Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 350, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941977

RESUMO

Global-change stressors act under different timing, implying complexity and uncertainty in the study of interactive effects of multiple factors on planktonic communities. We manipulated three types of stressors acting in different time frames in an in situ experiment: ultraviolet radiation (UVR); phosphorus (P) concentration; temperature (T) in an oligotrophic Mediterranean high-mountain lake. The aim was to examine how the sensitivity of phytoplankton and bacterioplankton to UVR and their trophic relationship change under nutrient acclimation and abrupt temperature shifts. Phytoplankton and bacteria showed a common pattern of metabolic response to UVR × P addition interaction, with an increase in their production rates, although evidencing an inhibitory UVR effect on primary production (PP) but stimulatory on bacterial production (HBP). An abrupt T shift in plankton acclimated to UVR and P addition decreased the values of PP, evidencing an inhibitory UVR effect, whereas warming increased HBP and eliminated the UVR effect. The weakening of commensalistic and predatory relationship between phyto- and bacterioplankton under all experimental conditions denotes the negative effects of present and future global-change conditions on planktonic food webs towards impairing C flux within the microbial loop.


Assuntos
Bactérias/metabolismo , Fitoplâncton/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/efeitos da radiação , Mudança Climática , Lagos/microbiologia , Fósforo/farmacologia , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/efeitos da radiação , Espanha , Temperatura , Raios Ultravioleta
2.
Microb Ecol ; 79(3): 576-587, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31463663

RESUMO

Anthropogenic extreme environments are emphasized as interesting sites for the study of evolutionary pathways, biodiversity, and extremophile bioprospection. Organisms that grow under these conditions are usually regarded as extremophiles; however, the extreme novelty of these environments may have favor adaptive radiations of facultative extremophiles. At the Iberian Peninsula, uranium mining operations have rendered highly polluted extreme environments in multiple locations. In this study, we examined the phytoplankton diversity, community structure, and possible determining factors in separate uranium mining-impacted waters. Some of these human-induced extreme environments may be able to sustain indigenous facultative extremophile phytoplankton species, as well as alleged obligate extremophiles. Therefore, we investigated the adaptation capacity of three laboratory strains, two Chlamydomonas reinhardtii and a Dictyosphaerium chlorelloides, to uranium-polluted waters. The biodiversity among the sampled waters was very low, and despite presenting unique taxonomic records, ecological patterns can be identified. The microalgae adaptation experiments indicated a gradient of ecological novelty and different phenomena of adaptation, from acclimation in some waters to non-adaptation in the harshest anthropogenic environment. Certainly, phytoplankton extremophiles might have been often overlooked, and the ability to flourish in extreme environments might be a functional feature in some neutrophilic species. Evolutionary biology and microbial biodiversity can benefit the study of recently evolved systems such as uranium-polluted waters. Moreover, anthropogenic extremophiles can be harnessed for industrial applications.


Assuntos
Clorófitas/fisiologia , Extremófilos/fisiologia , Fitoplâncton/fisiologia , Urânio/análise , Poluentes Radioativos da Água/análise , Biodiversidade , Chlamydomonas reinhardtii/fisiologia , Chlamydomonas reinhardtii/efeitos da radiação , Clorófitas/efeitos da radiação , Extremófilos/efeitos da radiação , Mineração , Fitoplâncton/efeitos da radiação , Portugal , Espanha
3.
Ecol Lett ; 19(8): 880-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27250733

RESUMO

Phytoplankton acclimates to irradiance by regulating the cellular content of light-harvesting complexes, which are nitrogen (N) rich and phosphorus (P) poor. Irradiance is thus hypothesised to influence the cellular N : P ratio and the N : P defining the threshold between N and P limitation (the 'optimal' N : P). We tested this hypothesis by first addressing the response of the optimal N : P to irradiance in a controlled experiment with Chlamydomonas reinhardtii. Then, we did a meta-analysis of experimental data on optimal and cellular N : P ratios across light gradients to test the generality of an N : P to light response within species. In both the experiment and the meta-analysis, N : P ratios decreased with irradiance, indicating that factors affecting underwater irradiance, like depth and the composition of the water, may influence the relative N : P requirement. The effect of irradiance did not differ between optimal and cellular N : P ratios, but observations of optimal N : P were on average 2.8 times higher than observations of cellular N : P.


Assuntos
Chlamydomonas reinhardtii/efeitos da radiação , Luz , Nitrogênio/metabolismo , Fósforo/metabolismo , Fitoplâncton/efeitos da radiação , Chlamydomonas reinhardtii/metabolismo , Fitoplâncton/metabolismo
4.
PLoS One ; 10(11): e0142987, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26599583

RESUMO

Some of the most important effects of global change on coastal marine systems include increasing nutrient inputs and higher levels of ultraviolet radiation (UVR, 280-400 nm), which could affect primary producers, a key trophic link to the functioning of marine food webs. However, interactive effects of both factors on the phytoplankton community have not been assessed for the Mediterranean Sea. An in situ factorial experiment, with two levels of ultraviolet solar radiation (UVR+PAR vs. PAR) and nutrients (control vs. P-enriched), was performed to evaluate single and UVR×P effects on metabolic, enzymatic, stoichiometric and structural phytoplanktonic variables. While most phytoplankton variables were not affected by UVR, dissolved phosphatase (APAEX) and algal P content increased in the presence of UVR, which was interpreted as an acclimation mechanism of algae to oligotrophic marine waters. Synergistic UVR×P interactive effects were positive on photosynthetic variables (i.e., maximal electron transport rate, ETRmax), but negative on primary production and phytoplankton biomass because the pulse of P unmasked the inhibitory effect of UVR. This unmasking effect might be related to greater photodamage caused by an excess of electron flux after a P pulse (higher ETRmax) without an efficient release of carbon as the mechanism to dissipate the reducing power of photosynthetic electron transport.


Assuntos
Ecossistema , Fósforo/farmacologia , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/efeitos da radiação , Raios Ultravioleta , Fosfatase Alcalina/metabolismo , Biomassa , Carbono/análise , Mar Mediterrâneo , Nitrogênio/análise , Compostos Orgânicos/análise , Fósforo/análise , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Solubilidade , Xantofilas/metabolismo
5.
Photochem Photobiol Sci ; 11(6): 1087-98, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22544332

RESUMO

The combined effect of high solar ultraviolet radiation (UVR) and nutrient supply in a phytoplankton community of a high mountain lake is analyzed in a in situ experiment for 6 days with 2 × 2 factorial design. Interactive UVR × nutrient effects on structural and functional variables (algal biomass, chlorophyll a (chl a), primary production (PP), maximal electron transport rate (ETR(max)), and alkaline phosphatase activity (APA)), as well as stoichiometric ones (sestonic N per cell and N:P ratio) were found. Under non-nutrient enriched conditions, no deleterious effects of UVR on structural variables, PP, photosynthetic efficiency and ETR(max) were observed, whereas only particulate and total APA were affected by UVR. However, percentage excreted organic carbon (%EOC), dissolved APA and sestonic C and P per cell increased under UVR, leading to a decrease in algal C:P and N:P ratios. After nutrient enrichment, chl a, total algal biomass and PP were negatively affected by UVR whereas %EOC, ETR(max) and internal C, P and N content increased. We suggest that the mechanism of algal acclimation to UVR in this high UVR flux ecosystem seems to be related to the increase of internal algal P-content mediated by physiological mechanisms to save P and by a stimulatory UVR effect on dissolved extracellular APA. The mechanism involved in the unmasking effect of UVR after nutrient-enrichment may be the result of a greater sensitivity to UVR-induced cell damage, making the negative UVR effects more evident.


Assuntos
Fitoplâncton/metabolismo , Raios Ultravioleta , Fosfatase Alcalina/metabolismo , Biomassa , Carbono/química , Carbono/metabolismo , Clorofila/análise , Clorofila A , Ecossistema , Transporte de Elétrons , Fluorometria , Alimentos , Lagos , Nitrogênio/química , Nitrogênio/metabolismo , Fósforo/química , Fósforo/metabolismo , Fitoplâncton/enzimologia , Fitoplâncton/efeitos da radiação
6.
J Theor Biol ; 269(1): 16-30, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20932846

RESUMO

What determines the vertical distribution of phytoplankton in different aquatic environments remains an open question. To address this question, we develop a model to explore how phytoplankton respond through growth and movement to opposing resource gradients and different mixing conditions. We assume stratification creates a well-mixed surface layer on top of a poorly mixed deep layer and nutrients are supplied from multiple depth-dependent sources. Intraspecific competition leads to a unique strategic equilibrium for phytoplankton, which allows us to classify the distinct vertical distributions that can exist. Biomass can occur as a benthic layer (BL), a deep chlorophyll maximum (DCM), or in the mixed layer (ML), or as a combination of BL+ML or DCM+ML. The ML biomass can be limited by nutrients, light, or both. We predict how the vertical distribution, relative resource limitation, and biomass of phytoplankton will change across environmental gradients. We parameterized our model to represent potentially light and phosphorus limited freshwater lakes, but the model is applicable to a broad range of vertically stratified systems. Increasing nutrient input from the sediments or to the mixed layer increases light limitation, shifts phytoplankton towards the surface, and increases total biomass. Increasing background light attenuation increases light limitation, shifts the phytoplankton towards the surface, and generally decreases total biomass. Increasing mixed layer depth increases, decreases, or has no effect on light limitation and total biomass. Our model is able to replicate the diverse vertical distributions observed in nature and explain what underlying mechanisms drive these distributions.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Água Doce , Fitoplâncton/crescimento & desenvolvimento , Organismos Aquáticos/isolamento & purificação , Organismos Aquáticos/efeitos da radiação , Clorofila/metabolismo , Ecossistema , Sedimentos Geológicos/química , Luz , Michigan , Modelos Biológicos , Fósforo/análise , Fitoplâncton/isolamento & purificação , Fitoplâncton/efeitos da radiação , Dinâmica Populacional , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA