Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Tissue Cell ; 87: 102342, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430848

RESUMO

BACKGROUND: T2DM is a chronic disorder with progressive neuromuscular alterations. L-arginine (ARG) is the most common semi-essential amino acid having several metabolic functions. AIM: to investigate the impact of L-arginine in combating diabetic-induced neuromyopathy and its possible mechanisms. MATERIALS & METHODS: 24 rats were divided into CON, CON+ARG, DC, DC+ARG. Behavioral tests, Body weight (BW), fasting blood glucose (FBG), insulin, total antioxidant capacity (TAC), malondialdehyde (MDA), plasminogen activator inhibitor-1 (PAI-1), and irisin were done. Creatine kinase-MM (CK-MM), interleukin 4 (IL-4), interleukin 6 (IL-6), TAC, MDA, expression of microRNA-29a mRNA & light chain 3 protein were determined in muscle. Histological and NF-κß immunohistochemical expression in muscle and nerve were assessed. RESULTS: ARG supplementation to diabetic rats improved altered behavior, significantly increased BW, insulin, TAC, irisin and Il-4, decreased levels of glucose, microRNA-29a, NF-κß and LC3 expression, PAI-1, CK-MM and restored the normal histological appearance. CONCLUSIONS: ARG supplementation potently alleviated diabetic-induced neuromuscular alterations.


Assuntos
Diabetes Mellitus Experimental , MicroRNAs , Doenças Musculares , Animais , Ratos , Fibronectinas/genética , Interleucina-4 , Inibidor 1 de Ativador de Plasminogênio/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Estresse Oxidativo , Arginina , Antioxidantes , Insulina , Autofagia , MicroRNAs/genética
2.
Nutrients ; 16(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276557

RESUMO

Panax ginseng Meyer and Inula japonica Thunb. are well established in traditional medicine and are known for their therapeutic properties in managing a range of ailments such as diabetes, asthma, and cancer. Although P. ginseng and I. japonica can alleviate pulmonary fibrosis (PF), the anti-fibrosis effect on PF by the combination of two herbal medicines remains unexplored. Therefore, this study explores this combined effect. In conditions that were not cytotoxic, MRC-5 cells underwent treatment using the formula combining P. ginseng and I. japonica (ISE081), followed by stimulation with transforming growth factor (TGF)-ß1, to explore the fibroblast-to-myofibroblast transition (FMT). After harvesting the cells, mRNA levels and protein expressions associated with inflammation and FMT-related markers were determined to evaluate the antiinflammation activities and antifibrosis effect of ISE081. Additionally, the anti-migratory effects of ISE081 were validated through a wound-healing assay. ISE081 remarkably reduced the mRNA levels of interleukin (IL)-6, IL-8, α-smooth muscle actin (SMA), and TGF-ß1 in MRC-5 cells and suppressed the α-SMA and fibronectin expressions, respectively. Furthermore, ISE081 inhibited Smad2/3 phosphorylation and wound migration of MRC-5 cells. Under the same conditions, comparing those of ISE081, P. ginseng did not affect the expression of α-SMA, fibronectin, and Smad2/3 phosphorylation, whereas I. japonica significantly inhibited them but with cytotoxicity. The results indicate that the synergistic application of P. ginseng and I. japonica enhances the anti-fibrotic properties in pulmonary fibroblasts and concurrently diminishes toxicity. Therefore, ISE081 has the potential as a prevention and treatment herbal medicine for PF.


Assuntos
Inula , Panax , Fibrose Pulmonar , Humanos , Inula/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Panax/metabolismo , Fibrose , Fibrose Pulmonar/metabolismo , Fibroblastos , Fator de Crescimento Transformador beta1/metabolismo , RNA Mensageiro/metabolismo
3.
J Med Food ; 26(6): 368-378, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37192490

RESUMO

Emerging evidence suggests that myo-inositol (MI) has a critical role in reducing renal inflammatory processes and improving podocyte function and preventing diabetes-related renal damage. We aimed to explore the function and underlying workings of MI in renal interstitial fibrosis (RIF). Based on a mouse model, we explored the effect of MI in unilateral ureteral obstruction (UUO) and in transforming growth factor-ß1 (TGF-ß1)-treated HK-2 cells. Pathological changes of the kidney tissues were examined following staining of the tissues with hematoxylin, eosin, and Masson's trichrome. The mRNA quantities of fibrosis markers, fibronectin, α-smooth muscle actin (α-SMA), and collagen I, were analyzed by means of real-time polymerase chain reaction, whereas those of protein levels were assessed with Western blotting. We also determined the expression of collagen I by immunofluorescence, and the levels of phosphorylated phosphotidylinositol-3-kinase and protein kinase B (PI3K/AKT) by Western blot. In vivo, histopathological examination in the UUO mice revealed renal tubular epithelial cell necrosis, inflammatory cell infiltration, and RIF. UUO mice showed higher expression levels of collagen I, fibronectin, α-SMA, pPI3K, and pAKT compared with sham-operated mice. However, MI treatment diminished the pathological alterations of RIF in UUO mice and downregulated the expression of fibrosis markers and phosphorylated PI3K/AKT. In vitro, TGF-ß1 positively influenced the propagation and differentiation of HK-2 cells and upregulated the levels of α-SMA, fibronectin, collagen I, pPI3K, and pAKT, but these became significantly reversed by MI treatment. In conclusion, MI ameliorates RIF, possibly by negatively regulating TGF-ß1-induced epithelial transdifferentiation and PI3K/AKT activation.


Assuntos
Nefropatias , Obstrução Ureteral , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta1/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Nefropatias/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Fibrose , Colágeno
4.
Zhen Ci Yan Jiu ; 47(5): 428-34, 2022 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-35616417

RESUMO

OBJECTIVE: To observe the effect of electroacupuncture(EA) on the expression of peroxisome proliferator-activated receptor gamma coactivators-1-alpha (PGC-1α), Irisin and brain-derived neurotrophic factor (BDNF) in the ischemic peripheral cortex, hippocampus and local skeletal muscle in rats with focal cerebral ischemic/reperfusion injury (CI/RI), so as to explore its underlying mechanism of improving of CI/RI. METHODS: Male SD rats were randomly divided into 3 groups: sham-operation, model and EA (11 rats in each group). The focal CI/RI model was established by middle cerebral artery occlusion (MCAO). EA (2 Hz /15 Hz, 2 to 4 mA) was applied to "Quchi" (LI11) and "Zusanli" (ST36) of the affected side for 20 min, once a day for 7 days. Zea-Longa's score and Balance Beam score were used to evaluate the neurological and motor functions. The infarcted volume of the brain was detected by using 2,3,5-triphenyltetrazolium chloride staining. The expression levels of PGC-1α, fibronectin type III domain-containing protein 5(FNDC5) and BDNF proteins in the ischemic peripheral cortex, hippocampus and local skeletal muscle were detected by Western blot. RESULTS: Compared with the sham-operation group, the Zea-Longa's score, Balance Beam score, percentage of cerebral infarct volume were notably increased (P<0.01), while the expression levels of PGC-1α, FNDC5 and BDNF proteins in the cerebral cortex and hippocampus (not in the local muscle) were significantly down-regulated in the model group (P<0.01, P<0.05). In comparison with the model group, the increase of Zea-Longa's score, Balance Beam score, percentage of cerebral infarct volume, and the decrease of expression levels of PGC-1α, FNDC5 and BDNF proteins in the ischemic peripheral cortex and that of BDNF in the hippocampus were reversed in the EA group (P<0.01, P<0.05). No significant changes were found in the expression levels of hippocampal PGC-1α and FNDC5 proteins in the hippocampus and those of PGC-1α, FNDC5 and BDNF proteins in the local muscle after EA intervention (P>0.05). CONCLUSION: EA can improve neurological and motor functions and reduce cerebral infarction volume in CI/RI rats, which may be related to its functions in activating PGC-1α/Irisin(FNDC5)/BDNF pathway in the cerebral cortex.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Eletroacupuntura , Traumatismo por Reperfusão , Animais , Isquemia Encefálica/cirurgia , Isquemia Encefálica/terapia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Hipocampo/metabolismo , Infarto da Artéria Cerebral Média , Invenções , Masculino , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/terapia
5.
Mol Biol Rep ; 48(2): 1233-1241, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33475929

RESUMO

The literature has shown the beneficial effects of microcurrent (MC) therapy on tissue repair. We investigated if the application of MC at 10 µA/90 s could modulate the expression of remodeling genes transforming growth factor beta (Tgfb), connective tissue growth factor (Ctgf), insulin-like growth factor 1 (Igf1), tenascin C (Tnc), Fibronectin (Fn1), Scleraxis (Scx), Fibromodulin (Fmod) and tenomodulin in NIH/3T3 fibroblasts in a wound healing assay. The cell migration was analyzed between days 0 and 4 in both fibroblasts (F) and fibroblasts + MC (F+MC) groups. On the 4th day, cell viability and gene expression were also analyzed after daily MC application. Higher expression of Ctgf and lower expression of Tnc and Fmod, respectively, were observed in the F+MC group in relation to F group (p < 0.05), and no difference was observed between the groups for the genes Tgfb, Fn1 and Scx. In cell migration, a higher number of cells in the scratch region was observed in group F+MC (p < 0.05) compared to group F on the 4th day, and the cell viability assay showed no difference between the groups. In conclusion, MC therapy at an intensity/time of 10 µA/90 s with 4 daily applications did not affect cell viability, stimulated fibroblasts migration with the involvement of Ctgf, and reduced the Tnc and Fmod expression.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/genética , Terapia por Estimulação Elétrica , Fibromodulina/genética , Tenascina/genética , Cicatrização/efeitos da radiação , Animais , Movimento Celular/efeitos da radiação , Fibronectinas/genética , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Fator de Crescimento Insulin-Like I/genética , Camundongos , Células NIH 3T3 , Fator de Crescimento Transformador beta1/genética , Cicatrização/genética
6.
Nutrients ; 14(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35010965

RESUMO

Dyshomeostasis of vitamin D-binding protein (VDBP) has been implicated in the pathogenesis of various pregnancy complications, including preeclampsia, preterm birth, gestational diabetes, and adverse metabolic profiles in the offspring. VDBP polymorphisms have been consistently reported to contribute to this intriguing interplay. Until recently, the effects of VDBP polymorphism heterogeneity on maternal and neonatal adipomyokine profiles have not been investigated, specifically after incorporating the different maternal and neonatal 25-hydroxyvitamin D concentration cut-offs at birth. We aimed to investigate the potential effects of maternal and neonatal VDBP polymorphisms on adiponectin, irisin, and VDBP concentrations at birth, according to different cut-offs of vitamin D status, in maternal-neonatal dyads recruited from the sunny region of Northern Greece. We obtained blood samples from 66 mother-child pairs at birth. Results indicated that (i) Neonatal serum biomarkers were not affected by any included neonatal VDBP polymorphism according to different cut-offs of neonatal vitamin D status at birth, (ii) neonatal VDBP concentration was elevated in neonates with maternal rs7041 GG genotype, (iii) maternal 25(OH)D at ≤75 nmol/L resulted in increased concentrations of maternal VBDP and irisin concentrations in women with CC genotype for rs2298850 and rs4588,whereas this effect was also evident for this cut-off for neonatal VDBP concentrations at birth for GC genotype for rs 7041, and (iv) no significant effect of neonatal VDBP polymorphisms was observed on neonatal VDBP, adiponectin, or irisin levels when stratified according to maternal 25(OH)D cut-offs. In conclusion, these findings confirm that among women with the combination of CC genotype for rs2298850 and rs4588, a specific high cut-off of maternal 25(OH)D results in increasing maternal VBDP concentrations, hence providing a mechanistic rationale for aiming for specific cut-offs of vitamin D after supplementation during pregnancy, in daily clinical practice.


Assuntos
Fibronectinas/metabolismo , Polimorfismo de Nucleotídeo Único , Proteína de Ligação a Vitamina D/metabolismo , Vitamina D/análogos & derivados , Vitamina D/farmacologia , Adulto , Biomarcadores/sangue , Estudos de Coortes , Feminino , Fibronectinas/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genótipo , Humanos , Recém-Nascido , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Vitamina D/sangue , Proteína de Ligação a Vitamina D/genética
7.
J Cell Physiol ; 236(1): 664-676, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32572964

RESUMO

Balancing the process of bone formation and resorption is important in the maintenance of healthy bone. Therefore, the discovery of novel factors that can regulate bone metabolism remains needed. Irisin is a newly identified hormone-like peptide. Recent studies have reported the involvement of irisin in many physiological and pathological conditions with bone mineral density changes, including osteopenia and osteoporotic fractures. In this study, we generated the first line of Osx-Cre:FNDC5/irisin KO mice, in which FNDC5/irisin was specifically deleted in the osteoblast lineage. Gene and protein expressions of irisin were remarkably decreased in bones but no significant differences in other tissues were observed in knockout mice. FNDC5/irisin deficient mice showed a lower bone density and significantly delayed bone development and mineralization from early-stage to adulthood. Our phenotypical analysis exhibited decreased osteoblast-related gene expression and increased osteoclast-related gene expression in bone tissues, and reduced adipose tissue browning due to bone-born irisin deletion. By harvesting and culturing MSCs from the knockout mice, we found that osteoblastogenesis was inhibited and osteoclastogenesis was increased. By using irisin stimulated wildtype primary cells as a gain-of-function model, we further revealed the effects and mechanisms of irisin on promoting osteogenesis and inhibiting osteoclastogenesis in vitro. In addition, positive effects of exercise, including bone strength enhancement and body weight loss were remarkably weakened due to irisin deficiency. Interestingly, these changes can be rescued by supplemental administration of recombinant irisin during exercise. Our study indicates that irisin plays an important role in bone metabolism and the crosstalk between bone and adipose tissue. Irisin represents a potential molecule for the prevention and treatment of bone metabolic diseases.


Assuntos
Osso e Ossos , Fibronectinas , Músculo Esquelético , Osteoblastos , Osteogênese , Animais , Osso e Ossos/metabolismo , Doenças Ósseas Metabólicas/metabolismo , Fibronectinas/deficiência , Fibronectinas/genética , Músculo Esquelético/metabolismo , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Camundongos
8.
Phytomedicine ; 80: 153393, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33120292

RESUMO

BACKGROUND: Sarcopenia progresses in chronic kidney disease (CKD) and is positively correlated with mortality in end-stage kidney disease patients. Circulating irisin, an exercise-induced myokine, gradually decreases during CKD stage progression. Irisin inhibits the progression of kidney fibrosis, which is the final common outcome of CKD. Our preliminary study with C2C12 cells showed that Dojuksan, a herbal decoction, increases the expression of PGC1α (a regulator of irisin) and FNDC5 (a precursor of irisin). HYPOTHESIS: Dojuksan may increase circulating irisin and prevent the progression of kidney fibrosis. STUDY DESIGN AND METHODS: Unilateral ureteral obstruction (UUO) was performed on seven-week-old male C57BL/6 mice to induce kidney tubulointerstitial fibrosis. Dojuksan (50, 100, or 200 mg/kg/day) or losartan (1.5 mg/kg/day), a standard clinical treatment for CKD, was administered orally one day prior to surgery and continued for seven days thereafter. To determine the role of irisin released from muscles, TGFß-stimulated murine proximal tubular epithelial cells (mProx24 cells) were treated with conditioned media (CM) from Dojuksan-treated C2C12 muscle cells transfected with FNDC5 siRNA. RESULTS: UUO mice exhibited muscle wasting along with progressive kidney injury. Similar to losartan, Dojuksan ameliorated kidney inflammation and fibrosis in UUO mice. Dojuksan, but not losartan, increased plasma irisin concentration in UUO mice. Dojuksan significantly increased basal FNDC5 expression and inhibited TNFα-induced and indoxyl sulfate-induced FNDC5 down-regulation in C2C12 cells. The TGFß-induced collagen I (COL1) up-regulation in mProx24 cells was effectively inhibited by CM from C2C12 cells after Dojuksan treatment. Moreover, irisin inhibited TGFß-induced COL1 in mProx24 cells, which was not affected by CM from C2C12 cells transfected with FNDC5 siRNA. CONCLUSION: Dojuksan ameliorates kidney fibrosis through irisin-mediated muscle-kidney crosstalk, suggesting that Dojuksan may be used as an alternative therapeutic agent against CKD.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Fibronectinas/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Músculo Esquelético/metabolismo , Animais , Linhagem Celular , Colágeno Tipo I/metabolismo , Fibronectinas/genética , Fibrose , Nefropatias/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Losartan/farmacologia , Masculino , Medicina Tradicional Chinesa , Medicina Tradicional Coreana , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Músculo Esquelético/fisiopatologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Obstrução Ureteral/patologia
9.
J Pharm Pharmacol ; 72(11): 1615-1628, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32754951

RESUMO

OBJECTIVES: This study was designed to investigate the effect of Morus nigra fruit extract in retarding the progression of diabetic nephropathy in streptozotocin (STZ)-induced diabetic rats. METHODS: Diabetic male Wistar rats were injected with black mulberry fruit extract (BMFE) at doses of 150 and 300 mg/kg body weight. After 4 weeks, microalbuminuria was estimated in addition to serum concentrations of glucose, insulin, creatinine and albumin. KEY FINDINGS: The study revealed a significant amelioration of all the measured parameters in diabetic animals. In addition, MDA, lipid peroxide levels and catalase activity were also improved. The histopathological examination of kidney tissues revealed significant improvement of the pathological changes and glomerular sclerosis in diabetic rats treated with BMFE. Treated rats showed downregulation of TNF-α, vascular cell adhesion molecule-1 (VCAM-1) and fibronectin mRNA expression. CONCLUSION: The ameliorative effect of BMFE on diabetic nephropathy is not only through its potent antioxidant and hypoglycaemic effects but also through its downregulation of TNF-α, VCAM-1 and fibronectin mRNA expression in renal tissues of diabetic-treated rats. Therefore, BMFE as dietary supplement could be a promising agent in improving diabetic nephropathy.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Hipoglicemiantes/farmacologia , Rim/efeitos dos fármacos , Morus , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Albuminúria/etiologia , Albuminúria/metabolismo , Albuminúria/prevenção & controle , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Regulação para Baixo , Fibronectinas/genética , Fibronectinas/metabolismo , Frutas , Hipoglicemiantes/isolamento & purificação , Rim/metabolismo , Rim/patologia , Masculino , Morus/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Ratos Wistar , Transdução de Sinais , Estreptozocina , Fator de Necrose Tumoral alfa/genética , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
10.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751307

RESUMO

Exercise perturbs homeostasis, alters the levels of circulating mediators and hormones, and increases the demand by skeletal muscles and other vital organs for energy substrates. Exercise also affects bone and mineral metabolism, particularly calcium and phosphate, both of which are essential for muscle contraction, neuromuscular signaling, biosynthesis of adenosine triphosphate (ATP), and other energy substrates. Parathyroid hormone (PTH) is involved in the regulation of calcium and phosphate homeostasis. Understanding the effects of exercise on PTH secretion is fundamental for appreciating how the body adapts to exercise. Altered PTH metabolism underlies hyperparathyroidism and hypoparathyroidism, the complications of which affect the organs involved in calcium and phosphorous metabolism (bone and kidney) and other body systems as well. Exercise affects PTH expression and secretion by altering the circulating levels of calcium and phosphate. In turn, PTH responds directly to exercise and exercise-induced myokines. Here, we review the main concepts of the regulation of PTH expression and secretion under physiological conditions, in acute and chronic exercise, and in relation to PTH-related disorders.


Assuntos
Cálcio/metabolismo , Exercício Físico , Hiperparatireoidismo/metabolismo , Hipoparatireoidismo/metabolismo , Hormônio Paratireóideo/genética , Fósforo/metabolismo , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica , Homeostase/genética , Humanos , Hiperparatireoidismo/genética , Hiperparatireoidismo/patologia , Hipoparatireoidismo/genética , Hipoparatireoidismo/patologia , Interleucinas/genética , Interleucinas/metabolismo , Rim/citologia , Rim/metabolismo , Redes e Vias Metabólicas/genética , Contração Muscular/genética , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Hormônio Paratireóideo/metabolismo , Transdução de Sinais , Vitamina D/metabolismo
11.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-32457283

RESUMO

Halofuginone (HF) is an extract from the widely used traditional Chinese medicine (TCM) Dichroa febrifuga that facilitates the recovery of wounds and attenuates hepatic fibrosis. However, the role of HF in the epithelial-mesenchymal transition (EMT) of IPEC-J2 cells remains unclear. The current study explored the anti-EMT effect of HF in IPEC-J2 cells and illustrates its molecular mechanism. Transforming growth factor ß1 (TGF-ß1), as a recognized profibrogenic cytokine, decreased the level of the epithelial marker E-cadherin and increased the level of the mesenchymal markers, such as N-cadherin, fibronectin (FN), vimentin (Vim), and α-smooth muscle actin (α-SMA), in IPEC-J2 cells depending on the exposure time and dose. HF markedly prevented the EMT induced by TGF-ß1. Dissection of the mechanism revealed that HF inhibited IPEC-J2 cell EMT via modulating the phosphorylation of SMAD2/3 and the SMAD2/3-SMAD4 complex nuclear translocation. Furthermore, HF could promote the phosphorylation of eukaryotic translation initiation factor-2α (eIF2α), which modulates the SMAD signaling pathway. These results suggested that HF inhibits TGF-ß1-induced EMT in IPEC-J2 cells through the eIF2α/SMAD signaling pathway. Our findings suggest that HF can serve as a potential anti-EMT agent in intestinal fibrosis therapy.


Assuntos
Antineoplásicos/farmacologia , Enterócitos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/genética , Piperidinas/farmacologia , Quinazolinonas/farmacologia , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Actinas/genética , Actinas/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Enterócitos/citologia , Enterócitos/metabolismo , Transição Epitelial-Mesenquimal/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica , Fosforilação/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Suínos , Fator de Crescimento Transformador beta1/farmacologia , Vimentina/genética , Vimentina/metabolismo
12.
Homeopathy ; 109(3): 140-145, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32311747

RESUMO

BACKGROUND AND AIM: Arnica montana L. (Arnica m.) is a popular traditional medicine, used for its therapeutic properties in healing traumas, but little is known about its biological action on tissue formation and repair. This new work tested the effects of Arnica m. homeopathic dilutions on human macrophages, key cells in tissue defence and repair. MATERIALS AND METHODS: Macrophages derived from the THP-1 cell line were differentiated with interleukin-4 to induce a 'wound-healing'-like phenotype, and treated with various dilutions of Arnica m. centesimal (100 times) dilutions (2c, 3c, 5c, 9c, and 15c) or control solvent for 24 hours. RNA samples from cultured cells were analysed by real-time quantitative polymerase chain reaction in five separate experiments. RESULTS: Arnica montana at the 2c dilution (final concentration of sesquiterpene lactones in cell culture = 10-8 mol/L) significantly stimulated the expression of three genes which code for regulatory proteins of the extracellular matrix, namely FN1 (fibronectin 1, % increase of 21.8 ± standard error of the mean 4.6), low-density lipoprotein-receptor-related protein 1 (% increase of 33.4 ± 6.1) and heparan sulphate proteoglycan 2 (% increase of 21.6 ± 9.1). Among these genes, the most quantitatively expressed was FN1. In addition, FN1, unlike other candidate genes, was upregulated in cells treated with higher dilutions/dynamisations (3c, 5c, and 15c) of Arnica m. CONCLUSION: The results support evidence that the extracellular matrix is a potential therapeutic target of Arnica m., with positive effects on cell adhesion and migration during tissue development and healing.


Assuntos
Arnica , Fibronectinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Homeopatia/métodos , Macrófagos/efeitos dos fármacos , França , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Células THP-1 , Regulação para Cima
13.
Biochim Biophys Acta Mol Basis Dis ; 1866(7): 165792, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32251763

RESUMO

Renal ischemia-reperfusion is a major cause of acute kidney injury, a disease currently without effective treatments. Irisin was initially identified as an important factor produced by muscles to mediate the health benefits of exercise, and recent work has further suggested its protective effect against lung and liver injury. However, the role of Irisin in kidney diseases, including renal ischemia-reperfusion injury (IRI), remains unknown. In the present study, we found that the Irisin precursor, fibronectin type III domain-containing protein 5 (Fndc5), was induced in renal tubules in a mouse model of renal IRI and in cultured mouse renal proximal tubular cells subjected ATP depletion injury. Functionally, silencing Fndc5 in cultured proximal tubular cells increased the sensitivity to ATP depletion-induced apoptosis, whereas both Fndc5 overexpression and supplementation of recombinant Irisin alleviated ATP depletion-induced apoptosis. In vivo, administration of recombinant Irisin dramatically attenuated kidney dysfunction, tissue damage, tubular cell apoptosis, and inflammation during renal IRI in mice. Mechanistically, Irisin suppressed the activation of p53 in renal IRI, a critical factor in tubular cell death. Together, these results indicate that Irisin is induced in renal IRI as a protective mechanism for renal tubular cells, suggesting the therapeutic potential of recombinant Irisin in renal IRI and related kidney diseases.


Assuntos
Injúria Renal Aguda/genética , Fibronectinas/genética , Traumatismo por Reperfusão/genética , Proteína Supressora de Tumor p53/genética , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Fibronectinas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Proteína Supressora de Tumor p53/antagonistas & inibidores
14.
Lipids Health Dis ; 18(1): 181, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640715

RESUMO

BACKGROUND: Irisin is a newly discovered myokine that secreted from skeletal muscle cells. Several studies showed that irisin involves in thermogenesis and increases the expression of browning markers such as uncoupling protein-1 that in turns induces the conversion of white adipose tissue to brown fat. Resveratrol (Res) and all-trans retinoic acid (ATRA) can also upregulate the expression of thermogenesis genes. In the present study, the effects of single and combined treatments of Res and ATRA on fibronectin type III domain containing 5 (FNDC5) gene expression was explored. METHODS: The mouse myoblasts, C2C12 cells, were seeded in 6-well plastic plates and cultured in DMEM media. After differentiation, in a pilot study, C2C12 myotubes were treated with different concentrations of Res and ATRA for 12 h. The best result was obtained by treatment of 1and 25 µM of Res and 1 µM of ATRA. Then the main study was continued by single and combined treatment of these compounds at chosen concentration. After treatments, total RNA was extracted from C2C12 cells. Complementary DNA (cDNA) was generated by the cDNA synthesis kit and FNDC5 mRNA expression was evaluated by the real-time PCR method. RESULTS: The FNDC5 gene expression in C2C12 myotubes of alone-treated with 1 µM, 25 µM Res and 10 µM ATRA did not change compared to vehicle group. However, in combination-treated the expression of FNDC5 gene was significantly increased compared to vehicle group. CONCLUSION: This is the first evidence that Res and ATRA can regulate FNDC5 gene expression in C2C12 myotubes. More investigations are necessary to explore the therapeutic effects of these nutrients in obesity, diabetes, cardiac and neurovascular disease.


Assuntos
Antioxidantes/farmacologia , Fibronectinas/genética , Expressão Gênica/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Resveratrol/farmacologia , Tretinoína/farmacologia , Animais , Diferenciação Celular , Linhagem Celular , Combinação de Medicamentos , Sinergismo Farmacológico , Fibronectinas/agonistas , Fibronectinas/metabolismo , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Regulação para Cima
15.
J Agric Food Chem ; 67(35): 9789-9795, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31373816

RESUMO

Pulmonary fibrosis is a chronic lung disease characterized by abnormal accumulation of the extracellular matrix (ECM). Chronic damage of the alveolar epithelium leads to a process called "epithelial-mesenchymal transition" (EMT) and increases synthesis and deposition of ECM proteins. Therefore, inhibition of EMT might be a promising therapeutic approach for the treatment of pulmonary fibrosis. ß-Sitosterol is one of the most abundant phytosterols in the plant kingdom and the major constituent in corn silk, which is derived from the stigma and style of maize (Zea mays). In this study, we elucidated that ß-sitosterol inhibited transforming growth factor-ß1 (TGF-ß1)-induced EMT and consequently had an antifibrotic effect. ß-Sitosterol (1-10 µg/mL) significantly downregulated the TGF-ß1-induced fibrotic proteins, such as collagen, fibronectin, and α-smooth muscle actin in human alveolar epithelial cells (p < 0.01). After 24 h, relative wound density (RWD) was increased in TGF-ß1 treated group (82.16 ± 5.70) compare to the control group (64.63 ± 2.21), but RWD was decreased in ß-sitosterol cotreated group (10 µg/mL: 71.54 ± 7.39; 20 µg/mL: 65.69 ± 6.42). In addition, the changes of the TGF-ß1-induced morphological shape and protein expression of EMT markers, N-cadherin, vimentin, and E-cadherin, were significantly blocked by ß-sitosterol treatment (p < 0.01). The effects of ß-sitosterol on EMT were found to be associated with the TGF-ß1/Snail pathway, which is regulated by Smad and non-Smad signaling pathways. Taken together, these findings suggest that ß-sitosterol can be used to attenuate pulmonary fibrosis through suppression of EMT by inhibiting the TGF-ß1/Snail pathway.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Alvéolos Pulmonares/efeitos dos fármacos , Fibrose Pulmonar/fisiopatologia , Sitosteroides/farmacologia , Zea mays/química , Actinas/genética , Actinas/metabolismo , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Extratos Vegetais/química , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/fisiopatologia , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
16.
J Proteome Res ; 18(9): 3461-3469, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31369706

RESUMO

We reported that breast density (BD) was inversely correlated with the plasma level of DHA in postmenopausal obese, but not in nonobese, women given Lovaza (n-3FA). To identify protein biomarkers for the possible differential effect of n-3FA on BD between obese and nonobese women, an iTRAQ method was performed to analyze plasma from obese and lean women at each time point (baseline, 12 and 24-months, n = 10 per group); 173 proteins with >95% confidence (Unuses Score >1.3 and local false discovery rate estimation <5%) were identified. Comparative analysis between various groups identified several differentially expressed proteins (hemopexin precursor, vitamin D binding protein isoform 1 precursor [VDBP], fibronectin isoform 10 precursor [FN], and α-2 macroglobulin precursor [A2M]). Western blot analysis was performed to verify the differential expression of proteins in the iTRAQ study, and those found to be altered in a tumor protective fashion by an n-3FA rich diet in our previous preclinical study; gelsolin, VDBP, and FN were altered by n-3FA in a manner consistent with reduction in inflammation in obese women. To test the impact of our findings on breast cancer risk reduction by n-3FA, a posthoc analysis revealed that n-3FA administration reduced BD selectively in obese postmenopausal women.


Assuntos
Neoplasias da Mama/sangue , Ácidos Docosa-Hexaenoicos/sangue , Ácido Eicosapentaenoico/sangue , Obesidade/sangue , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Densidade da Mama/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Ácidos Docosa-Hexaenoicos/administração & dosagem , Combinação de Medicamentos , Ácido Eicosapentaenoico/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/sangue , Feminino , Fibronectinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hemopexina/genética , Humanos , Pessoa de Meia-Idade , Obesidade/tratamento farmacológico , Obesidade/patologia , Pós-Menopausa/sangue , Proteômica/métodos , Proteína de Ligação a Vitamina D/genética , Adulto Jovem , alfa-Macroglobulinas/genética
17.
J Exp Biol ; 222(Pt 10)2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31085594

RESUMO

The hypothalamus controls metabolism and feeding behaviour via several signals with other tissues. Exercise and supplements can change hypothalamic signalling pathways, so the present study investigated the influence of eccentric resistance training and ß-hydroxy-ß-methylbutyrate free acid supplementation on PGC-1α expression, serum irisin, nesfatin-1 and resistin concentrations. Thirty-two male rats (8 weeks old, 200±17 g body mass) were randomly allocated to control, ß-hydroxy-ß-methylbutyrate free acid supplementation (HMB), eccentric resistance training (ERT), and ß-hydroxy-ß-methylbutyrate free acid supplementation plus eccentric resistance training (HMB+ERT) groups. Training groups undertook eccentric resistance training (6 weeks, 3 times a week) and supplement groups consumed ß-hydroxy-ß-methylbutyrate free acid (HMB-FA) orally (76 mg kg-1 day-1). Twenty-four hours after the last training session, serum and triceps brachii muscle samples were collected and sent to the laboratory for analysis. Two-way ANOVA and Pearson correlation were employed (significance level: P<0.05). The results showed that eccentric resistance training increases skeletal muscle PGC-1α gene expression, as well as serum levels of irisin and nesfatin-1 (P=0.001). Eccentric resistance training decreased the serum concentration of resistin (P=0.001). HMB-FA supplementation increased skeletal muscle PGC-1α gene expression (P=0.002), as well as the serum concentration of irisin and nesfatin-1 (P=0.001), but decreased the serum concentration of resistin (P=0.001). Significant correlations were observed between PGC-1α gene expression and serum concentrations of irisin, nesfatin-1 and resistin. HMB-FA supplementation with eccentric resistance training may induce crosstalk between peptide release from other tissues and increases maximal muscle strength. The combination of the two interventions had a more substantial effect than each in isolation.


Assuntos
Fibronectinas/genética , Nucleobindinas/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Ratos/fisiologia , Treinamento Resistido , Resistina/genética , Valeratos/administração & dosagem , Ração Animal/análise , Animais , Dieta , Suplementos Nutricionais/análise , Fibronectinas/sangue , Masculino , Músculo Esquelético/metabolismo , Nucleobindinas/sangue , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Resistina/sangue , Valeratos/metabolismo
18.
Biomed Pharmacother ; 115: 108930, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31055234

RESUMO

Backgroud Icariin, a major bioactive pharmaceutical component of the Chinese herbal medicine Epimedii Herba, has demonstrated lipid-lowering and anti-obesity effects. Irisin/ fibronectin type III domain-containing 5 (FNDC5) protects against obesity by inducing browning in white adipose tissue. Objectives This study investigated the effects of icariin on irisin/FNDC5 expression in C2C12 myotubes. Method Cultured murine C2C12 myocytes were used to study the effects of icariin on irisin/FNDC5 expressions by Western-blot, qPCR, Elisa and Immunofluorescence. We also investigated FNDC5 expression in icariin-treated intact mice. Results Icariin increased irisin/FNDC5 protein levels. mRNA levels of irisin/FNDC5 were also increased in C2C12 myocytes after treatment with icariin. Icariin increased peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1α) protein and mRNA levels. Additionally, icariin exposure resulted in phosphorylation of AMP-activated protein kinase (AMPK) in a dose-dependent manner. The regulatory effect of icariin on FNDC5 protein expression was blocked by the AMPK antagonist compound C or silencing of AMPK, suggesting that icariin increased FNDC5 protein expression via the AMPK pathway. In vivo, icariin decreased body weight gain in C57BL/6 mice and increased FNDC5, PGC-1α, and p-AMPK expression levels in skeletal muscle. Conclusions Taken together, our results indicated that icariin induces irisin/FNDC5 expression via the AMPK pathway, indicating that icariin may be promising as an anti-obesity drug.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fibronectinas/genética , Flavonoides/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Linhagem Celular , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Regulação para Cima
19.
Phytomedicine ; 58: 152740, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31005718

RESUMO

BACKGROUND: Curcumin is a polyphenolic compound with potent chemopreventive and anti-cancer efficacy. PURPOSE: To explore the potential anti-metastasis efficacy of curcumin in breast cancer stem-like cells (BCSCs), which are increasingly considered to be the origin of the recurrence and metastasis of breast cancer. METHODS: A CCK8 assay was performed to evaluate cell viability, and a colony formation assay was conducted to determine cell proliferation in MCF-7 and MDA-MB-231 adherent cells. Transwell and wound healing assays were used to detect the effect of curcumin on cell migration and invasion in MDA-MB-231 cells. Mammospheres were cultured with serum free medium (SFM) for three generations and the BCSC surface marker CD44+CD24-/low subpopulation was measured by flow cytometry. Mammosphere formation and differentiation abilities were determined after cell treatment with curcumin. Then, a reverse transcription-quantitative polymerase chain reaction assay was conducted to detect the relative mRNA level of epithelial-mesenchymal transition (EMT) marker genes and western blot analysis was performed to determine the protein expression of stem cell genes in mammospheres treated with curcumin. RESULTS: Curcumin exhibited anti-proliferative and colony formation inhibiting activities in both the MCF-7 and MDA-MB-231 cell lines. It also suppressed the migration and invasion of MDA-MB-231 cells. The CD44+CD24-/low subpopulation was larger in mammospheres when MCF-7 and MDA-MB-231 adherent cells were cultured with SFM. Further studies revealed that curcumin inhibited mammosphere formation and differentiation abilities. Moreover, curcumin down-regulated the mRNA expression of Vimentin, Fibronectin, and ß-catenin, and up-regulated E-cadherin mRNA expression levels. Western blot analysis demonstrated that curcumin decreased the protein expression of stem cell genes including Oct4, Nanog and Sox2. CONCLUSION: The results of the present study suggest that the inhibitor effects of curcumin on breast cancer cells may be related to resistance to cancer stem-like characters and the EMT process. These data indicate that curcumin could function as a type of anti-metastasis agent for breast cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Curcumina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Antígenos CD/genética , Neoplasias da Mama/patologia , Caderinas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Fibronectinas/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Vimentina/genética , beta Catenina/genética
20.
Mol Ther ; 27(3): 571-583, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30711446

RESUMO

Our previous study showed that miR-29 attenuates muscle wasting in chronic kidney disease. Other studies found that miR-29 has anti-fibrosis activity. We hypothesized that intramuscular injection of exosome-encapsulated miR-29 would counteract unilateral ureteral obstruction (UUO)-induced muscle wasting and renal fibrosis. We used an engineered exosome vector, which contains an exosomal membrane protein gene Lamp2b that was fused with the targeting peptide RVG (rabies viral glycoprotein peptide). RVG directs exosomes to organs that express the acetylcholine receptor, such as kidney. The intervention of Exo/miR29 increased muscle cross-sectional area and decreased UUO-induced upregulation of TRIM63/MuRF1 and FBXO32/atrogin-1. Interestingly, renal fibrosis was partially depressed in the UUO mice with intramuscular injection of Exo/miR29. This was confirmed by decreased TGF-ß, alpha-smooth muscle actin, fibronectin, and collagen 1A1 in the kidney of UUO mice. When we used fluorescently labeled Exo/miR29 to trace the Exo/miR route in vivo and found that fluorescence was visible in un-injected muscle and in kidneys. We found that miR-29 directly inhibits YY1 and TGF-ß3, which provided a possible mechanism for inhibition of muscle atrophy and renal fibrosis by Exo/miR29. We conclude that Exo/miR29 ameliorates skeletal muscle atrophy and attenuates kidney fibrosis by downregulating YY1 and TGF-ß pathway proteins.


Assuntos
Exossomos/metabolismo , Fibrose/terapia , Nefropatias/terapia , MicroRNAs/fisiologia , Atrofia Muscular/terapia , Animais , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Exossomos/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose/genética , Nefropatias/genética , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Atrofia Muscular/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta3/genética , Fator de Crescimento Transformador beta3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA