Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884451

RESUMO

AIM: The present study aimed to investigate a novel antifungal compound produced by Streptomyces blastmyceticus S108 strain. Its effectiveness against clinical isolates of Candida species and its synergistic effect with conventional antifungal drugs were assessed, and its molecular mechanism of action was further studied against Candida albicans. METHODS AND RESULTS: A newly isolated strain from Tunisian soil, S. blastmyceticus S108, showed significant antifungal activity against Candida species by well diffusion method. The butanolic extract of S108 strain supernatant exhibited the best anti-Candida activity with a minimal inhibitory concentration (MIC) value of 250 µg ml-1, determined by the microdilution method. The bio-guided purification steps of the butanolic extract were performed by chromatographic techniques. Among the fractions obtained, F13 demonstrated the highest level of activity, displaying a MIC of 31.25 µg ml-1. Gas chromatography-mass spectrometry and electrospray ionization mass spectrometry analyses of this fraction (F13) revealed the glycolipidic nature of the active molecule with a molecular weight of 685.6 m/z. This antifungal metabolite remained stable to physicochemical changes and did not show hemolytic activity even at 4MIC corresponding to 125 µg ml-1 toward human erythrocytes. Besides, the glycolipid compound was combined with 5-flucytosine and showed a high synergistic effect with a fractional inhibitory concentration index value 0.14 against C. albicans ATCC 10231. This combination resulted in a decrease of MIC values of 5-flucytosine and the glycolipid-like compound by 8- and 64-fold, respectively. The examination of gene expression in treated C. albicans cells by quantitative polymerase chain reaction (qPCR) revealed that the active compound tested alone or in combination with 5-flucytosine blocks the ergosterol biosynthesis pathway by downregulating the expression of ERG1, ERG3, ERG5, ERG11, and ERG25 genes. CONCLUSION AND IMPACT OF THE STUDY: The new glycolipid-like compound, produced by Streptomyces S108 isolate, could be a promising drug for medical use against pathogenic Candida isolates.


Assuntos
Antifúngicos , Streptomyces , Humanos , Antifúngicos/química , Flucitosina/farmacologia , Candida , Streptomyces/genética , Candida albicans , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
2.
Lancet Infect Dis ; 21(9): e259-e271, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33872594

RESUMO

Cryptococcal meningoencephalitis was first described over a century ago. This fungal infection is preventable and treatable yet continues to be associated with excessive morbidity and mortality. The largest burden of disease resides in people living with HIV in low-income and middle-income countries. In this group, mortality with the best antifungal induction regimen (7 days of amphotericin B deoxycholate [1·0 mg/kg per day] and flucytosine [100·0 mg/kg per day]) in a clinical trial setting was 24% at 10 weeks. The world is now at an inflection point in terms of recognition, research, and action to address the burden of morbidity and mortality from cryptococcal meningoencephalitis. However, the scope of interventional programmes needs to increase, with particular attention to implementation science that is specific to individual countries. This Review summarises causes of excessive mortality, interventions with proven survival benefit, and gaps in knowledge and practice that contribute to the ongoing high death toll from cryptococcal meningoencephalitis. TRANSLATIONS: For the Vietnamese and Chichewa translations of the abstract see Supplementary Materials section.


Assuntos
Antifúngicos/uso terapêutico , Criptococose , Meningoencefalite/tratamento farmacológico , Meningoencefalite/mortalidade , Anfotericina B , Bases de Dados Factuais , Ácido Desoxicólico , Combinação de Medicamentos , Quimioterapia Combinada , Fluconazol , Flucitosina/farmacologia , Flucitosina/uso terapêutico , Humanos , Meningoencefalite/microbiologia , Meningoencefalite/patologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-31932367

RESUMO

Since 2016, New York hospitals and health care facilities have faced an unprecedented outbreak of the pathogenic yeast Candida auris We tested over 1,000 C. auris isolates from affected facilities and found high resistance to fluconazole (MIC > 256 mg/liter) and variable resistance to other antifungal drugs. Therefore, we tested if two-drug combinations are effective in vitro against multidrug-resistant C. auris Broth microdilution antifungal combination plates were custom manufactured by TREK Diagnostic System. We used 100% inhibition endpoints for the drug combination as reported earlier for the intra- and interlaboratory agreements against Candida species. The results were derived from 12,960 readings, for 15 C. auris isolates tested against 864 two-drug antifungal combinations for nine antifungal drugs. Flucytosine (5FC) at 1.0 mg/liter potentiated the most combinations. For nine C. auris isolates resistant to amphotericin B (AMB; MIC ≥ 2.0 mg/liter), AMB-5FC (0.25/1.0 mg/liter) yielded 100% inhibition. Six C. auris isolates resistant to three echinocandins (anidulafungin [AFG], MIC ≥ 4.0 mg/liter; caspofungin [CAS], MIC ≥ 2.0 mg/liter; and micafungin [MFG], MIC ≥ 4.0 mg/liter) were 100% inhibited by AFG-5FC and CAS-5FC (0.0078/1 mg/liter) and MFG-5FC (0.12/1 mg/liter). None of the combinations were effective for C. auris 18-1 and 18-13 (fluconazole [FLC] > 256 mg/liter, 5FC > 32 mg/liter) except MFG-5FC (0.1/0.06 mg/liter). Thirteen isolates with a high voriconazole (VRC) MIC (>2 mg/liter) were 100% inhibited by the VRC-5FC (0.015/1 mg/liter). The simplified two-drug combination susceptibility test format would permit laboratories to provide clinicians and public health experts with additional data to manage multidrug-resistant C. auris.


Assuntos
Antifúngicos/uso terapêutico , Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candidíase/epidemiologia , Farmacorresistência Fúngica Múltipla/fisiologia , Anfotericina B/farmacologia , Candida/isolamento & purificação , Surtos de Doenças , Quimioterapia Combinada , Equinocandinas/farmacologia , Fluconazol/farmacologia , Flucitosina/farmacologia , Humanos , Micafungina/farmacologia , Testes de Sensibilidade Microbiana , New York/epidemiologia , Voriconazol/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-31988099

RESUMO

Amphotericin B (AmB) is the antifungal with the strongest fungicidal activity, but its use has several limitations, mainly associated with its toxicity. Although some lipidic and liposomal formulations that present reduced toxicity are available, their price limits their application in developing countries. Flucytosine (5FC) has shown synergistic effect with AmB for treatment of some fungal infections, such as cryptococcosis, but again, its price is a limitation for its use in many regions. In the present work, we aimed to identify new drugs that have a minor effect on Cryptococcus neoformans, reducing its growth in the presence of subinhibitory concentrations of AmB. In the initial screening, we found fourteen drugs that had this pattern. Later, checkerboard assays of selected compounds, such as erythromycin, riluzole, nortriptyline, chenodiol, nisoldipine, promazine, chlorcyclizine, cloperastine, and glimepiride, were performed and all of them confirmed for their synergistic effect (fractional inhibitory concentration index [FICI] < 0.5). Additionally, toxicity of these drugs in combination with AmB was tested in mammalian cells and in zebrafish embryos. Harmless compounds, such as the antibiotic erythromycin, were found to have synergic activity with AmB, not only against C. neoformans but also against some Candida spp., in particular against Candida albicans In parallel, we identified drugs that had antifungal activity against C. neoformans and found 43 drugs that completely inhibited the growth of this fungus, such as ciclopirox and auranofin. Our results expand our knowledge about antifungal compounds and open new perspectives in the treatment of invasive mycosis based on repurposing off-patent drugs.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Reposicionamento de Medicamentos , Animais , Auranofina/farmacologia , Candidíase/tratamento farmacológico , Linhagem Celular , Ciclopirox/farmacologia , Criptococose/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Sinergismo Farmacológico , Eritromicina/farmacologia , Flucitosina/farmacologia , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Infecções Oportunistas/tratamento farmacológico , Infecções Oportunistas/microbiologia , Células RAW 264.7 , Peixe-Zebra/embriologia
5.
Langmuir ; 35(47): 15275-15286, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31665888

RESUMO

Conventional drug delivery systems for natural clay materials still face critical challenges in their practical application, including multiple bacterial infections, combined infection of bacteria and fungi, and low sterilization efficiency. In this work, we address these challenges using the multifunctional montmorillonite nanosheet-based (MMT-based) drug nanoplatform, which involves the antibiotic 5-fluorocytosine (5-FC), antibacterial metal copper ions, and quaternized chitosan (QCS). Composite material QCS/MMT/5-FCCu can can strongly inhibit Staphylococcus aureus (a typical Gram-positive bacterium), Escherichia coli (a typical Gram-negative bacterium), and Candida albicans (a fungus) because 5-FC coordinates with copper ions in situ and due to the deposition of QCS. The subsequent drug release behavior of 5-FCCu was studied, and the results show an initial high concentration kills microorganisms and long-acting sustained release inhibition. Moreover, in vivo wound experiments and toxicity experiments show the promotion of wound healing and excellent biocompatibility. As a demonstration of the utility of the latter, we have shown that the MMT-based smart platform can be used for the treatment of mixed infections of wounds.


Assuntos
Antibacterianos/uso terapêutico , Bentonita/química , Quitosana/química , Cobre/uso terapêutico , Flucitosina/uso terapêutico , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Antifúngicos/farmacologia , Antifúngicos/toxicidade , Bentonita/toxicidade , Candida albicans/efeitos dos fármacos , Linhagem Celular , Quitosana/toxicidade , Cobre/farmacologia , Cobre/toxicidade , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Flucitosina/farmacologia , Flucitosina/toxicidade , Camundongos , Testes de Sensibilidade Microbiana , Nanocompostos/química , Nanocompostos/toxicidade , Staphylococcus aureus/efeitos dos fármacos
6.
Proc Natl Acad Sci U S A ; 116(37): 18597-18606, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31439817

RESUMO

Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm) are Tier-1 Select Agents that cause melioidosis and glanders, respectively. These are highly lethal human infections with limited therapeutic options. Intercellular spread is a hallmark of Burkholderia pathogenesis, and its prominent ties to virulence make it an attractive therapeutic target. We developed a high-throughput cell-based phenotypic assay and screened ∼220,000 small molecules for their ability to disrupt intercellular spread by Burkholderia thailandensis, a closely related BSL-2 surrogate. We identified 268 hits, and cross-species validation found 32 hits that also disrupt intercellular spread by Bp and/or Bm Among these were a fluoroquinolone analog, which we named burkfloxacin (BFX), which potently inhibits growth of intracellular Burkholderia, and flucytosine (5-FC), an FDA-approved antifungal drug. We found that 5-FC blocks the intracellular life cycle at the point of type VI secretion system 5 (T6SS-5)-mediated cell-cell spread. Bacterial conversion of 5-FC to 5-fluorouracil and subsequently to fluorouridine monophosphate is required for potent and selective activity against intracellular Burkholderia In a murine model of fulminant respiratory melioidosis, treatment with BFX or 5-FC was significantly more effective than ceftazidime, the current antibiotic of choice, for improving survival and decreasing bacterial counts in major organs. Our results demonstrate the utility of cell-based phenotypic screening for Select Agent drug discovery and warrant the advancement of BFX and 5-FC as candidate therapeutics for melioidosis in humans.


Assuntos
Burkholderia pseudomallei/efeitos dos fármacos , Ciprofloxacina/farmacologia , Reposicionamento de Medicamentos , Flucitosina/farmacologia , Melioidose/tratamento farmacológico , Animais , Burkholderia pseudomallei/patogenicidade , Ciprofloxacina/análogos & derivados , Ciprofloxacina/uso terapêutico , Citoplasma/efeitos dos fármacos , Citoplasma/microbiologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Flucitosina/uso terapêutico , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Melioidose/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Resultado do Tratamento , Virulência
7.
Biopolymers ; 110(6): e23276, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30938841

RESUMO

Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningitis in immunocompromised individuals. Existing antifungal treatment plans have high mammalian toxicity and increasing drug resistance, demonstrating the dire need for new, nontoxic therapeutics. Antimicrobial peptoids are one alternative to combat this issue. Our lab has recently identified a tripeptoid, AEC5, with promising efficacy and selectivity against C. neoformans. Here, we report studies into the broad-spectrum efficacy, killing kinetics, mechanism of action, in vivo half-life, and subchronic toxicity of this compound. Most notably, these studies have demonstrated that AEC5 rapidly reduces fungal burden, killing all viable fungi within 3 hours. Additionally, AEC5 has an in vivo half-life of 20+ hours and no observable in vivo toxicity following 28 days of daily injections. This research represents an important step in the characterization of AEC5 as a practical treatment option against C. neoformans infections.


Assuntos
Antifúngicos/química , Peptoides/química , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Linhagem Celular , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/patogenicidade , Sinergismo Farmacológico , Flucitosina/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Meia-Vida , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/patologia , Testes de Sensibilidade Microbiana , Peptoides/metabolismo , Peptoides/farmacologia , Peptoides/uso terapêutico , Sorbitol/química
8.
J Mycol Med ; 29(2): 147-153, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31023592

RESUMO

BACKGROUND: The increasing number of Candida infections, especially those caused by non-C. albicans species and resistant strains, is a serious medical problem. OBJECTIVES: In this study, the antifungal activity of base analogues, 5-flucytosine (5-FC) and 5-fluorouracil (5-FU), was tested against planktonic cells as well as against mature biofilm. METHODS: Tests were performed according the EUCAST methodology. Antibiofilm effectiveness of tested drugs was determined by the crystal violet staining method. The cytotoxicity assays was performed according to the ISO 10993-5 norm. RESULTS: 5-FC and 5-FU were effective against fifteen fluconazole resistant Candida glabrata strains with an average minimal inhibitory concentration (MIC) of 0.152mg/L and 0.39mg/L, respectively. Folinic acid (folinate- e.g., leucovorin) is a common drug used in oncology simultaneously with 5-FU. In our tests folinate was able to lower MIC for 5-FC from 0.152 to 0.058mg/L (P<0.05). In the biofilm assay 5-FU and 5-FC alone did not induce any changes in the biomass of mature biofilm. Addition of folinate to each base analogue resulted in up to 90% reduction of biomass. Viability tests show that a concentration of 64mg/L of 5-FC and 5-FU supplemented with folinate can be fungicidal against mature biofilms of some Candida isolates. No cytotoxic effect was found for combination of FOL and 5-FC. CONCLUSION: Therapy of 5-FU+folinate is well known in cancer treatment, in this study we reveal the beneficial effect of folinate on antifungal activity of 5-FC as well as the antifungal potential of 5-FU+folinate.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Flucitosina/farmacologia , Fluoruracila/farmacologia , Leucovorina/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Farmacorresistência Fúngica , Violeta Genciana , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
9.
Mycoses ; 62(6): 508-512, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30776159

RESUMO

Cryptococcus species are an encapsulated fungal pathogen that cause cryptococcal meningitis. There are limited therapeutic options for this infection. The management includes the use of different antifungals such as amphotericin B, flucytosine, or fluconazole, either alone or in combination. However, numerous therapeutic failures, as well as the limited effectiveness of such therapeutics, have been described. Diphenyl diselenide is a chemically synthesised molecule with was found to have antimicrobial activity. In this study, we evaluated the antifungal activities of fluconazole, amphotericin B and flucytosine, in combination with diphenyl diselenide against 30 clinical isolates of Cryptococcus spp. using CLSI M27-A3 method and the checkerboard microdilution technique. Our results show that the combination of flucytosine and diphenyl diselenide displayed 100% of synergism. However, when we analysed (PhSe)2 plus AMB or FLZ we observed around 70% of indifference. Our results suggest that the combination of diphenyl diselenide with other antifungal agents deserves attention as a new option for the development of alternative therapies for cryptococcosis.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Derivados de Benzeno/farmacologia , Cryptococcus/efeitos dos fármacos , Sinergismo Farmacológico , Fluconazol/farmacologia , Flucitosina/farmacologia , Compostos Organosselênicos/farmacologia , Criptococose/microbiologia , Humanos , Testes de Sensibilidade Microbiana
10.
FEMS Yeast Res ; 19(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30418573

RESUMO

Melanin formation is a promising target for antifungal development. We screened a collection of 727 compounds that were previously approved for clinical use in humans for inhibition of pigmentation in Cryptococcus gattii, a lethal fungal pathogen that causes damage to both immunocompetent and immunocompromised hosts. The pyrimidine analogues flucytosine (5-fluorocytosine [5-FC]), 5-fluorouracil (5-FU) and carmofur were identified as efficient inhibitors of pigmentation in the C. gattii model. Since melanin synthesis is enzymatically catalyzed by laccase in Cryptococcus, we investigated whether inhibition of pigmentation by the pyrimidine analogues was laccase-mediated. Enzyme activity and expression of LAC genes were not involved in the effects of the pyrimidine analogues, suggesting alternative cellular targets for inhibition of pigmentation. To address this hypothesis, we screened a collection of approximately 8000 mutants of C. gattii that were produced by insertional mutation after incubation with Agrobacterium tumefaciens and identified a gene product required for the anti-pigmentation activity of 5-FC as a beta-DNA polymerase. Reduced expression of this gene affected capsule formation and urease activity, suggesting essential roles in the cryptococcal physiology. These results demonstrate a previously unknown antifungal activity of 5-FC and reveal a promising target for the development of novel antifungals.


Assuntos
Antifúngicos/farmacologia , Cryptococcus gattii/efeitos dos fármacos , Melaninas/antagonistas & inibidores , Melaninas/biossíntese , Cryptococcus gattii/genética , Análise Mutacional de DNA , Avaliação Pré-Clínica de Medicamentos , Flucitosina/farmacologia , Fluoruracila/análogos & derivados , Fluoruracila/farmacologia , Testes Genéticos , Mutagênese Insercional
11.
Cytotherapy ; 20(9): 1191-1201, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30078654

RESUMO

To confirm the anti-tumor effect of engineered neural stem cells (NSCs) expressing cytosine deaminase (CD) and interferon-ß (IFN-ß) with prodrug 5-fluorocytosine (FC), K562 chronic myeloid leukemia (CML) cells were co-cultured with the neural stem cell lines HB1.F3.CD and HB1.F3.CD.IFN-ß in 5-FC containing media. A significant decrease in the viability of K562 cells was observed by the treatment of the NSC lines, HB1.F3.CD and HB1.F3.CD.IFN-ß, compared with the control. A modified trans-well assay showed that engineered human NSCs significantly migrated toward K562 CML cells more than human normal lung cells. In addition, the important chemoattractant factors involved in the specific migration ability of stem cells were found to be expressed in K562 CML cells. In a xenograft mouse model, NSC treatments via subcutaneous and intravenous injections resulted in significant inhibitions of tumor mass growth and extended survival dates of the mice. Taken together, these results suggest that gene therapy using genetically engineered stem cells expressing CD and IFN-ß may be effective for treating CML in these mouse models.


Assuntos
Células-Tronco Neurais/transplante , Animais , Técnicas de Cocultura , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Feminino , Flucitosina/farmacologia , Engenharia Genética , Terapia Genética/métodos , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Células K562 , Leucemia/terapia , Camundongos Nus , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Pró-Fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Clin Microbiol Infect ; 24 Suppl 1: e1-e38, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29544767

RESUMO

The European Society for Clinical Microbiology and Infectious Diseases, the European Confederation of Medical Mycology and the European Respiratory Society Joint Clinical Guidelines focus on diagnosis and management of aspergillosis. Of the numerous recommendations, a few are summarized here. Chest computed tomography as well as bronchoscopy with bronchoalveolar lavage (BAL) in patients with suspicion of pulmonary invasive aspergillosis (IA) are strongly recommended. For diagnosis, direct microscopy, preferably using optical brighteners, histopathology and culture are strongly recommended. Serum and BAL galactomannan measures are recommended as markers for the diagnosis of IA. PCR should be considered in conjunction with other diagnostic tests. Pathogen identification to species complex level is strongly recommended for all clinically relevant Aspergillus isolates; antifungal susceptibility testing should be performed in patients with invasive disease in regions with resistance found in contemporary surveillance programmes. Isavuconazole and voriconazole are the preferred agents for first-line treatment of pulmonary IA, whereas liposomal amphotericin B is moderately supported. Combinations of antifungals as primary treatment options are not recommended. Therapeutic drug monitoring is strongly recommended for patients receiving posaconazole suspension or any form of voriconazole for IA treatment, and in refractory disease, where a personalized approach considering reversal of predisposing factors, switching drug class and surgical intervention is also strongly recommended. Primary prophylaxis with posaconazole is strongly recommended in patients with acute myelogenous leukaemia or myelodysplastic syndrome receiving induction chemotherapy. Secondary prophylaxis is strongly recommended in high-risk patients. We strongly recommend treatment duration based on clinical improvement, degree of immunosuppression and response on imaging.


Assuntos
Antifúngicos/uso terapêutico , Aspergilose/diagnóstico , Aspergilose/tratamento farmacológico , Aspergillus/isolamento & purificação , Gerenciamento Clínico , Anticorpos Antifúngicos/sangue , Antifúngicos/farmacologia , Aspergilose/complicações , Aspergilose/imunologia , Aspergillus/efeitos dos fármacos , Aspergillus/imunologia , Biópsia/métodos , Lavagem Broncoalveolar , Diagnóstico Precoce , Flucitosina/farmacologia , Flucitosina/uso terapêutico , Galactose/análogos & derivados , Humanos , Hospedeiro Imunocomprometido , Testes Imunológicos , Aspergilose Pulmonar Invasiva/diagnóstico , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Leucemia Mieloide Aguda/complicações , Leucemia Mieloide Aguda/terapia , Imageamento por Ressonância Magnética , Mananas/análise , Testes de Sensibilidade Microbiana , Síndromes Mielodisplásicas/complicações , Síndromes Mielodisplásicas/terapia , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Tomografia Computadorizada por Raios X , Triazóis/farmacologia , Triazóis/uso terapêutico , Voriconazol/farmacologia , Voriconazol/uso terapêutico
13.
Pharm Res ; 34(5): 1115-1124, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28205003

RESUMO

PURPOSE: Amphotericin B (AmB) and 5-fluorocytosine (5-FC) exhibit additive to synergistic activity against systemic mycoses. Incompatibility of prescribed formulations precludes concomitant IV administration, a route with distinct advantages. Previously, we used PEG-DSPE micelles to produce a reformulation of Fungizone (AmB-SD), AmB solubilized by sodium deoxycholate, called mAmB-90. Herein, we describe a second reformulation that facilitates co-delivery of mAmB-90 and 5-FC, and evaluate the effect of PEG-DSPE micelles on the combination's activity against Candida albicans. METHODS: We assessed the effect of 5-FC addition on the stability, in vitro toxicity, and antifungal efficacy of mAmB-90. The aggregation state and particle size of mAmB-90 combined with 5-FC (FmAmB-90) was evaluated over 48 h. Hemolytic activity was measured in vitro. Antifungal activity was determined in vitro against C. albicans. The efficacy of monotherapy and combination treatment was evaluated in a neutropenic mouse model of disseminated candidiasis. RESULTS: The aggregation state, particle size, and hemolytic activity of mAmB-90 were unaffected by 5-FC. While antifungal activity was similar in vitro, mAmB-90 alone and combined with 5-FC was more potent than AmB-SD in vivo. CONCLUSIONS: Short-term stability and in vivo efficacy of our formulation suggest potential to simultaneously deliver AmB and 5-FC for potent antifungal efficacy.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Flucitosina/farmacologia , Cloreto de Sódio/farmacologia , Sódio/farmacologia , Animais , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Química Farmacêutica/métodos , Ácido Desoxicólico/farmacologia , Portadores de Fármacos/química , Feminino , Camundongos , Camundongos Endogâmicos ICR , Micelas , Tamanho da Partícula , Fosfatidiletanolaminas/química , Polietilenoglicóis/química
14.
Mater Sci Eng C Mater Biol Appl ; 73: 507-515, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183639

RESUMO

Conventional anticancer agents are associated with limited therapeutic efficacy and substantial nonspecific cytotoxicity. Thus, there is an imminent need for an alternative approach that can specifically annihilate the cancer cells with minimal side effects. Among such alternative approaches, CD::UPRT (cytosine deaminase uracil phosphoribosyl transferase) suicide gene therapy has tremendous potential due to its high efficacy. Prodrug 5-Fluorocytosine (5-FC) used in combination with CD::UPRT suicide gene suffers from limited solubility which subsequently leads to decline in therapeutic efficacy. In order to overcome this, 5-FC encapsulated bovine serum albumin nanoparticles (BSA-5-FC NPs) were prepared in this work by desolvation method. Physico-chemical characterizations studies revealed amorphous nature of BSA-5-FC NPs with uniform spherical morphology. Apart from increase in solubility, encapsulated 5-FC followed slow and sustained release profile. Suicide gene expressing stable clone of L-132 cells were adapted for investigating therapeutic potential of BSA-5-FC NPs. These nanoparticles were readily taken up by the cells in a concentration dependent manner and subsequently manifested apoptosis, which was further confirmed by morphological examination and gene expression analysis. These findings clearly illustrate that CD::UPRT suicide gene therapy can be efficiently utilized in combination with this nanosystem for improved suicide gene therapy and tumor eradication.


Assuntos
Genes Transgênicos Suicidas , Terapia Genética , Nanopartículas/química , Pró-Fármacos/farmacologia , Soroalbumina Bovina/química , Animais , Bovinos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Difusão Dinâmica da Luz , Endocitose/efeitos dos fármacos , Citometria de Fluxo , Flucitosina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Nanopartículas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Coloração e Rotulagem , Eletricidade Estática , Temperatura , Difração de Raios X
15.
J Mycol Med ; 25(1): 63-70, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25639922

RESUMO

OBJECTIVE: The objective of this study was to evaluate the efficacy of combinations of nystatin-intralipid, found previously to be more active than nystatin, with antifungals of different mode of activity, against Aspergillus terreus. METHODS: Antifungal activity of combinations of nystatin-intralipid with voriconazole, caspofungin, terbinafine or 5-fluorocytosine were evaluated by the checkerboard and disk diffusion methods. The results were compared to those obtained with nystatin. RESULTS: The combination of nystatin-intralipid with caspofungin exhibited better antifungal activity than each drug alone and resulted in a synergistic interaction in three out of six tested strains of A. terreus. No such effect was obtained with Nystatin and caspofungin. Nystatin-intralipid or nystatin with voriconazole yielded indifferent interactions. When nystatin-intralipid was combined with terbinafine, a strong antagonism was produced in all six A. terreus strains. This effect was observed both by checkerboard and disk diffusion methods. In contrast no interaction or only slight antagonism was observed in the combination of nystatin with terbinafine. Disk diffusion method revealed similar inhibition zones when disks impregnated with 5-fluorocytosine were placed on plain, nystatin-intralipid or nystatin containing agar plates. CONCLUSIONS: Among four tested combinations, only combination of nytatin-intralipid with caspofungin, a representative of the echinocandin class of antifungals, resulted in synergistic interaction. Antagonism obtained by combining nystatin-intralipid with terbinafine can be explained by existence of hydrophobic interaction between these two compounds interfering with their antifungal action. The fact that nystatin-intralipid and nystatin interact differently with other antifungals, may indicate differences in their mechanisms of activity.


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Nistatina/farmacologia , Fosfolipídeos/farmacologia , Óleo de Soja/farmacologia , Antifúngicos/administração & dosagem , Aspergillus/crescimento & desenvolvimento , Caspofungina , Combinação de Medicamentos , Equinocandinas/administração & dosagem , Equinocandinas/farmacologia , Emulsões/administração & dosagem , Emulsões/farmacologia , Flucitosina/administração & dosagem , Flucitosina/farmacologia , Humanos , Lipopeptídeos , Testes de Sensibilidade Microbiana/métodos , Naftalenos/administração & dosagem , Naftalenos/farmacologia , Nistatina/administração & dosagem , Fosfolipídeos/administração & dosagem , Óleo de Soja/administração & dosagem , Terbinafina , Voriconazol/administração & dosagem , Voriconazol/farmacologia
16.
Hum Gene Ther ; 26(2): 82-93, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25419577

RESUMO

Toca 511 (vocimagene amiretrorepvec), a nonlytic, amphotropic retroviral replicating vector (RRV), encodes and delivers a functionally optimized yeast cytosine deaminase (CD) gene to tumors. In orthotopic glioma models treated with Toca 511 and 5-fluorocytosine (5-FC) the CD enzyme within infected cells converts 5-FC to 5-fluorouracil (5-FU), resulting in tumor killing. Toca 511, delivered locally either by intratumoral injection or by injection into the resection bed, in combination with subsequent oral extended-release 5-FC (Toca FC), is under clinical investigation in patients with recurrent high-grade glioma (HGG). If feasible, intravenous administration of vectors is less invasive, can easily be repeated if desired, and may be applicable to other tumor types. Here, we present preclinical data that support the development of an intravenous administration protocol. First we show that intravenous administration of Toca 511 in a preclinical model did not lead to widespread or uncontrolled replication of the RVV. No, or low, viral DNA was found in the blood and most of the tissues examined 180 days after Toca 511 administration. We also show that RRV administered intravenously leads to efficient infection and spread of the vector carrying the green fluorescent protein (GFP)-encoding gene (Toca GFP) through tumors in both immune-competent and immune-compromised animal models. However, initial vector localization within the tumor appeared to depend on the mode of administration. Long-term survival was observed in immune-competent mice when Toca 511 was administered intravenously or intracranially in combination with 5-FC treatment, and this combination was well tolerated in the preclinical models. Enhanced survival could also be achieved in animals with preexisting immune response to vector, supporting the potential for repeated administration. On the basis of these and other supporting data, a clinical trial investigating intravenous administration of Toca 511 in patients with recurrent HGG is currently open and enrolling.


Assuntos
Neoplasias Encefálicas/terapia , Citosina Desaminase/genética , Proteínas Fúngicas/genética , Terapia Genética/métodos , Vetores Genéticos/farmacocinética , Glioma/terapia , Retroviridae/genética , Animais , Anticorpos Neutralizantes/análise , Antimetabólitos/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Ensaios Clínicos como Assunto , Citosina Desaminase/metabolismo , Citosina Desaminase/farmacocinética , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Flucitosina/farmacologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacocinética , Expressão Gênica , Genes Reporter , Vetores Genéticos/administração & dosagem , Vetores Genéticos/química , Glioma/genética , Glioma/mortalidade , Glioma/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Injeções Intravenosas , Camundongos , Camundongos Nus , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacocinética , Retroviridae/imunologia , Análise de Sobrevida , Distribuição Tecidual
17.
Antimicrob Agents Chemother ; 58(8): 4476-85, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24867971

RESUMO

We characterized two additional membrane transporters (Fur4p and Dal4p) of the nucleobase cation symporter 1 (NCS1) family involved in the uptake transport of pyrimidines and related molecules in the opportunistic pathogenic yeast Candida lusitaniae. Simple and multiple null mutants were constructed by gene deletion and genetic crosses. The function of each transporter was characterized by supplementation experiments, and the kinetic parameters of the uptake transport of uracil were measured using radiolabeled substrate. Fur4p specifically transports uracil and 5-fluorouracil. Dal4p is very close to Fur4p and transports allantoin (glyoxyldiureide). Deletion of the FUR4 gene confers resistance to 5-fluorouracil as well as cross-resistance to triazoles and imidazole antifungals when they are used simultaneously with 5-fluorouracil. However, the nucleobase transporters are not involved in azole uptake. Only fluorinated pyrimidines, not pyrimidines themselves, are able to promote cross-resistance to azoles by both the salvage and the de novo pathway of pyrimidine synthesis. A reinterpretation of the data previously obtained led us to show that subinhibitory doses of 5-fluorocytosine, 5-fluorouracil, and 5-fluorouridine also were able to trigger resistance to fluconazole in susceptible wild-type strains of C. lusitaniae and of different Candida species. Our results suggest that intracellular fluorinated nucleotides play a key role in azole resistance, either by preventing azoles from targeting the lanosterol 14-alpha-demethylase or its catalytic site or by acting as a molecular switch for the triggering of efflux transport.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Proteínas de Transporte de Nucleobases/genética , Proteínas de Transporte de Nucleotídeos/genética , Azóis/farmacologia , Transporte Biológico , Candida/genética , Candida/metabolismo , Cruzamentos Genéticos , Antagonismo de Drogas , Farmacorresistência Fúngica , Flucitosina/farmacologia , Fluoruracila/farmacologia , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Transporte de Nucleobases/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Esterol 14-Desmetilase/genética , Esterol 14-Desmetilase/metabolismo , Uracila/farmacologia , Uridina/análogos & derivados , Uridina/farmacologia
18.
J Oral Pathol Med ; 42(7): 570-5, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23278631

RESUMO

BACKGROUND: The aim of this study was to evaluate the frequency of Candida species and presence of lesions in the oral cavity of patients with sickle cell anemia (SS). METHODS: The study included 30 patients diagnosed with sickle cell anemia and taking hydroxyurea for at least 90 days (SS/HU+); and 39 patients with sickle cell anemia and without hydroxyurea therapy (SS/HU-). Two control groups were constituted by healthy individuals matched to the test groups in age, gender, and oral conditions (C/HU+ for SS/HU+ and C/HU- for SS/HU-). Oral clinical examination and anamnesis were performed. Yeasts were collected by oral rinses and identified by API system. Antifungal susceptibility evaluation was performed according to the CLSI methodology. Data obtained for microorganisms counts were compared by Student's t test (SS/HU+ vs. C/HU+ and SS/HU- vs. C/HU-) using MINITAB for Windows 1.4. Significance level was set at 5%. RESULTS: No oral candidosis lesions were detected. Significant differences in yeasts counts were observed between SS/HU- group and the respective control, but there were no differences between SS/HU+ and C/HU+. Candida albicans was the most prevalent species in all groups. Candida famata was observed both in SS and control groups. Candida dubliniensis, Candida glabrata, Candida krusei, Candida tropicalis, Candida pelliculosa, and Candida parapsilosis were observed only in SS groups. Most strains were susceptible to all antifungal agents. CONCLUSION: Hydroxyurea therapy seems to decrease candidal counts and resistance rate in sickle cell anemia patients. However, further studies should be conducted in the future to confirm this finding. Hydroxyurea therapy in sickle cell anemia patients maintains fungal species balance in oral cavity.


Assuntos
Anemia Falciforme/tratamento farmacológico , Antifúngicos/uso terapêutico , Antidrepanocíticos/uso terapêutico , Candidíase Bucal/prevenção & controle , Hidroxiureia/uso terapêutico , Adolescente , Adulto , Candida/classificação , Candida/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Candida glabrata/isolamento & purificação , Candida tropicalis/efeitos dos fármacos , Candida tropicalis/isolamento & purificação , Estudos de Casos e Controles , Contagem de Colônia Microbiana , Estudos Transversais , Índice CPO , Farmacorresistência Fúngica , Feminino , Fluconazol/farmacologia , Flucitosina/farmacologia , Humanos , Cetoconazol/farmacologia , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Boca/microbiologia , Saliva/metabolismo , Taxa Secretória/fisiologia , Adulto Jovem
19.
Antimicrob Agents Chemother ; 56(8): 4146-53, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22615280

RESUMO

Itraconazole is used for the prevention and treatment of infections caused by Aspergillus fumigatus. An understanding of the pharmacodynamics of itraconazole against wild-type and triazole-resistant strains provides a basis for innovative therapeutic strategies for treatment of infections. An in vitro model of the human alveolus was used to define the pharmacodynamics of itraconazole. Galactomannan was used as a biomarker. The effect of systemic and airway administration of itraconazole was assessed, as was a combination of itraconazole administered to the airway and systemically administered 5FC. Systemically administered itraconazole against the wild type induced a concentration-dependent decline in galactomannan in the alveolar and endothelial compartments. No exposure-response relationships were apparent for the L98H, M220T, or G138C mutant. The administration of itraconazole to the airway resulted in comparable exposure-response relationships to those observed with systemic therapy. This was achieved without detectable concentrations of drug within the endothelial compartment. The airway administration of itraconazole resulted in a definite but submaximal effect in the endothelial compartment against the L98H mutant. The administration of 5FC resulted in a concentration-dependent decline in galactomannan in both the alveolar and endothelial compartments. The combination of airway administration of itraconazole and systemically administered 5FC was additive. Systemic administration of itraconazole is ineffective against Cyp51 mutants. The airway administration of itraconazole is effective for the treatment of wild-type strains and appears to have some activity against the L98H mutants. Combination with other agents, such as 5FC, may enable the attainment of near-maximal antifungal activity.


Assuntos
Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Itraconazol/farmacologia , Pneumopatias Fúngicas/tratamento farmacológico , Alvéolos Pulmonares/microbiologia , Antifúngicos/administração & dosagem , Antifúngicos/farmacocinética , Aspergilose/microbiologia , Aspergilose/prevenção & controle , Células Cultivadas , Vias de Administração de Medicamentos , Farmacorresistência Fúngica , Flucitosina/administração & dosagem , Flucitosina/farmacologia , Galactose/análogos & derivados , Humanos , Itraconazol/administração & dosagem , Itraconazol/farmacocinética , Pneumopatias Fúngicas/microbiologia , Mananas/análise , Testes de Sensibilidade Microbiana , Triazóis/farmacologia
20.
Mol Ther ; 20(9): 1689-98, 2012 09.
Artigo em Inglês | MEDLINE | ID: mdl-22547150

RESUMO

Retroviral replicating vectors (RRVs) are a nonlytic alternative to oncolytic replicating viruses as anticancer agents, being selective both for dividing cells and for cells that have defects in innate immunity and interferon responsiveness. Tumor cells fit both these descriptions. Previous publications have described a prototype based on an amphotropic murine leukemia virus (MLV), encoding yeast cytosine deaminase (CD) that converts the prodrug 5-fluorocytosine (5-FC) to the potent anticancer drug, 5-fluorouracil (5-FU) in an infected tumor. We report here the selection of one lead clinical candidate based on a general design goal to optimize the genetic stability of the virus and the CD activity produced by the delivered transgene. Vectors were tested for titer, genetic stability, CD protein and enzyme activity, ability to confer susceptibility to 5-FC, and preliminary in vivo antitumor activity and stability. One vector, Toca 511, (aka T5.0002) encoding an optimized CD, shows a threefold increased specific activity in infected cells over infection with the prototype RRV and shows markedly higher genetic stability. Animal testing demonstrated that Toca 511 replicates stably in human tumor xenografts and, after 5-FC administration, causes complete regression of such xenografts. Toca 511 (vocimagene amiretrorepvec) has been taken forward to preclinical and clinical trials.


Assuntos
Terapia Genética/métodos , Vírus da Leucemia Murina/genética , Neoplasias Experimentais/terapia , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Flucitosina/metabolismo , Flucitosina/farmacologia , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Vetores Genéticos , Humanos , Camundongos , Transplante de Neoplasias , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Estabilidade de RNA , Ratos , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA