Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Brain Res ; 1730: 146670, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31953213

RESUMO

INTRODUCTION: Acupuncture has become a relevant complementary and alternative treatment for acute migraine; however, the neurophysiological mechanism (C-fibers) underlying this effect remains unclear. C-fibers play a crucial role for diffuse noxious inhibitory controls (DNIC) at wide dynamic range (WDR) neurons in the trigeminocervical complex (TCC) in migraine attacks, and we supposed that this may be the mechanism of acupuncture analgesia. This study aimed to examine the neurophysiology of acupuncture intervention in an acute migraine rat model. METHODS: Inflammatory soup (IS) or saline was injected into the dura mater to establish a migraine and control model in rats. To explore the neurobiological mechanism of acupuncture for migraine, we implemented electro-acupuncture (EA), non-electric-stimulation acupuncture, and no-acupuncture in IS and saline injected rats, and recorded the single-cell extraneural neurophysiology of the atlas (C1) spinal dorsal horn neurons in the TCC. RESULTS: Our research shows that electro-acupuncture at GB8 (Shuaigu), located in the periorbital region receptive field of the trigeminal nerve, may rapidly reduce the C-fiber evoked WDR neuronal discharges of the TCC within 60 s. DISCUSSION: This study provides pioneering evidence of a potential neurobiological mechanism for the analgesic effect on migraine attacks achieved by electro-acupuncture intervention via DNIC. The data indicates that EA may become a crucial supplementary and alternative therapy for migraineurs that failed to respond to acute medications, e.g., fremanezumab, which achieves its analgesic effect via modulating Aσ-fibers, not C-fibers.


Assuntos
Terapia por Acupuntura , Transtornos de Enxaqueca/prevenção & controle , Transtornos de Enxaqueca/fisiopatologia , Fibras Nervosas Amielínicas/fisiologia , Núcleos do Trigêmeo/fisiopatologia , Animais , Estimulação Elétrica , Masculino , Glicoproteínas de Membrana , Limiar da Dor , Ratos Sprague-Dawley , Receptores de Interleucina-1
2.
Am J Physiol Renal Physiol ; 317(1): F163-F171, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31141398

RESUMO

Although percutaneous tibial nerve stimulation is considered a clinically effective therapy for treating overactive bladder, the mechanism by which overactive bladder symptoms are suppressed remains unclear. The goal of the present study was to better understand the role of specific neural inputs (i.e., fiber types) on the bladder-inhibitory effects of tibial nerve stimulation (TNS). In 24 urethane-anesthetized rats, a continuous suprapubic saline infusion model was used to achieve repeated filling and emptying of the bladder. A total of 4 TNS trials (pulse frequency: 5 Hz) were applied in randomized order, where each trial used different amplitude settings: 1) no stimulation (control), 2) Aß-fiber activation, 3) Aδ-fiber activation, and 4) C-fiber activation. Each stimulation trial was 30 min in duration, with an intertrial washout period of 60-90 min. Our findings showed that TNS evoked statistically significant changes in bladder function (e.g., bladder capacity, residual volume, voiding efficiency, and basal pressure) only at stimulation amplitudes that electrically recruited unmyelinated C-fibers. In a subset of experiments, TNS also resulted in transient episodes of overflow incontinence. It is noted that changes in bladder function occurred only during the poststimulation period. The bladder-inhibitory effects of TNS in a continuous bladder filling model suggests that electrical recruitment of unmyelinated C-fibers has important functional significance. The implications of these findings in percutaneous tibial nerve stimulation therapy should be further investigated.


Assuntos
Terapia por Estimulação Elétrica , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Inibição Neural , Recrutamento Neurofisiológico , Nervo Tibial , Bexiga Urinária/inervação , Urodinâmica , Anestésicos Inalatórios , Anestésicos Intravenosos , Animais , Feminino , Isoflurano , Pressão , Ratos Sprague-Dawley , Fatores de Tempo , Uretana
3.
BMJ ; 365: l1108, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068323

RESUMO

Sensory polyneuropathies, which are caused by dysfunction of peripheral sensory nerve fibers, are a heterogeneous group of disorders that range from the common diabetic neuropathy to the rare sensory neuronopathies. The presenting symptoms, acuity, time course, severity, and subsequent morbidity vary and depend on the type of fiber that is affected and the underlying cause. Damage to small thinly myelinated and unmyelinated nerve fibers results in neuropathic pain, whereas damage to large myelinated sensory afferents results in proprioceptive deficits and ataxia. The causes of these disorders are diverse and include metabolic, toxic, infectious, inflammatory, autoimmune, and genetic conditions. Idiopathic sensory polyneuropathies are common although they should be considered a diagnosis of exclusion. The diagnostic evaluation involves electrophysiologic testing including nerve conduction studies, histopathologic analysis of nerve tissue, serum studies, and sometimes autonomic testing and cerebrospinal fluid analysis. The treatment of these diseases depends on the underlying cause and may include immunotherapy, mitigation of risk factors, symptomatic treatment, and gene therapy, such as the recently developed RNA interference and antisense oligonucleotide therapies for transthyretin familial amyloid polyneuropathy. Many of these disorders have no directed treatment, in which case management remains symptomatic and supportive. More research is needed into the underlying pathophysiology of nerve damage in these polyneuropathies to guide advances in treatment.


Assuntos
Terapias Complementares/métodos , Terapia Genética/métodos , Imunoterapia/métodos , Exame Neurológico/métodos , Polineuropatias/diagnóstico , Humanos , Metanálise como Assunto , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Estudos Observacionais como Assunto , Polineuropatias/fisiopatologia , Polineuropatias/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Comportamento de Redução do Risco , Limiar Sensorial/fisiologia
4.
Neurogastroenterol Motil ; 31(6): e13585, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30947399

RESUMO

BACKGROUND: Ginger has been used as an herbal medicine worldwide to relieve nausea/vomiting and gastrointestinal discomfort, but the cellular and molecular mechanisms of its neuronal action remain unclear. The present study aimed to determine the effects of ginger constituent 6-shogaol on gastroesophageal vagal nodose C-fibers. METHODS: Extracellular single-unit recording and two-photon nodose neuron imaging were performed, respectively, in ex vivo gastroesophageal-vagal preparations from wild type and Pirt-GCaMP6 transgenic mice. The action potential discharge or calcium influx evoked by mechanical distension and chemical perfusions applied to the gastroesophageal vagal afferent nerve endings were recorded, respectively, at their intact neuronal cell soma in vagal nodose ganglia. The effects of 6-shogaol on nodose C-fiber neurons were then compared and determined. KEY RESULTS: Gastroesophageal application of 6-shogaol-elicited intensive calcium influxes in nodose neurons and evoked robust action potential discharges in most studied nodose C-fibers. Such activation effects were followed by a desensitized response to the second application of 6-shogaol. However, action potential discharges evoked by esophageal mechanical distension, after 6-shogaol perfusion, did not significantly change. Pretreatment with TRPA1 selective blocker HC-030031 inhibited 6-shogaol-induced action potential discharges in gastric and esophageal nodose C-fiber neurons, suggesting that TRPA1 played a role in mediating 6-shogaol-induced activation response. CONCLUSION AND INFERENCES: This study provides evidence that ginger constituent 6-shogaol directly activates vagal afferent C-fiber peripheral gastrointestinal endings. This activation leads to desensitization to subsequent application of 6-shogaol but not subsequent esophageal mechanical distension. Further investigation is required to establish a possible contribution in its anti-emetic effects.


Assuntos
Catecóis/farmacologia , Fibras Nervosas Amielínicas/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Gânglio Nodoso/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Esôfago/efeitos dos fármacos , Esôfago/inervação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estômago/efeitos dos fármacos , Estômago/inervação
5.
Neuroscience ; 404: 499-509, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30826524

RESUMO

Under pathological conditions, acupoint sensitization is the phenomenon of acupoints transforming from the stable state to the dynamic state. Evidences suggest that hyperpolarization-activated current (Ih), conducted by the hyperpolarization-activated/cyclic nucleotide-gated (HCN) channel, greatly contributes to the peripheral and central sensitization. However, the role of the Ih current in acupoint sensitization has not been explained. In the present study, changes in excitability, Ih density and the HCN channel of dorsal root ganglion (DRG) nociceptive neurons were examined in the later phase of knee osteoarthritis (KOA) rats. To investigate the neuronal specificity of acupoint sensitization, retrograde dyes were injected into the acupoints ST35 and GB37. The results showed that acupoint sensitization occurred in bilateral ST35 but not GB37 acupoints. The excitability and Ih density of C- but not Aδ-type neurons innervating ST35 acupoint increased in bilateral L5 DRG of acupoint sensitized rats than that of sham rats. No obvious changes were found in the excitability or Ih density of C- and Aδ-type neurons innervating the GB37 acupoint in the bilateral L5 DRG. HCN channel subtype 2 (HCN2) expression levels significantly increased after acupoint sensitization. Furthermore, ZD7288, an HCN current (Ih) blocker, attenuated the acupoint sensitization of the ST35 acupoint. Taken together, our findings suggest that the increased excitability of C- but not Aδ-type neurons and the upregulation of Ih/HCN2 channels contribute to the formation of acupoint sensitization.


Assuntos
Pontos de Acupuntura , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Neurônios/fisiologia , Osteoartrite do Joelho/terapia , Animais , Masculino , Osteoartrite do Joelho/fisiopatologia , Ratos , Ratos Sprague-Dawley
6.
Exp Neurol ; 314: 58-66, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30660616

RESUMO

Acute inflammation induces sensitization of nociceptive neurons and triggers the accumulation of calcium permeable (CP) α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) in the dorsal horn of the spinal cord. This coincides with behavioral signs of acute inflammatory pain, but whether CP-AMPARs contribute to chronic pain remains unclear. To evaluate this question, we first constructed current-voltage (IV) curves of C-fiber stimulus-evoked, AMPAR-mediated EPSCs in lamina II to test for inward rectification, a key characteristic of CP-AMPARs. We found that the intraplantar injection of complete Freund's adjuvant (CFA) induced an inward rectification at 3 d that persisted to 21 d after injury. Furthermore, the CP- AMPAR antagonist IEM-1460 (50 µM) inhibited AMPAR-evoked Ca2+ transients 21d after injury but had no effect in uninflamed mice. We then used a model of long-lasting vulnerability for chronic pain that is determined by the balance between latent central sensitization (LCS) and mu opioid receptor constitutive activity (MORCA). When administered 21 d after the intraplantar injection of CFA, intrathecal administration of the MORCA inverse agonist naltrexone (NTX, 1 µg, i.t.) reinstated mechanical hypersensitivity, and superfusion of spinal cord slices with NTX (10 µM) increased the peak amplitude of AMPAR-evoked Ca2+ transients in lamina II neurons. The CP-AMPAR antagonist naspm (0-10 nmol, i.t.) inhibited these NTX-induced increases in mechanical hypersensitivity. NTX had no effect in uninflamed mice. Subsequent western blot analysis of the postsynaptic density membrane fraction from lumbar dorsal horn revealed that CFA increased GluA1 expression at 2 d and GluA4 expression at both 2 and 21 d post-injury, indicating that not just the GluA1 subunit, but also the GluA4 subunit, contributes to the expression of CP-AMPARs and synaptic strength during hyperalgesia. GluA2 expression increased at 21 d, an unexpected result that requires further study. We conclude that after tissue injury, dorsal horn AMPARs retain a Ca2+ permeability that underlies LCS. Because of their effectiveness in reducing naltrexone-induced reinstatement of hyperalgesia and potentiation of AMPAR-evoked Ca2+ signals, CP-AMPAR inhibitors are a promising class of agents for the treatment of chronic inflammatory pain.


Assuntos
Cálcio/metabolismo , Dor Crônica/fisiopatologia , Receptores de AMPA/metabolismo , Receptores Opioides/metabolismo , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Adamantano/análogos & derivados , Adamantano/farmacologia , Animais , Dor Crônica/induzido quimicamente , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Adjuvante de Freund , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Fibras Nervosas Amielínicas , Nociceptividade , Células do Corno Posterior/efeitos dos fármacos , Receptores de AMPA/antagonistas & inibidores , Receptores de Glutamato/metabolismo , Sinapses/efeitos dos fármacos
7.
Sci Rep ; 8(1): 14967, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297735

RESUMO

High blood pressure (BP) is a highly controllable risk factor for cardiovascular diseases; however, awareness of this condition and the rates of controlled hypertension are low. Experimental animal studies have shown that stimulation of the median nerve or PC6 acupoint over the wrist has effects on cardiovascular activities, including reductions in systolic and diastolic BPs. A proof-of-concept study was conducted in humans to investigate whether stimulation of median nerve near PC6 acupoint decreased high BP, identify the optimal stimulation parameters for the BP-lowering effects of median nerve stimulation, and determine the specific peripheral nerves or types of afferent fibers mediating the BP-lowering effects. Median nerve stimulation was carried out bilaterally or unilaterally with different stimulation parameters, and the BP and heart rate were monitored. The afferent mechanisms underlying the effects of median nerve stimulation on hypertension were investigated via microneurography, A-fiber blocking experiments, and localized chemical or electrical stimulation. Bilateral median nerve stimulation at either low or high frequencies produced profound but transient reductions in systolic BP, which were elicited when median nerve stimulation was unilaterally applied at interelectrode distances of 2 and 4 cm. Systolic BP was also reduced by electrical stimulation of the thumb on the palm side. Although microneurographic recordings revealed the excitation of both A- and C-fibers following median nerve stimulation, the median nerve-mediated reductions in BP were not affected by A-fiber blockade, and they were mimicked by the activation of C-fibers with capsaicin. The present results indicate that activation of C-fibers in the median nerve generates BP-lowering effects in humans. Based on our clinical study, an optimized median nerve stimulator was built and combined with a wrist BP monitor for simultaneous BP measurements and median nerve stimulation.


Assuntos
Hipertensão/terapia , Nervo Mediano/fisiopatologia , Fibras Nervosas Amielínicas/fisiologia , Estimulação Elétrica Nervosa Transcutânea/instrumentação , Adulto , Pressão Sanguínea/efeitos dos fármacos , Monitores de Pressão Arterial , Capsaicina/farmacologia , Eletrodos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Hipertensão/fisiopatologia , Masculino , Nervo Mediano/efeitos dos fármacos , Bloqueio Nervoso , Fibras Nervosas Amielínicas/efeitos dos fármacos , Nervo Ulnar/efeitos dos fármacos , Nervo Ulnar/fisiopatologia , Punho
8.
PLoS One ; 13(5): e0196791, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29723257

RESUMO

Identification of voltage-gated sodium channel NaV1.7 inhibitors for chronic pain therapeutic development is an area of vigorous pursuit. In an effort to identify more potent leads compared to our previously reported GpTx-1 peptide series, electrophysiology screening of fractionated tarantula venom discovered the NaV1.7 inhibitory peptide JzTx-V from the Chinese earth tiger tarantula Chilobrachys jingzhao. The parent peptide displayed nominal selectivity over the skeletal muscle NaV1.4 channel. Attribute-based positional scan analoging identified a key Ile28Glu mutation that improved NaV1.4 selectivity over 100-fold, and further optimization yielded the potent and selective peptide leads AM-8145 and AM-0422. NMR analyses revealed that the Ile28Glu substitution changed peptide conformation, pointing to a structural rationale for the selectivity gains. AM-8145 and AM-0422 as well as GpTx-1 and HwTx-IV competed for ProTx-II binding in HEK293 cells expressing human NaV1.7, suggesting that these NaV1.7 inhibitory peptides interact with a similar binding site. AM-8145 potently blocked native tetrodotoxin-sensitive (TTX-S) channels in mouse dorsal root ganglia (DRG) neurons, exhibited 30- to 120-fold selectivity over other human TTX-S channels and exhibited over 1,000-fold selectivity over other human tetrodotoxin-resistant (TTX-R) channels. Leveraging NaV1.7-NaV1.5 chimeras containing various voltage-sensor and pore regions, AM-8145 mapped to the second voltage-sensor domain of NaV1.7. AM-0422, but not the inactive peptide analog AM-8374, dose-dependently blocked capsaicin-induced DRG neuron action potential firing using a multi-electrode array readout and mechanically-induced C-fiber spiking in a saphenous skin-nerve preparation. Collectively, AM-8145 and AM-0422 represent potent, new engineered NaV1.7 inhibitory peptides derived from the JzTx-V scaffold with improved NaV selectivity and biological activity in blocking action potential firing in both DRG neurons and C-fibers.


Assuntos
Analgésicos/isolamento & purificação , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Peptídeos/química , Bloqueadores dos Canais de Sódio/isolamento & purificação , Venenos de Aranha/química , Potenciais de Ação/efeitos dos fármacos , Substituição de Aminoácidos , Analgésicos/farmacologia , Animais , Capsaicina/farmacologia , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Gânglios Espinais/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Fibras Nervosas Amielínicas/efeitos dos fármacos , Ressonância Magnética Nuclear Biomolecular , Técnicas de Patch-Clamp , Estimulação Física , Engenharia de Proteínas , Proteínas Recombinantes/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Relação Estrutura-Atividade , Tetrodotoxina/farmacologia
9.
Eur J Pain ; 21(8): 1326-1335, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28440002

RESUMO

BACKGROUND: The effectiveness of Botulinum-neurotoxin A (BoNT/A) to treat pain in human pain models is very divergent. This study was conducted to clarify if the pain models or the route of BoNT/A application might be responsible for these divergent findings. METHODS: Sixteen healthy subjects (8 males, mean age 27 ± 5 years) were included in a first set of experiments consisting of three visits: (1) Visit: Quantitative sensory testing (QST) was performed before and after intradermal capsaicin injection (CAPS, 15 µg) on one thigh and electrical current stimulation (ES, 1 Hz) on the contralateral thigh. During stimulation pain and the neurogenic flare response (laser-Doppler imaging) were assessed. (2) Four weeks later, BoNT/A (Xeomin® , 25 MU) was injected intracutaneously on both sides. (3) Seven days later, the area of BoNT/A application was determined by the iodine-starch staining and the procedure of the (1) visit was exactly repeated. In consequence of these results, 8 healthy subjects (4 males, mean age 26 ± 3 years) were included into a second set of experiments. The experimental setting was exactly the same with the exception that stimulation frequency of ES was increased to 4 Hz and BoNT/A was injected subcutaneously into the thigh, which was stimulated by capsaicin. RESULTS: BoNT/A reduced the 1 Hz ES flare size (p < 0.001) and pain ratings (p < 0.01), but had no effect on 4 Hz ES and capsaicin-induced pain, hyperalgesia, or flare size, regardless of the depth of BoNT/A injection (i.c./s.c). Moreover, i.c. BoNT/A injection significantly increased warm detection and heat pain thresholds in naive skin (WDT, Δ 2.2 °C, p < 0.001; HPT Δ 1.8 °C, p < 0.005). CONCLUSION: BoNT/A has a moderate inhibitory effect on peptidergic and thermal C-fibers in healthy human skin. SIGNIFICANCE: The study demonstrates that BoNT/A (Incobotulinumtoxin A) has differential effects in human pain models: It reduces the neurogenic flare and had a moderate analgesic effects in low frequency but not high frequency current stimulation of cutaneous afferent fibers at C-fiber strength; BoNT/A had no effect in capsaicin-induced (CAPS) neurogenic flare or pain, or on hyperalgesia to mechanical or heat stimuli in both pain models. Intracutaneous BoNT/A increases warm and heat pain thresholds on naïve skin.


Assuntos
Toxinas Botulínicas Tipo A/uso terapêutico , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Fármacos Neuromusculares/uso terapêutico , Adulto , Capsaicina , Estimulação Elétrica , Feminino , Temperatura Alta , Humanos , Hiperalgesia/etiologia , Injeções Intradérmicas , Masculino , Fibras Nervosas Amielínicas/efeitos dos fármacos , Neuralgia/etiologia , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Fármacos do Sistema Sensorial , Adulto Jovem
10.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27899696

RESUMO

The transient receptor potential ankyrin 1 (TRPA1) channel has been implicated in pathophysiological processes that include asthma, cough, and inflammatory pain. Agonists of TRPA1 such as mustard oil and its key component allyl isothiocyanate (AITC) cause pain and neurogenic inflammation in humans and rodents, and TRPA1 antagonists have been reported to be effective in rodent models of pain. In our pursuit of TRPA1 antagonists as potential therapeutics, we generated AMG0902, a potent (IC90 of 300 nM against rat TRPA1), selective, brain penetrant (brain to plasma ratio of 0.2), and orally bioavailable small molecule TRPA1 antagonist. AMG0902 reduced mechanically evoked C-fiber action potential firing in a skin-nerve preparation from mice previously injected with complete Freund's adjuvant, supporting the role of TRPA1 in inflammatory mechanosensation. In vivo target coverage of TRPA1 by AMG0902 was demonstrated by the prevention of AITC-induced flinching/licking in rats. However, oral administration of AMG0902 to rats resulted in little to no efficacy in models of inflammatory, mechanically evoked hypersensitivity; and no efficacy was observed in a neuropathic pain model. Unbound plasma concentrations achieved in pain models were about 4-fold higher than the IC90 concentration in the AITC target coverage model, suggesting that either greater target coverage is required for efficacy in the pain models studied or TRPA1 may not contribute significantly to the underlying mechanisms.


Assuntos
Hiperalgesia/metabolismo , Inflamação/complicações , Ciática/complicações , Canais de Cátion TRPC/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Aminas/uso terapêutico , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Células CHO , Cricetulus , Ácidos Cicloexanocarboxílicos/uso terapêutico , Comportamento Exploratório/efeitos dos fármacos , Adjuvante de Freund/toxicidade , Gabapentina , Hiperalgesia/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Naproxeno/farmacologia , Fibras Nervosas Amielínicas/efeitos dos fármacos , Fibras Nervosas Amielínicas/fisiologia , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ciática/tratamento farmacológico , Canal de Cátion TRPA1 , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética , Ácido gama-Aminobutírico/uso terapêutico
11.
Front Med ; 10(4): 465-472, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27896621

RESUMO

Previous studies have demonstrated the effects of different afferent fibers on electroacupuncture (EA)-induced analgesia. However, contributions of functional receptors expressed on afferent fibers to the EA analgesia remain unclear. This study investigates the roles of acid-sensing ion channel 3 (ASIC3) and transient receptor potential vanilloid 1 (TRPV1) receptors in EA-induced segmental and systemic analgesia. Effects of EA at acupoint ST36 with different intensities on the C-fiber reflex and mechanical and thermal pain thresholds were measured among the ASIC3-/-, TRPV1-/-, and C57BL/6 mice. Compared with C57BL/6 mice, the ipsilateral inhibition of EA with 0.8 C-fiber threshold (0.8Tc) intensity on C-fiber reflex was markedly reduced in ASIC3-/- mice, whereas the bilateral inhibition of 1.0 and 2.0Tc EA was significantly decreased in TRPV1-/- mice. The segmental increase in pain thresholds induced by 0.3 mA EA was significantly reduced in ASIC3-/- mice, whereas the systemic enhancement of 1.0 mA EA was markedly decreased in TRPV1-/- mice. Thus, segmental analgesia of EA with lower intensity is partially mediated by ASIC3 receptor on Aß-fiber, whereas systemic analgesia induced by EA with higher intensity is more likely induced by TRPV1 receptor on Aδ- and C-fibers.


Assuntos
Canais Iônicos Sensíveis a Ácido/genética , Analgesia/métodos , Eletroacupuntura/métodos , Fibras Nervosas Amielínicas/efeitos dos fármacos , Canais de Cátion TRPV/genética , Pontos de Acupuntura , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Manejo da Dor
13.
Pain ; 157(10): 2235-2247, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27583680

RESUMO

Although conduction failure has been observed in nociceptive C-fibers, little is known regarding its significance or therapeutic potential. In a previous study, we demonstrated that C-fiber conduction failure, which is regarded as an intrinsic self-inhibition mechanism, was reduced in circumstances of painful diabetic neuropathy. In this study, we extend this finding in the complete Freund's adjuvant model of inflammatory pain and validate that the degree of conduction failure decreased and led to a greater amount of pain signals conveyed to the central nervous system. In complete Freund's adjuvant-injected animals, conduction failure occurred in a C-fiber-selective, activity-dependent manner and was associated with an increase in the rising slope of the C-fiber after-hyperpolarization potential. To target conduction failure in a therapeutic modality, we used ZD7288, an antagonist of hyperpolarization-activated, cyclic nucleotide-modulated channels which are activated by hyperpolarization and play a pivotal role in both inflammatory and neuropathic pain. ZD7288 promoted conduction failure by suppressing Ih as a mechanism to reduce the rising slope of the after-hyperpolarization potential. Moreover, perineuronal injection of ZD7288 inhibited abnormal mechanical allodynia and thermal hyperalgesia without affecting motor function or heart rate. Our data highlight the analgesic potential of local ZD7288 application and identify conduction failure as a novel target for analgesic therapeutic development.


Assuntos
Fibras Nervosas Amielínicas/fisiologia , Condução Nervosa/fisiologia , Neurônios/fisiologia , Dor/patologia , Animais , Biofísica , Cálcio/metabolismo , Modelos Animais de Doenças , Feminino , Adjuvante de Freund/toxicidade , Gânglios Espinais/citologia , Hiperalgesia/fisiopatologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Inflamação/induzido quimicamente , Inflamação/complicações , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Fibras Nervosas Amielínicas/efeitos dos fármacos , Condução Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Dor/etiologia , Limiar da Dor/efeitos dos fármacos , Técnicas de Patch-Clamp , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley
14.
J Neurophysiol ; 116(3): 949-59, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27281750

RESUMO

Mechanisms that could mitigate the effects of hypoxia on neuronal signaling are incompletely understood. We show that axonal performance of a locust visual interneuron varied depending on oxygen availability. To induce hypoxia, tracheae supplying the thoracic nervous system were surgically lesioned and action potentials in the axon of the descending contralateral movement detector (DCMD) neuron passing through this region were monitored extracellularly. The conduction velocity and fidelity of action potentials decreased throughout a 45-min experiment in hypoxic preparations, whereas conduction reliability remained constant when the tracheae were left intact. The reduction in conduction velocity was exacerbated for action potentials firing at high instantaneous frequencies. Bath application of octopamine mitigated the loss of conduction velocity and fidelity. Action potential conduction was more vulnerable in portions of the axon passing through the mesothoracic ganglion than in the connectives between ganglia, indicating that hypoxic modulation of the extracellular environment of the neuropil has an important role to play. In intact locusts, octopamine and its antagonist, epinastine, had effects on the entry to, and recovery from, anoxic coma consistent with octopamine increasing overall neural performance during hypoxia. These effects could have functional relevance for the animal during periods of environmental or activity-induced hypoxia.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Hipóxia/patologia , Fibras Nervosas Amielínicas/efeitos dos fármacos , Condução Nervosa/efeitos dos fármacos , Octopamina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Agonistas alfa-Adrenérgicos/uso terapêutico , Animais , Inibidores Enzimáticos/farmacologia , Lateralidade Funcional/efeitos dos fármacos , Gafanhotos , Oxigenoterapia Hiperbárica/métodos , Masculino , Movimento/efeitos dos fármacos , Fibras Nervosas Amielínicas/fisiologia , Octopamina/uso terapêutico , Técnicas de Patch-Clamp , Estimulação Luminosa , Azida Sódica/farmacologia , Nervos Torácicos/patologia , Fatores de Tempo
15.
Phys Med Biol ; 61(12): 4364-75, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27224060

RESUMO

The electrostimulation excitation threshold of a nerve depends on temporal and frequency parameters of the stimulus. These dependences were investigated in terms of: (1) strength-duration (SD) curve for a single monophasic rectangular pulse, and (2) frequency dependence of the excitation threshold for a continuous sinusoidal current. Experiments were performed on the single-axon measurement setup based on Lumbricus terrestris having unmyelinated nerve fibers. The simulations were performed using the well-established SENN model for a myelinated nerve. Although the unmyelinated experimental model differs from the myelinated simulation model, both refer to a single axon. Thus we hypothesized that the dependence on temporal and frequency parameters should be very similar. The comparison was made possible by normalizing each set of results to the SD time constant and the rheobase current of each model, yielding the curves that show the temporal and frequency dependencies regardless of the model differences. The results reasonably agree, suggesting that this experimental setup and method of comparison with SENN model can be used for further studies of waveform effect on nerve excitability, including unmyelinated neurons.


Assuntos
Estimulação Elétrica/métodos , Modelos Neurológicos , Fibras Nervosas Amielínicas/fisiologia , Análise Numérica Assistida por Computador , Oligoquetos/fisiologia , Animais , Axônios/fisiologia , Condução Nervosa
16.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27030713

RESUMO

BACKGROUND: Stroke patients often suffer from a central neuropathic pain syndrome called central post-stroke pain. This syndrome is characterized by evoked pain hypersensitivity as well as spontaneous, on-going pain in the body area affected by the stroke. Clinical evidence strongly suggests a dysfunction in central pain pathways as an important pathophysiological factor in the development of central post-stroke pain, but the exact underlying mechanisms remain poorly understood. To elucidate the underlying pathophysiology of central post-stroke pain, we generated a mouse model that is based on a unilateral stereotactic lesion of the thalamic ventral posterolateral nucleus, which typically causes central post-stroke pain in humans. RESULTS: Behavioral analysis showed that the sensory changes in our model are comparable to the sensory abnormalities observed in patients suffering from central post-stroke pain. Surprisingly, pharmacological inhibition of spinal and peripheral key components of the pain system had no effect on the induction or maintenance of the evoked hypersensitivity observed in our model. In contrast, microinjection of lidocaine into the thalamic lesion completely reversed injury-induced hypersensitivity. CONCLUSIONS: These results suggest that the evoked hypersensitivity observed in central post-stroke pain is causally linked to on-going neuronal activity in the lateral thalamus.


Assuntos
Dor/etiologia , Dor/fisiopatologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Animais , Colagenases/administração & dosagem , Modelos Animais de Doenças , Hiperalgesia/complicações , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Ácido Caínico/administração & dosagem , Lidocaína/administração & dosagem , Camundongos Endogâmicos C57BL , Microinjeções , Fibras Nervosas Amielínicas/patologia , Sensação , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Canais de Cátion TRPV/metabolismo , Tálamo/patologia , Tálamo/fisiopatologia , Núcleos Ventrais do Tálamo/patologia , Núcleos Ventrais do Tálamo/fisiopatologia
17.
Pain ; 157(2): 377-386, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26270590

RESUMO

The information from nociceptors is processed in the dorsal horn of the spinal cord by complex circuits involving excitatory and inhibitory interneurons. It is well documented that GluN2B and ERK1/2 phosphorylation contributes to central sensitization. Striatal-enriched protein tyrosine phosphatase (STEP) dephosphorylates GluN2B and ERK1/2, promoting internalization of GluN2B and inactivation of ERK1/2. The activity of STEP was modulated by genetic (STEP knockout mice) and pharmacological (recently synthesized STEP inhibitor, TC-2153) approaches. STEP(61) protein levels in the lumbar spinal cord were determined in male and female mice of different ages. Inflammatory pain was induced by complete Freund's adjuvant injection. Behavioral tests, immunoblotting, and electrophysiology were used to analyze the effect of STEP on nociception. Our results show that both genetic deletion and pharmacological inhibition of STEP induced thermal hyperalgesia and mechanical allodynia, which were accompanied by increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Striatal-enriched protein tyrosine phosphatase heterozygous and knockout mice presented a similar phenotype. Furthermore, electrophysiological experiments showed that TC-2153 increased C fiber-evoked spinal field potentials. Interestingly, we found that STEP(61) protein levels in the lumbar spinal cord inversely correlated with thermal hyperalgesia associated with age and female gender in mice. Consistently, STEP knockout mice failed to show age-related thermal hyperalgesia, although gender-related differences were preserved. Moreover, in a model of inflammatory pain, hyperalgesia was associated with increased phosphorylation-mediated STEP(61) inactivation and increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Collectively, the present results underscore an important role of spinal STEP activity in the modulation of nociception.


Assuntos
Nociceptividade/fisiologia , Limiar da Dor/efeitos dos fármacos , Dor/patologia , Dor/fisiopatologia , Proteínas Tirosina Fosfatases não Receptoras/deficiência , Animais , Benzotiepinas/farmacologia , Benzotiepinas/uso terapêutico , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hiperalgesia/tratamento farmacológico , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Inflamação/induzido quimicamente , Inflamação/complicações , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Nervosas Amielínicas/efeitos dos fármacos , Fibras Nervosas Amielínicas/fisiologia , Nociceptividade/efeitos dos fármacos , Dor/etiologia , Proteínas Tirosina Fosfatases não Receptoras/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
18.
Neurogastroenterol Motil ; 27(12): 1817-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26459908

RESUMO

BACKGROUND: Previous studies have demonstrated the efficacy of somatic stimulation for patients with gastrointestinal motility disorders. However, little effort has been made to investigate the effects of acupuncture on colonic motility, particularly in pathological conditions. The precise mechanism employed in the regulation of acupuncture on colonic motility still remains unclear. METHODS: We assessed the effect of acupuncture at heterotopic acupoints on distal colonic motility using a warm-water-filled manometric balloon inserted 5-6 cm into the rectum of anesthetized normal rats or rats with diarrhea or constipation. Choline chloride, 4-DAMP, cobra venom and capsaicin were separately applied to investigate the role of M3 receptors in the regulation of distal colonic motility by acupuncture at heterotopic acupoints, and whether Aδ- and/or C-fibers are required for triggering distal colonic motility by acupuncture. KEY RESULTS: Acupuncture at heterotopic acupoints increased distal colonic motility not only in normal rats but also in rats with constipation or diarrhea. M3 receptors play an important role in the facilitation of distal colonic motility triggered by acupuncture at heterotopic acupoints. Afferent nerve Aδ- and C-fibers mediate the transduction of the acupuncture signal and C-fibers are essential for enhancing the effect of acupuncture at the heterotopic acupoint on distal colonic motility. CONCLUSIONS & INFERENCES: Our results reveal that acupuncture at heterotopic acupoints increases distal colonic motility regardless of normal or pathological conditions via predominately activating C-fibers of somatic afferent nerve and M3 receptors.


Assuntos
Terapia por Acupuntura , Colo/fisiologia , Motilidade Gastrointestinal/fisiologia , Fibras Nervosas Amielínicas/metabolismo , Receptor Muscarínico M3/metabolismo , Pontos de Acupuntura , Animais , Constipação Intestinal/metabolismo , Diarreia/metabolismo , Modelos Animais de Doenças , Eletrofisiologia , Masculino , Manometria , Ratos , Ratos Sprague-Dawley
19.
Zhen Ci Yan Jiu ; 40(3): 180-5, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26237967

RESUMO

OBJECTIVE: To observe the dynamic distribution of the extravasated Evans Blue (EB) dye points at the skin after acute colorectal mucosal injury (AIMI) so as to reveal characteristics of acupoint sensitization. METHODS: Forty adult male SD rats were randomly divided into control (n= 10), AIMI (n=20) and AIMI-recovery (n= 10) groups. According to the reaction state (EB-dye extravasation), each group was further divided into resting state (control), sensitized state (appearance of extravasated EB points), recovery state (disappearance of the extravasated EB points), non-sensitization (NS, no extravasated EB points) state and NS recovery state. The AIMI model was induced by perfusion of 2. 5% mustard oil into the colorectum via a thin tube. Evans blue dye was injected into the caudal vein 4 h after AIMI modeling. The distribution of plasma extravasated EB dye points at the skin of the lower limbs was observed. The C-fiber discharge of the separated ipsilateral sciatic nerve was induced by electrical stimulation of the EB-extravasated acupoints and non-acupoint at the threshold and double-fold threshold using an electric stimulator and recorded using a bicelectric amplifier-computer system. RESULTS: In AIMI rats, the extravasated EB-dye points were found to overlap the "Xiqian" and "Zusanli" (ST 36)-"Shangjuxu"(ST 37) regions. Moreover, the thresholds of C-fiber discharges induced by electrical stimulation of "Xiqian" and "Zusanli" (ST 36)-"Shangluxu"(ST 37) regions were significantly lower than those of the regions without extravasated EB dye acupoint and non-acupoint(P<0. 01, P<0. 05). The numbers of C-fiber discharges evoked by 2-fold threshold electro-stimulation at the "Xiqian" and "Zusanli" (ST 36)-"Shangjuxu" (ST 37) regions were obviously more than those of stimulation of non-acupoint which were experiencing sensitized state(P<0. 01, P<0. 05). CONCLUSION: In rats with acute colorectal mucosal injury, electrical stimulation of the acupoints where the extravasated EB-dye points appear may produce an obvious increase of C-fiber discharges under lower electro-stimulation threshold, suggesting a larger action of the sensitized acupoint.


Assuntos
Pontos de Acupuntura , Doenças do Colo/terapia , Eletroacupuntura , Mucosa Intestinal/lesões , Animais , Colo/metabolismo , Doenças do Colo/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Masculino , Fibras Nervosas Amielínicas/metabolismo , Ratos , Ratos Sprague-Dawley
20.
Neuroscience ; 301: 121-33, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26047727

RESUMO

A hallmark of chronic inflammation is hypersensitivity to noxious and innocuous stimuli. This inflammatory pain hypersensitivity results partly from hyperexcitability of nociceptive dorsal root ganglion (DRG) neurons innervating inflamed tissue, although the underlying ionic mechanisms are not fully understood. However, we have previously shown that the nociceptor hyperexcitability is associated with increased expression of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) protein and hyperpolarization-activated current (Ih) in C-nociceptors. Here we used in vivo voltage-clamp and current-clamp recordings, in deeply anesthetized rats, to determine whether activation properties of Ih in these C-nociceptors also change following persistent (not acute) hindlimb inflammation induced by complete Freund's adjuvant (CFA). Recordings were made from lumbar (L4/L5) C-nociceptive DRG neurons. Behavioral sensory testing was performed 5-7days after CFA treatment, and all the CFA-treated group showed significant behavioral signs of mechanical and heat hypersensitivity, but not spontaneous pain. Compared with control, C-nociceptors recorded 5-7days after CFA showed: (a) a significant increase in the incidence of spontaneous activity (from ∼5% to 26%) albeit at low rate (0.14±0.08Hz (Mean±SEM); range, 0.01-0.29Hz), (b) a significant increase in the percentage of neurons expressing Ih (from 35%, n=43-84%, n=50) based on the presence of voltage "sag" of >10%, and (c) a significant increase in the conductance (Gh) of the somatic channels conducting Ih along with the corresponding Ih,Ih, activation rate, but not voltage dependence, in C-nociceptors. Given that activation of Ih depolarizes the neuronal membrane toward the threshold of action potential generation, these changes in Ih kinetics in CFA C-nociceptors may contribute to their hyperexcitability and thus to pain hypersensitivity associated with persistent inflammation.


Assuntos
Gânglios Espinais/fisiopatologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Nociceptores/fisiologia , Animais , Feminino , Adjuvante de Freund , Membro Posterior , Hiperalgesia/fisiopatologia , Inflamação/induzido quimicamente , Potenciais da Membrana , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA