Ca(2+)-induced Ca(2+) release. Thus increasing muscle carnosine content likely confers benefits to muscle performance in both fiber types by increasing the Ca(2+) sensitivity of the contractile apparatus and possibly also by aiding Ca(2+) release in type I fibers, helping to lessen or slow the decline in muscle performance during fatiguing stimulation.


Assuntos
Cálcio/metabolismo , Carnosina/farmacologia , Contração Muscular/efeitos dos fármacos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Retículo Sarcoplasmático/efeitos dos fármacos , Adulto , Cafeína/farmacologia , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Acoplamento Excitação-Contração/efeitos dos fármacos , Feminino , Humanos , Magnésio/metabolismo , Masculino , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Retículo Sarcoplasmático/metabolismo , Troponina C/metabolismo
16.
Amino Acids ; 43(1): 431-45, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21986958

RESUMO

Hindlimb unloading (HU) in rats induces severe atrophy and a slow-to-fast phenotype transition in postural slow-twitch muscles, as occurs in human disuse conditions, such as spaceflight or bed rest. In rats, a reduction of soleus muscle weight and a decrease of cross-sectional area (CSA) were observed as signs of atrophy. An increased expression of the fast-isoform of myosin heavy chain (MHC) showed the phenotype transition. In parallel the resting cytosolic calcium concentration (restCa) was decreased and the resting chloride conductance (gCl), which regulates muscle excitability, was increased toward the values of the fast-twitch muscles. Here, we investigated the possible role of taurine, which is known to modulate calcium homeostasis and gCl, in the restoration of muscle impairment due to 14-days-HU. We found elevated taurine content and higher expression of the taurine transporter TauT in the soleus muscle as compared to the fast-twitch extensor digitorum longus (EDL) muscle of control rats. Taurine level was reduced in the HU soleus muscle, although, TauT expression was not modified. Taurine oral supplementation (5 g/kg) fully prevented this loss, and preserved resting gCl and restCa together with the slow MHC phenotype. Taurine supplementation did not prevent the HU-induced drop of muscle weight or fiber CSA, but it restored the expression of MURF-1, an atrophy-related gene, suggesting a possible early protective effect of taurine. In conclusion, taurine prevented the HU-induced phenotypic transition of soleus muscle and might attenuate the atrophic process. These findings argue for the beneficial use of taurine in the treatment of disuse-induced muscle dysfunction.


Assuntos
Elevação dos Membros Posteriores , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Taurina/farmacologia , Animais , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Masculino , Contração Muscular , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/patologia , Proteínas Musculares/biossíntese , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Cadeias Pesadas de Miosina/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Taurina/administração & dosagem , Taurina/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/biossíntese
17.
J Vis Exp ; (55)2011 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-21931291

RESUMO

Hind limb muscles of rodents, such as gastrocnemius and tibialis anterior, are frequently used for in vivo pharmacological studies of the signals essential for the formation and maintenance of mammalian NMJs. However, drug penetration into these muscles after subcutaneous or intramuscular administration is often incomplete or uneven and many NMJs can remain unaffected. Although systemic administration with devices such as mini-pumps can improve the spatiotemporal effects, the invasive nature of this approach can cause confounding inflammatory responses and/or direct muscle damage. Moreover, complete analysis of the NMJs in a hind limb muscle is challenging because it requires time-consuming serial sectioning and extensive immunostaining. The mouse LAL is a thin, flat sheet of muscle located superficially on the dorsum of the neck. It is a fast-twitch muscle that functions to move the pinna. It contains rostral and caudal portions that originate from the midline of the cranium and extend laterally to the cartilaginous portion of each pinna. The muscle is supplied by a branch of the facial nerve that projects caudally as it exits the stylomastoid foramen. We and others have found LAL to be a convenient preparation that offers advantages for the investigation of both short and long-term in vivo effects of drugs on NMJs and muscles. First, its superficial location facilitates multiple local applications of drugs under light anesthesia. Second, its thinness (2-3 layers of muscle fibers) permits visualization and analysis of almost all the NMJs within the muscle. Third, the ease of dissecting it with its nerve intact together with the pattern of its innervation permits supplementary electrophysiological analysis in vitro. Last, and perhaps most importantly, a small applied volume (-50 µl) easily covers the entire muscle surface, provides a uniform and prolonged exposure of all its NMJs to the drug and eliminates the need for a systemic approach.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Antagonistas Muscarínicos/farmacologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/inervação , Animais , Imuno-Histoquímica/métodos , Camundongos , Pescoço , Junção Neuromuscular/efeitos dos fármacos , Receptores Muscarínicos/química , Receptores Muscarínicos/metabolismo
18.
PLoS One ; 6(8): e22742, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21850234

RESUMO

BACKGROUND: Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. METHODS AND RESULTS: The extensor digitorum longus muscle from mice aged 12-14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i) before fatigue; (ii) immediately after a fatigue protocol; and (iii) after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. CONCLUSION: Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca(2+) sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation.


Assuntos
Creatina/farmacologia , Fadiga Muscular/efeitos dos fármacos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Animais , Cálcio/metabolismo , Humanos , Técnicas In Vitro , Cinética , Camundongos , Modelos Estatísticos , Contração Muscular/efeitos dos fármacos , Fadiga Muscular/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Concentração Osmolar
19.
J Appl Physiol (1985) ; 107(1): 144-54, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19423840

RESUMO

Recent studies report that depletion and repletion of muscle taurine (Tau) to endogenous levels affects skeletal muscle contractility in vitro. In this study, muscle Tau content was raised above endogenous levels by supplementing male Sprague-Dawley rats with 2.5% (wt/vol) Tau in drinking water for 2 wk, after which extensor digitorum longus (EDL) muscles were examined for in vitro contractile properties, fatigue resistance, and recovery from fatigue after two different high-frequency stimulation bouts. Tau supplementation increased muscle Tau content by approximately 40% and isometric twitch force by 19%, shifted the force-frequency relationship upward and to the left, increased specific force by 4.2%, and increased muscle calsequestrin protein content by 49%. Force at the end of a 10-s (100 Hz) continuous tetanic stimulation was 6% greater than controls, while force at the end of the 3-min intermittent high-frequency stimulation bout was significantly higher than controls, with a 12% greater area under the force curve. For 1 h after the 10-s continuous stimulation, tetanic force in Tau-supplemented muscles remained relatively stable while control muscle force gradually deteriorated. After the 3-min intermittent bout, tetanic force continued to slowly recover over the next 1 h, while control muscle force again began to decline. Tau supplementation attenuated F(2)-isoprostane production (a sensitive indicator of reactive oxygen species-induced lipid peroxidation) during the 3-min intermittent stimulation bout. Finally, Tau transporter protein expression was not altered by the Tau supplementation. Our results demonstrate that raising Tau content above endogenous levels increases twitch and subtetanic and specific force in rat fast-twitch skeletal muscle. Also, we demonstrate that raising Tau protects muscle function during high-frequency in vitro stimulation and the ensuing recovery period and helps reduce oxidative stress during prolonged stimulation.


Assuntos
Contração Muscular/efeitos dos fármacos , Fadiga Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Taurina/administração & dosagem , Animais , Proteínas de Ligação ao Cálcio , Calsequestrina , Proteínas de Transporte/análise , Proteínas de Transporte/metabolismo , Estimulação Elétrica , Técnicas In Vitro , Masculino , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/metabolismo , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/fisiologia , Músculo Esquelético/química , Músculo Esquelético/fisiologia , Ratos , Ratos Sprague-Dawley , Taurina/análise , Abastecimento de Água
20.
Artigo em Inglês | MEDLINE | ID: mdl-18655848

RESUMO

Methyl parathion (MP), an organophosphate widely applied in agriculture and aquaculture, induces oxidative stress due to free radical generation and changes in the antioxidant defense system. The antioxidant roles of selenium (Se) were evaluated in Brycon cephalus exposed to 2 mg L(-1) of Folisuper 600 BR (MP commercial formulation - MPc, 600 g L(-1)) for 96 h. Catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO) levels in the gills, white muscle and liver were evaluated in fish fed on diets containing 0 or 1.5 mg Se kg(-1) for 8 weeks. In fish treated with a Se-free diet, the MPc exposure increased SOD and CAT activities in all tissues. However, the GPx activity decreased in white muscle and gills whereas no alterations were observed in the liver. MPc also increased GST activity in all tissues with a concurrent decrease in GSH levels. LPO values increased in white muscle and gills and did not change in liver after MPc exposure. A Se-supplemented diet reversed these findings, preventing increases in LPO levels and concurrent decreases in GPx activity in gills and white muscle. Similarly, GSH levels were maintained in all tissue after MPc exposure. These results suggest that dietary Se supplementation protects cells against MPc-induced oxidative stress.


Assuntos
Antioxidantes/farmacologia , Suplementos Nutricionais , Peixes/metabolismo , Inseticidas/toxicidade , Metil Paration/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Selenito de Sódio/farmacologia , Poluentes Químicos da Água/toxicidade , Ração Animal , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/enzimologia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA