Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 517
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 306: 116159, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649852

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ginkgo biloba L. extract (GBE) oral preparations have been used for many years in the prevention and treatment of cardiovascular and cerebrovascular diseases, and the main active ingredients are flavonoids and terpene lactones. Among them, the oral absorption of the prototype components of flavonoid glycosides into the blood needs to be further clarified, and the differences in the oral absorption of different components in GBE by different dosage forms and physiological conditions are not clear yet. AIM OF THE STUDY: To clarify the oral absorption of the prototype flavonoid glycosides in vivo, and to further explore the differences in the oral absorption of various active compounds under different oral dosage forms and dietary conditions. MATERIALS AND METHODS: Firstly, the target compounds were selected based on the characteristic chromatogram of GBE and literature. Then, the content differences of three different oral GBE preparations were studied, and their pharmacokinetics (PK) were compared. Finally, the PK differences of the preparations with better oral absorption under different dietary conditions were studied. RESULTS: Five flavonoid glycosides, three aglycones and four terpene lactones were selected as the research objects. The content determination results of GBE tablets, guttate pills and tinctures showed that the content of several components especially flavonoid glycosides in the tincture was higher than that of the other two preparations. After oral administration of these three preparations, the PK study showed different results from previous studies. The PK behavior of flavonoid glycosides was also determined at the same time as flavonoid glycosides and terpene lactones. and the bioavailability of flavonoid glycosides in the tincture was higher than that of the other two preparations. PK results of fasting and non-fasting showed that taking GBE tincture on an empty stomach increased the absorption of various compounds, especially flavonoid glycosides. However, due to the existence of food residues in the gastrointestinal tract, the oral bioavailability of flavonoid glycosides was significantly improved. CONCLUSIONS: This study discussed the differences in the content and oral absorption of active compounds in different oral preparations of GBE, clarified the in vivo absorption of flavonoid glycosides prototype, as well as the influence of diet on the PK of active compounds, which has certain guiding significance for the clinical application of GBE oral preparations.


Assuntos
Flavonas , Glicosídeos , Terpenos , Lactonas , Extratos Vegetais/química , Ginkgo biloba/química , Flavonoides/farmacocinética
2.
Eur J Pharm Sci ; 180: 106328, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379359

RESUMO

Baicalin (BG) is a bioactive flavonoid extracted from the dried root of the medicinal plant, Scutellaria radix (SR) (dicotyledonous family, Labiatae), and has several biological activities. Polyethylene glycol 400 (PEG400) has been used as a suitable solvent for several traditional Chinese medicines (TCM) and is often used as an excipient for the compound preparation of SR. However, the drug-excipient interactions between BG and PEG400 are still unknown. Herein, we evaluated the effect of a single intravenous PEG400 administration on the BG levels of rats using pharmacokinetic and tissue distribution studies. A liver microsome and recombinant enzyme incubation system were used to further confirm the interaction mechanism between PEG400 and UDP-glucuronosyltransferases (UGTs) (UGT1A8 and UGT1A9). The pharmacokinetic study demonstrated that following the co-intravenous administration of PEG400 and BG, the total clearance (CLz) of BG in the rat plasma decreased by 101.60% (p < 0.05), whereas the area under the plasma concentration-time curve (AUC)0-t and AUC0-inf increased by 144.59% (p < 0.05) and 140.05% (p < 0.05), respectively. Additionally, the tissue distribution study showed that the concentration of BG and baicalein-6-O-ß-D-glucuronide (B6G) in the tissues increased, whereas baicalein (B) in the tissues decreased, and the total amount of BG and its metabolites in tissues altered following the intravenous administration of PEG400. We further found that PEG400 induced the UGT1A8 and UGT1A9 enzyme activities by affecting the maximum enzymatic velocity (Vmax) and Michaelis-Menten constant (Km) values of UGT1A8 and UGT1A9. In conclusion, our results demonstrated that PEG400 interaction with UGTs altered the pharmacokinetic behaviors and tissue distribution characteristics of BG and its metabolites in rats.


Assuntos
Flavonoides , Polietilenoglicóis , UDP-Glucuronosiltransferase 1A , Animais , Ratos , Flavonoides/administração & dosagem , Flavonoides/química , Flavonoides/farmacocinética , Microssomos Hepáticos/metabolismo , Polietilenoglicóis/química , Distribuição Tecidual , Injeções Intravenosas , UDP-Glucuronosiltransferase 1A/metabolismo
3.
J Ethnopharmacol ; 301: 115853, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36272493

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis Georgi. contains varieties of function compounds, and it has been used as traditional drug for centuries. Baicalein is the highest amount of flavonoid found in Scutellaria baicalensis Georgi., which exerts various pharmacological activities and might be a promising drug to treat COVID-19. AIM OF THE STUDY: The present work aims to investigate the metabolism of baicalein in humans after oral administration, and study the pharmacokinetics of BA and its seven metabolites in plasma and urine. MATERIALS AND METHODS: The metabolism profiling and the identification of baicalein metabolites were performed on HPLC-Q-TOF. Then a column-switching method named MPX™-2 system was applied for the high-throughput quantificationof BA and seven metabolites. RESULTS: Seven metabolites were identified using HPLC-Q-TOF, including sulfate, glucuronide, glucoside, and methyl-conjugated metabolites. Pharmacokinetic study found that BA was extensively metabolized in vivo, and only 5.65% of the drug remained intact in the circulatory system after single dosing. Baicalein-7-O-sulfate and baicalein-6-O-glucuronide-7-O-glucuronide were the most abundant metabolites. About 7.2% of the drug was excreted through urine and mostly was metabolites. CONCLUSION: Seven conjugated metabolites were identified in our assay. A high-throughput HPLC-MS/MS method using column switch was established for quantifying BA and its metabolites. The method has good sensitivity and reproducibility, and successfully applied for the clinical pharmacokinetic study of baicalein and identified metabolites. We expect that our results will provide a metabolic and pharmacokinetic foundation for the potential application of baicalein in medicine.


Assuntos
COVID-19 , Flavanonas , Humanos , Espectrometria de Massas em Tandem/métodos , Glucuronídeos , Reprodutibilidade dos Testes , Scutellaria baicalensis , Cromatografia Líquida de Alta Pressão , Flavonoides/farmacocinética , Sulfatos
4.
Expert Opin Drug Deliv ; 19(11): 1549-1560, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36287914

RESUMO

OBJECTIVES: Baicalin is a promising anticancer nutraceutical compound, but its application is hindered by its low water solubility and bioavailability, which can be remedied by its encapsulation in nanoparticles. METHODS: Lipid nanocapsules (LNCs) were developed to enhance baicalin delivery via intravenous and intranasal routes, and potentiate its therapeutic activity in treatment of glioma. RESULTS: LNCs displayed a particle size of 17.76 nm and sustained release of 74.36% after 24 h. The IC50 of baicalin LNCs (13 ± 5 µg/ml) was 60 times lower than free baicalin (780 ± 107 µg/ml) on human glioblastoma multiform cell line U87, with adequate cellular uptake as delineated by confocal laser microscopy. Both baicalin and LNCs induced cell cycle arrest at S and G2/M phases, with significant up-regulation in P21 gene, and decline in Nrf-2, HO-1 and VEGF gene expression. LNCs increased baicalin's bioavailability, either after intravenous (AUC0-24 h 10.94 ± 0.28 vs 3.53 ± 0.09 µg/ml*h), or intranasal administration (AUC0-24 h 6.26 ± 0.11 vs 3.17 ± 0.04 µg/ml*h). They also bypassed the blood brain barrier and achieved significantly higher brain delivery compared to free baicalin (drug targeting efficiency 160.73% vs 52.9%). CONCLUSION: Baicalin LNCs is a promising treatment modality for glioma, when administered through intravenous or intranasal routes.


Assuntos
Glioma , Nanocápsulas , Humanos , Nanocápsulas/uso terapêutico , Flavonoides/uso terapêutico , Flavonoides/farmacocinética , Glioma/tratamento farmacológico , Lipídeos
5.
Biomed Chromatogr ; 36(11): e5458, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35883246

RESUMO

Chronic gastritis (CG) has become a major threat to human health. Banxia Xiexin Decoction (BXXXD) has been used clinically to treat gastritis by acting on the spleen and stomach for thousands of years. Baicalin, wogonoside, liquiritin and liquiritigenin are the main bioactive flavonoids of BXXXD. A rapid, sensitive and selective HPLC-triple quadrupole (TQ)-MS/MS method was developed to simultaneously quantify the four flavonoids in rat plasma in this study. With salidroside as internal standard (IS), plasma samples were extracted and separated on a Welch HPLC XB-C18 column (2.1 × 50 mm, 1.8 µm) using gradient elution. The optimized gradient of the mobile phase consisted of water (containing 0.1% formic acid) (A) and methanol (B) was used. Detection was implemented in multiple reaction monitoring mode with an electrospray negative ionization source. The comparative pharmacokinetics of four analytes in normal and CG rats after oral administration of BXXXD or its different compatibilities were first investigated. The results indicated that the pharmacokinetic behaviors of analytes were obviously changed in CG rats. From the comparison between the whole prescription group and the compatibility groups, it was found that the pharmacokinetic behavior of analytes also changed to some extent. The pharmacokinetic alterations of analytes might be due to the pathological conditions of CG.


Assuntos
Medicamentos de Ervas Chinesas , Gastrite , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacocinética , Flavonoides/farmacocinética , Humanos , Metanol , Ratos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Água
6.
J Sep Sci ; 45(15): 2901-2913, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35671519

RESUMO

The total flavonoids of Desmodium styracifolium are the flavonoid extracts purified from Desmodii Styracifolii Herba, which has conventionally been used for treating urolithiasis in China. In this study, a sensitive and simple liquid chromatography-tandem mass spectrometry method was developed to simultaneously determine five active components of the extracts in rat plasma. Chromatographic separation of the analytes (schaftoside, vicenin-1, vicenin-2, vicenin-3, and isovitexin) was performed on an ACQUITY UPLC HSS T3 Column under gradient elution conditions. The calibration curves were linear over ranges from 0.5 to 100 ng/ml for schaftoside, vicenin-1, vicenin-2, and vicenin-3, and 0.2-20 ng/ml for isovitexin. The relative standard deviation of intra- and inter-day precisions were ≤6.8% and ≤8.3%, respectively, and the accuracies (relative error) were within ±7.6%. The recoveries of the analytes ranged between 97.3% and 100.3%, and the matrix effects ranged from 98.6% to 113.8%. The method was successfully applied to the pharmacokinetic studies of the five active ingredients of Desmodium styracifolium, for the first time, in both normal and urolithiasis model rats. Results revealed that the plasma levels of these components were significantly increased under the pathological state. This study provided valuable information facilitating the clinical investigation of this medicine.


Assuntos
Medicamentos de Ervas Chinesas , Flavonoides , Urolitíase , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Medicamentos de Ervas Chinesas/análise , Fabaceae/química , Flavonoides/análise , Flavonoides/farmacocinética , Extratos Vegetais/farmacocinética , Ratos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Urolitíase/tratamento farmacológico
7.
Food Funct ; 13(6): 3308-3317, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35254360

RESUMO

In Asia, the flower of Hosta plantaginea (Lam.) Aschers (hosta flower) is both an edible food and medicine. The hosta flower is often used as a material for cooking porridge and scented tea and in combination with other plants for alleviating pharyngitis. To clarify the anti-pharyngitis effect of the hosta flower and evaluate its potential active ingredients, an ethanol extract of the hosta flower was prepared and partially purified via chromatography on a column packed with D101 macroporous resin, which was eluted with different concentrations of ethanol. The anti-pharyngitis effect of the crude extract and the various partially purified fractions was examined in an ammonia-induced acute pharyngitis rat model. The 30% ethanol-eluted fraction significantly alleviated the severity of pharyngitis in the rat, as evaluated by changes in the levels of cytokines (IL-1ß, IL-6, and TNF-α) and histological changes in the pharynx tissues. Subsequent HPLC-QTOF/MS (high-performance liquid chromatography coupled with quadrupole-time of flight tandem mass spectrometry) analysis of this fraction revealed kaempferol and its glycosides as the main components. Three of the main components were isolated and identified by 1D NMR. Their pharmacokinetics were studied for the first time by UHPLC-QQQ/MS (ultrahigh-performance liquid chromatography coupled with mass spectrometry). The findings suggested that the 30% ethanol-eluted fraction of the hosta flower extract may be a potential functional food for treating pharyngitis.


Assuntos
Flavonoides/uso terapêutico , Glicosídeos/uso terapêutico , Hosta/química , Faringite/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Animais , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacocinética , Flores/química , Glicosídeos/química , Glicosídeos/isolamento & purificação , Glicosídeos/farmacocinética , Masculino , Faringite/patologia , Fitoterapia , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley
8.
Biomolecules ; 12(1)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35053239

RESUMO

The activity of natural phenols is primarily associated to their antioxidant potential, but is ultimately expressed in a variety of biological effects. Molecular scaffold manipulation of this large variety of compounds is a currently pursued approach to boost or modulate their properties. Insertion of S/Se/Te containing substituents on phenols may increase/decrease their H-donor/acceptor ability by electronic and stereo-electronic effects related to the site of substitution and geometrical constrains. Oxygen to sulphur/selenium isosteric replacement in resveratrol or ferulic acid leads to an increase in the radical scavenging activity with respect to the parent phenol. Several chalcogen-substituted phenols inspired by Vitamin E and flavonoids have been prepared, which in some cases prove to be chain-breaking antioxidants, far better than the natural counterparts. Conjugation of catechols with biological thiols (cysteine, glutathione, dihydrolipoic acid) is easily achieved by addition to the corresponding ortho-quinones. Noticeable examples of compounds with potentiated antioxidant activities are the human metabolite 5-S-cysteinyldopa, with high iron-induced lipid peroxidation inhibitory activity, due to strong iron (III) binding, 5-S-glutathionylpiceatannol a most effective inhibitor of nitrosation processes, and 5-S-lipoylhydroxytyrosol, and its polysulfides that proved valuable oxidative-stress protective agents in various cellular models. Different methodologies have been used for evaluation of the antioxidant power of these compounds against the parent compounds. These include kinetics of inhibition of lipid peroxidation alkylperoxyl radicals, common chemical assays of radical scavenging, inhibition of the OH• mediated hydroxylation/oxidation of model systems, ferric- or copper-reducing power, scavenging of nitrosating species. In addition, computational methods allowed researchers to determine the Bond Dissociation Enthalpy values of the OH groups of chalcogen modified phenolics and predict the best performing derivative. Finally, the activity of Se and Te containing compounds as mimic of glutathione peroxidase has been evaluated, together with other biological activities including anticancer action and (neuro)protective effects in various cellular models. These and other achievements are discussed and rationalized to guide future development in the field.


Assuntos
Antioxidantes , Catecóis , Flavonoides , Fenóis , Selênio/química , Enxofre/química , Animais , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/uso terapêutico , Catecóis/química , Catecóis/farmacocinética , Catecóis/farmacologia , Flavonoides/química , Flavonoides/farmacocinética , Flavonoides/farmacologia , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Fenóis/química , Fenóis/farmacocinética , Fenóis/uso terapêutico
9.
Molecules ; 26(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885754

RESUMO

Chalcones are secondary metabolites belonging to the flavonoid (C6-C3-C6 system) family that are ubiquitous in edible and medicinal plants, and they are bioprecursors of plant flavonoids. Chalcones and their natural derivatives are important intermediates of the flavonoid biosynthetic pathway. Plants containing chalcones have been used in traditional medicines since antiquity. Chalcones are basically α,ß-unsaturated ketones that exert great diversity in pharmacological activities such as antioxidant, anticancer, antimicrobial, antiviral, antitubercular, antiplasmodial, antileishmanial, immunosuppressive, anti-inflammatory, and so on. This review provides an insight into the chemistry, biosynthesis, and occurrence of chalcones from natural sources, particularly dietary and medicinal plants. Furthermore, the pharmacological, pharmacokinetics, and toxicological aspects of naturally occurring chalcone derivatives are also discussed herein. In view of having tremendous pharmacological potential, chalcone scaffolds/chalcone derivatives and bioflavonoids after subtle chemical modification could serve as a reliable platform for natural products-based drug discovery toward promising drug lead molecules/drug candidates.


Assuntos
Chalcona/metabolismo , Flavonoides/química , Plantas Comestíveis/química , Plantas Medicinais/química , Chalcona/química , Chalcona/farmacocinética , Chalcona/uso terapêutico , Flavonoides/biossíntese , Flavonoides/farmacocinética , Flavonoides/uso terapêutico , Humanos , Alicerces Teciduais/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-34655890

RESUMO

Bufei-Huoxue Capsule (BFHX) was applied to treat chronic obstructive pulmonary disease (COPD) in China. It is composed of Astragali Radix, Paeoniae Radix Rubra, and Psoralea Fructus. A sensitive and reliable ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) method was developed and validated to quantify the eight main bioactive compounds (psoralen, isopsoralen, neobabaisoflavone, corylin, bavachin, astragaloside IV, ononin and formononetin) in rat plasma after oral administration of BFHX. Osthol was used as an internal standard (IS). Plasma samples were pretreated with methanol to precipitate protein. Chromatographic separation was accomplished using Hypersil GOLDTM C18 column (2.1 mm × 100 mm, 1.9 µm) with a gradient elution profile and a mobile phase consisting of (A) 0.1% formic acid in water and (B) acetonitrile and the flow rate was set at 0.2 mL/min. Multiple reaction monitoring (MRM) mode was applied to perform mass spectrometric analyses. All calibration curves were linear (r > 0.9908) in tested ranges. The intra- and inter-day accuracy and precisions of eight compounds at three different concentration levels were within the acceptable limits. The extraction recovery was within the range of 76.4 âˆ¼ 105.2% and the matrix effects were within the range of 88.3 âˆ¼ 115.0% (RSD ≤ 15.6%). The dilution effects were within the range of 90.2 âˆ¼ 114.9%. These 8 compounds were stable under the tested conditions. So the developed method was valid to evaluate the pharmacokinetic study of eight bioactive compounds after oral administration of BFHX.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Flavonoides , Furocumarinas , Espectrometria de Massas em Tandem/métodos , Animais , Medicamentos de Ervas Chinesas/química , Flavonoides/sangue , Flavonoides/química , Flavonoides/farmacocinética , Furocumarinas/sangue , Furocumarinas/química , Furocumarinas/farmacocinética , Limite de Detecção , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
11.
Biomed Pharmacother ; 142: 112080, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34449320

RESUMO

Chrysin is a promising naturally occurring flavonoid mainly found in honey and propolis. Although chrysin's biological activities have been demonstrated and the mechanism of actions has been determined using in vitro and in vivo models, results from the current clinical studies were largely negative. A potential reason for chrysin's low efficacy in humans is poor oral bioavailability. In this paper, we reviewed the preclinical and clinical pharmacokinetics studies of chrysin and analyzed the mechanism of poor in vivo efficacy with emphasis on its bioavailability and ADME mechanism. Low aqueous solubility, rapid metabolism mediated by UGTs and SULT, efficient excretion through efflux transporters including BCRP and MRP2 are the major reasons causing poor systemic bioavailability for chrysin. However, because of efficient enterohepatic recycling facilitated by phase II metabolism and efflux, chrysin's bioavailability in the low GI tract is high. Thus, chrysin can be ideal for treating diseases in the terminal ileum and colon (e.g., carcinoma, local infection) since it is localized in the lower GI tract with limited delivery to other organs.


Assuntos
Flavonoides/farmacocinética , Própole/química , Animais , Disponibilidade Biológica , Flavonoides/administração & dosagem , Flavonoides/isolamento & purificação , Mel , Humanos , Solubilidade
12.
Phytomedicine ; 91: 153680, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34352588

RESUMO

BACKGROUND: Fragility fractures due to menopausal osteoporosis are a major cause of morbidity and mortality. Osteoporotic medications have substantial side effects that limit long term use. HYPOTHESES: Ingestion of a purified extract of Epimedium spp. (EP) is safe, can increase serum levels of prenylflavonoid metabolites, exert positive changes in bone specific alkaline phosphatase (BSAP), suppress of tumor necrosis factor receptor associated factor 6 (TRAF6) protein in osteoclast-precursor monocytes in peripheral blood and therefore have the potential to reduce post-menopausal bone loss. STUDY DESIGN & METHODS: Healthy postmenopausal women were randomized in a double-blind fashion to consume either EP prenylflavonoid extract (740 mg daily) or placebo daily for 6 weeks. The main outcome measures were safety and pharmacokinetics of EP flavonoids. Fasting blood was collected at 3- and 6-weeks, and two weeks after stopping medication for safety evaluations and measurement of BSAP. Peripheral blood monocytes were harvested for measurement of TRAF6 levels. Serum levels of the EP metabolites icariin, icariside I & II, icaritin and desmethylicaritin were measured using tandem mass spectrometry, and non-compartmental pharmacokinetic analyses performed using WinNonlin software. RESULTS: Between October 2018 and Jun 2020, 58 postmenopausal women, aged 57.9 ± 8.9 years, were randomized and completed the study. Consumption of EP prenylflavonoids was not associated with any significant adverse symptoms, with no changes in hepatic, hematological, and renal parameters observed. The main metabolites detected in sera after ingestion of EP prenylflavonoid capsules were desmethylicaritin, icaritin and icariside II. Icariin and icariside I were below detection levels. Ingestion of EP prenylflavonoids induced a median Cmax and AUC0→∞ for desmethylicaritin of 60.9 nM, and 157.9 nM ×day, respectively; and were associated with higher levels of BSAP (p < 0.05) and a trend (p = 0.068) towards lower levels of TRAF6 in peripheral blood monocytes eight weeks after commencing prenylflavonoid ingestion. Prenylflavonoid metabolites were not detected in the sera of placebo participants. CONCLUSIONS: Despite the widespread consumption of EP extracts, the safety, mechanisms of action of their bioactive compounds, and therapeutic indications in humans are unknown. Daily consumption of EP prenylflavonoids for six weeks was safe. The predominant metabolite in sera was desmethylicaritin. Rise in prenylflavonoid metabolites was associated with higher levels of the bone anabolic marker BSAP, suggesting potential therapeutic value for post-menopausal osteoporosis.


Assuntos
Fosfatase Alcalina/metabolismo , Epimedium , Flavonoides/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Osteoporose Pós-Menopausa , Extratos Vegetais/uso terapêutico , Idoso , Densidade Óssea , Método Duplo-Cego , Epimedium/química , Flavonoides/farmacocinética , Humanos , Pessoa de Meia-Idade , Osteoclastos , Osteoporose Pós-Menopausa/tratamento farmacológico , Extratos Vegetais/farmacocinética , Pós-Menopausa , Fator 6 Associado a Receptor de TNF
13.
Biomed Res Int ; 2021: 9953664, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34212043

RESUMO

Cirsimarin is a bioactive antilipogenic flavonoid isolated from the cotyledons of Abrus precatorius and represents one of the most abundant flavonoids present in this plant species. Cirsimarin exhibits excellent antioxidant, lipolysis, and other biological properties; it can effectively trigger lipid movement and demonstrates antiobesity effects. In this work, an ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed for the determination of cirsimarin in rat plasma after intravenous administration. A standard curve of cirsimarin in blank rat plasma was generated over the concentration range of 1-3000 ng/mL. Six rats were administered cirsimarin intravenously (1 mg/kg). The method only required 50 µL of plasma for sample preparation, and the plasma proteins were precipitated with acetonitrile to pretreat the plasma sample. The precisions of cirsimarin in rat plasma were less than 14%, while the accuracies varied between 92.5% and 107.3%. In addition, the matrix effect varied between 103.6% and 107.4%, while the recoveries were greater than 84.2%. This UPLC-MS/MS method was then applied in measuring the pharmacokinetics of cirsimarin in rats. The AUC(0-t) values of cirsimarin from the pharmacokinetic analysis were 1068.2 ± 359.2 ng/mL·h for intravenous administration. The half-life (t 1/2) was 1.1 ± 0.4 h (intravenous), indicating that the metabolism of the compound was quick in the rats. Exploring the pharmacokinetics of cirsimarin in vivo can help better understand its metabolism.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Flavonas/sangue , Flavonas/farmacocinética , Glicosídeos/sangue , Glicosídeos/farmacocinética , Plasma/química , Espectrometria de Massas em Tandem/métodos , Animais , Medicamentos de Ervas Chinesas/farmacocinética , Flavonoides/sangue , Flavonoides/farmacocinética , Masculino , Ratos , Ratos Sprague-Dawley
14.
Molecules ; 26(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209338

RESUMO

Flavonoids comprise a large group of structurally diverse polyphenolic compounds of plant origin and are abundantly found in human diet such as fruits, vegetables, grains, tea, dairy products, red wine, etc. Major classes of flavonoids include flavonols, flavones, flavanones, flavanols, anthocyanidins, isoflavones, and chalcones. Owing to their potential health benefits and medicinal significance, flavonoids are now considered as an indispensable component in a variety of medicinal, pharmaceutical, nutraceutical, and cosmetic preparations. Moreover, flavonoids play a significant role in preventing cardiovascular diseases (CVDs), which could be mainly due to their antioxidant, antiatherogenic, and antithrombotic effects. Epidemiological and in vitro/in vivo evidence of antioxidant effects supports the cardioprotective function of dietary flavonoids. Further, the inhibition of LDL oxidation and platelet aggregation following regular consumption of food containing flavonoids and moderate consumption of red wine might protect against atherosclerosis and thrombosis. One study suggests that daily intake of 100 mg of flavonoids through the diet may reduce the risk of developing morbidity and mortality due to coronary heart disease (CHD) by approximately 10%. This review summarizes dietary flavonoids with their sources and potential health implications in CVDs including various redox-active cardioprotective (molecular) mechanisms with antioxidant effects. Pharmacokinetic (oral bioavailability, drug metabolism), toxicological, and therapeutic aspects of dietary flavonoids are also addressed herein with future directions for the discovery and development of useful drug candidates/therapeutic molecules.


Assuntos
Antioxidantes , Cardiotônicos , Doenças Cardiovasculares , Flavonoides , Frutas/química , Verduras/química , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/uso terapêutico , Disponibilidade Biológica , Cardiotônicos/química , Cardiotônicos/farmacocinética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/prevenção & controle , Flavonoides/química , Flavonoides/farmacocinética , Flavonoides/uso terapêutico , Humanos
15.
Am J Chin Med ; 49(6): 1369-1397, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34263720

RESUMO

Breviscapine is one of the extracts of several flavonoids of Erigeron breviscapus. Scutellarin is the main active component of breviscapine, and the qualitative or quantitative criteria as well. Scutellarin and its analogs share a similar skeleton of the flavonoids. Breviscapine has been widely used in the treatment of cerebral infarction and its sequelae, cerebral thrombus, coronary heart disease (CHD), and angina pectoris. Breviscapine has a broad spectrum of pharmacological activities, such as increasing blood flow, improving microcirculation, dilating blood vessels, decreasing blood viscosity, promoting fibrinolysis, inhibiting platelet aggregation, and thrombosis formation, etc. In addition, breviscapine and its analogs have significant value for drug research and development because of the superiority of those significant bioactivities. Furthermore, an increasing number of pharmacokinetic studies have explored the mechanism of scutellarin and its analogs. To provide a comprehensive understanding of the current research on breviscapine, scutellarin, and the analogs, the structural features, distribution situation, preparation method, content determination method, clinical applications, pharmacological action as well as pharmacokinetics are summarized in the present review.


Assuntos
Apigenina , Flavonoides , Glucuronatos , Extratos Vegetais , Apigenina/química , Apigenina/farmacocinética , Apigenina/farmacologia , Flavonoides/química , Flavonoides/farmacocinética , Flavonoides/farmacologia , Glucuronatos/química , Glucuronatos/farmacocinética , Glucuronatos/farmacologia , Humanos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Extratos Vegetais/farmacologia
16.
Biomed Pharmacother ; 139: 111665, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34243607

RESUMO

Multicomponent herbal formulas (MCHFs) have earned a wide reputation for their definite efficacy in preventing or treating chronic complex diseases. However, holistic elucidation of the causal relationship between the bioavailable ingredients of MCHFs and their multitarget interactions is very challenging. To solve this problem, pharmacokinetics/pharmacometabolomics-pharmacodynamics (PK/PM-PD) combined with a multivariate biological correlation-network strategy was developed and applied to a classic MCHF, Baoyuan decoction (BYD), to clarify its active components and synergistic mechanism against cardiac hypertrophy (CH). First, multiple plasma metabolic biomarkers for ß-adrenergic agonist-induced CH rats were identified by using untargeted metabolomic profiling, and then, these CH-associated endogenous metabolites and the absorbed BYD-compounds in plasma at different treatment stages after oral administration of BYD were analyzed by using targeted PK and PM. Second, the dynamic relationship of BYD-related compounds and CH-associated endogenous metabolites and signaling pathways was built by using multivariate and bioinformatic correlation analysis. Finally, metabolic-related PD indicators were predicted and further verified by biological tests. The results demonstrated that the bioavailable BYD-compounds, such as saponins and flavonoids, presented differentiated and distinctive metabolic features and showed positive or negative correlations with various CH-altered metabolites and PD-indicators related to gut microbiota metabolism, amino acid metabolism, lipid metabolism, energy homeostasis, and oxidative stress at different treatment stages. This study provides a novel strategy for investigating the dynamic interaction between BYD and the biosystem, providing unique insight for disclosing the active components and synergistic mechanisms of BYD against CH, which also supplies a reference for other MCHF related research.


Assuntos
Cardiomegalia/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/farmacocinética , Extratos Vegetais/farmacologia , Extratos Vegetais/farmacocinética , Aminoácidos/metabolismo , Animais , Biomarcadores/metabolismo , Cardiomegalia/metabolismo , Sinergismo Farmacológico , Flavonoides/farmacocinética , Flavonoides/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Saponinas/farmacocinética , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
17.
J Sep Sci ; 44(18): 3386-3397, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34185967

RESUMO

Xian-Xiong-Gu-Kang is composed of Epimedium brevicornu, Ligusticum chuanxiong, Radix clematidis, Cinnamomum cassia, and Fructus xanthii. It is used to treat numbness and pain of limbs. In this study, we developed a method to simultaneously quantify 11 components of Xian-Xiong-Gu-Kang (icarrin, epimedin A, epimedin B, epimedin C, icariside II, chlorogenic acid, ligustilide, senkyunolide A, senkyunolide I, ferulic acid, and cinnamic acid) in rat plasma using ultra-performance liquid chromatography coupled with quadrupole linear ion trap mass spectrometry. Chromatographic separation was performed on an ACQUITY UPLC BEH C18 column using gradient elution with a mobile phase comprising acetonitrile and 0.05% (v/v) formic acid aqueous solution. Mass spectrometry detection was performed using positive and negative electrospray ionization in the multiple reaction monitoring mode. The calibration curves of the 11 constituents were linear, with correlation coefficients > 0.99. The intra- and interday accuracy and precision values were within ±15.0%. The extraction recoveries of the 11 constituents and two internal standards were between 66.05 and 105.40%, and the matrix effects were between 86.74 and 112.86%. Using this method, the pharmacokinetic features of the 11 constituents were elucidated in the plasma of osteoarthritic rats after oral administration of the Xian-Xiong-Gu-Kang extract.


Assuntos
Cromatografia Líquida/métodos , Medicamentos de Ervas Chinesas , Osteoartrite , Espectrometria de Massas em Tandem/métodos , Animais , Cinamatos/sangue , Cinamatos/química , Cinamatos/farmacocinética , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Flavonoides/sangue , Flavonoides/química , Flavonoides/farmacocinética , Limite de Detecção , Modelos Lineares , Masculino , Osteoartrite/metabolismo , Osteoartrite/patologia , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Joelho de Quadrúpedes/química , Joelho de Quadrúpedes/patologia
18.
Biomed Chromatogr ; 35(11): e5186, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34075601

RESUMO

UHPLC combined with Fourier-transform ion cyclotron resonance MS metabonomic approach was employed to screen the differential components between normal rats and yeast-induced pyrexia rats after an oral administration of Gegenqinlian decoction (GQLD). Nine compounds, namely puerarin, daidzein, baicalin, wogonoside, wogonin, berberine, palmatine, jateorhizine, and coptisine, were identified as differential components in the plasma. A rapid, sensitive, selective, and accurate UHPLC-MS method was developed and fully validated for the simultaneous determination of the screened components in rat plasma after an oral administration of GQLD. The values for the limit of quantification ranged from 0.025 to 5.0 ng/mL. The inter- and intra-day precision of all analytes was ≤10.7%, with an accuracy of ≤10.5%. Good extraction recovery and matrix effects were also obtained. The method was successfully applied to a comparative pharmacokinetic study of GQLD in normal and pyrexia rats. The results showed that the pharmacokinetic behavior of the analytes was changed in pyrexia rats compared to normal rats. These results could provide beneficial guidance for clinical applications of GQLD.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas , Febre/metabolismo , Flavonoides , Espectrometria de Massas em Tandem/métodos , Administração Oral , Animais , Alcaloides de Berberina/sangue , Alcaloides de Berberina/química , Alcaloides de Berberina/farmacocinética , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacocinética , Flavonoides/sangue , Flavonoides/química , Flavonoides/farmacocinética , Limite de Detecção , Modelos Lineares , Masculino , Ratos , Ratos Wistar , Reprodutibilidade dos Testes
19.
Biomed Chromatogr ; 35(10): e5174, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33998022

RESUMO

Polygonum orientale L. is a traditional Chinese medicine having extensive pharmacological activities including antimyocardial ischemia (MI) injury properties. Isoorientin, orientin, vitexin, quercitrin, astragalin and protocatechuic acid are the main compounds in P. orientale extract. The aim of this study was to establish an ultra-performance liquid chromatography-tandem mass spectrometry method for the determination of the content of these compounds in urine, feces and bile samples simultaneously and application of the method in a comparative excretion study in normal and MI model rats after oral administration of P. orientale extract. Chromatographic seperation was conducted on an Agilent Eclipse Plus C18 column with the mobile phase consisting of 0.1% formic acid-acetonitrile and 0.1% formic acid-water. Negative ion multiple reaction monitoring mode was used for quantification. The six compounds had good linearity (r ≥ 0.9921) and acceptable accuracy ranging from 10.10 to -5.82% The relative standard deviations of within-day precision and inter-day precision were <10.45 and 13.44%, respectively. The extraction recovery of the six analytes ranged from 80.31 to 101.47% and the matrix effect was 82.56-102.88%, indicating that the preparations of sample collected form urine, feces and bile were stable throughout analysis. The excretion amount of the six analytes increased in both normal and MI model rats' urine, feces and bile in a 24 h period and became stable between 36 and 48 h after administration. The total excretion rate of six compounds was <5% in urine, feces and bile of normal and MI model rats. The excretion peak period for all compounds in MI rats was slower than that in normal rats. This excretion study provides insights for further application and research on P. orientale.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Flavonoides , Isquemia Miocárdica/metabolismo , Extratos Vegetais , Polygonum , Animais , Bile/química , Fezes/química , Flavonoides/análise , Flavonoides/química , Flavonoides/farmacocinética , Limite de Detecção , Modelos Lineares , Masculino , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacocinética , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
20.
Food Chem ; 361: 130161, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051598

RESUMO

Encapsulation technique was applied to improve the stability of bioactive compounds in bran extracts from Thai rice cultivars (Khao Dawk Mali 105, Kiaw Ngu, Hom Nil, and Leum Pua), using three carriers including gelatin, gum Arabic, and the mixture of gelatin and gum Arabic. The microcapsules obtained using gelatin provided a higher production yield of 76.08, 85.63, 85.63 and 85.59%, respectively. A greater encapsulation efficiency was also observed in the extracts encapsulated with gelatin (93.45, 95.91, 91.19 and 95.09%, respectively). After simulated gastric and intestinal digestion, the microcapsules formed by using gelatin exhibited the higher release of bioactive compounds and antioxidant activity than unencapsulated extracts. However, the extracts encapsulated using gelatin and gum Arabic complex yielded the lowest release of bioactive compounds and their antioxidant activity after simulated digestion. The overall results showed that gelatin was an appropriate carrier that could protect bioactive compounds from the digestion conditions.


Assuntos
Antocianinas/farmacocinética , Flavonoides/farmacocinética , Oryza/química , Extratos Vegetais/química , Antioxidantes/análise , Antioxidantes/farmacocinética , Disponibilidade Biológica , Cápsulas , Digestão , Gelatina/química , Goma Arábica/química , Humanos , Hidroxibenzoatos/farmacocinética , Extratos Vegetais/farmacocinética , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA