Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Res Vet Sci ; 164: 104991, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657392

RESUMO

The objective of this study was to examine the direct effects of the medicinal plant fennel on basic functions of ovarian cells, including proliferation, apoptosis, and release of progesterone and insulin-like growth factor I (IGFI), as well as to prevent the influence of the environmental contaminant benzene on these cells. Porcine ovarian granulosa cells were cultured with or without fennel extract alone or in combination with benzene. The expression of the proliferation marker PCNA and the apoptosis marker bax was analyzed by quantitative immunocytochemistry and enzyme-linked immunosorbent assay (ELISA). Fennel was able to promote proliferation and IGF-I release, but to suppress apoptosis and progesterone release. Benzene promoted the accumulation of both the proliferation and apoptosis markers, as well as IGF-I release, but it inhibited progesterone secretion. The presence of fennel did not prevent the effects of benzene on any of the measured parameters, while benzene prevented the effects of fennel on cell proliferation, apoptosis, and IGF-I but not progesterone output. These observations demonstrate the direct influence of fennel and benzene on basic ovarian cell functions. Furthermore, they show the inability of fennel to prevent the effects of benzene on these cells. On the other hand, the environmental contaminant benzene can block the response of ovarian cells to the medicinal plant fennel.


Assuntos
Foeniculum , Progesterona , Feminino , Suínos , Animais , Progesterona/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Foeniculum/metabolismo , Benzeno/toxicidade , Benzeno/metabolismo , Ovário , Células da Granulosa , Proliferação de Células , Apoptose , Células Cultivadas
2.
J Mol Model ; 29(2): 55, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36700982

RESUMO

CONTEXT: The mutations in the TP53 gene are the most frequent (50-60% of human cancer) genetic alterations in cancer cells, indicating the critical role of wild-type p53 in the regulation of cell proliferation and apoptosis upon oncogenic stress. Most missense mutations are clustered in the DNA-binding core domain, disrupting DNA binding ability. However, some mutations like Y220C occur outside the DNA binding domain and are associated with p53 structure destabilization. Overall, the results of these mutations are single amino acid substitutions in p53 and the production of dysfunctional p53 protein in large amounts, consequently allowing the escape of apoptosis and rapid progression of tumor growth. Thus, therapeutic targeting of mutant p53 in tumors to restore its wild-type tumor suppression activity has immense potential for translational cancer research. Various molecules have been discovered with modern scientific techniques to reactivate mutant p53 by reverting structural changes and/or DNA binding ability. These compounds include small molecules, various peptides, and phytochemicals. TP53 protein is long thought of as a potential target; however, its translation for therapeutic purposes is still in its infancy. The study comprehensively analyzed the therapeutic potential of small phytochemicals from Foeniculum vulgare (Fennel) with drug-likeness and capability to reactivate mutant p53 (Y220C) through molecular docking simulation. The docking study and the stable molecular dynamic simulations revealed juglalin (- 8.6 kcal/mol), retinol (- 9.14 kcal/mol), and 3-nitrofluoranthene (- 8.43 kcal/mol) significantly bind to the mutated site suggesting the possibility of drug designing against the Y220C mutp53. The study supports these compounds for further animal based in vivo and in vitro research to validate their efficacy. METHODS: For the purposes of drug repurposing, recently in-silico methods have presented with opportunity to rule out many compounds which have less probability to act as a drug based on their structural moiety and interaction with the target macromolecule. The study here utilizes molecular docking via Autodock 4.2.6 and molecular dynamics using Schrodinger 2021 to find potential therapeutic options which are capable to reactive the mutated TP53 protein.


Assuntos
Foeniculum , Neoplasias , Animais , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Foeniculum/genética , Foeniculum/metabolismo , Genes p53 , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Mutação , DNA
3.
Molecules ; 26(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807371

RESUMO

Fennel (Foeniculum vulgare Mill.) waste contains a broad range of bioactive molecules, including polyphenols, which have poor bioaccessibility during gastrointestinal digestion. This work aimed to investigate the bioaccessibility of total phenolic compounds and the antioxidant capacity during simulated gastrointestinal digestion using two nutraceutical formulations based on non-acid-resistant (NAR) and acid-resistant (AR) capsules containing aqueous-based extracts from fennel waste. Moreover, to obtain a comprehensive investigation of the polyphenolic constituents of the fennel waste extract, a high-resolution mass spectrometry (Q-Orbitrap) analysis was performed. Notably, chlorogenic acids, such as 4-caffeoylquinic acid and 3,4-dicaffeoylquinic acid, were the most detected compounds found in assayed samples (1.949 and 0.490 mg/g, respectively). After in vitro gastrointestinal digestion, the extract contained in AR capsules displayed higher bioaccessibility in both the duodenal and colonic stages (1.96 and 5.19 mg GAE/g, respectively) than NAR capsules (1.72 and 3.50 mg GAE/g, respectively), suggesting that the acidic gastric conditions negatively affected the polyphenol compounds released from the NAR capsules. Therefore, the aqueous extract of fennel waste could be proposed as an innovative and easily available source of dietary polyphenols. Furthermore, the use of an AR capsule could improve the polyphenol bioaccessibility and can be proposed as a nutraceutical formulation.


Assuntos
Antioxidantes/química , Foeniculum , Extratos Vegetais , Polifenóis/química , Suplementos Nutricionais/análise , Digestão , Foeniculum/química , Foeniculum/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo
4.
J Ethnopharmacol ; 270: 113782, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33421603

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: 'Salt-processed Psoraleae Fructus & salt-processed Foeniculi Fructus' (sPF&sFF) is a common Chinese medicinal combination for treating diarrhoea. However, it is not clear how sPF and sFF work together, and why salt-processing is necessary. AIM OF THE STUDY: To investigate the compatibility mechanism of sPF&sFF and the influence of salt-processing on it. MATERIALS AND METHODS: Firstly, the metabolomics approach was appliedto screen the differential components between four (s)PF&(s)FF extracts, i.e., sPF&sFF, sPF&FF, PF&sFF, and PF&FF extracts. Then, an in vivo metabolomics study was carried out to filter critical metabolites reflecting the curative effects of (s)PF&(s)FF, and construct a metabolic network. Finally, a correlation analysis between chemical components in extracts and critical metabolites in vivo was performed to find out the synergistic and/or antagonistic effects between herbs as well as the influence of salt-processing. RESULTS: Salt-processing had a direct influence on the contents of chemical components in sPF and sFF extracts, and there existed positive/negative correlations between the content change of chemical components and the effects of critical metabolites. Therefore, salt-processing indirectly affected on these correlations and was (i) conducive to the positive effects of sPF and sFF on bile acids, making sFF play a synergistic role, thereby, sPF&sFF could perform better than sPF and other three combinations and effectively relieve the symptoms of fatty diarrhoea, osmotic diuresis, malnutrition, and weight loss; (ii) conducive to the positive effects of sPF on triacylglycerol, 12(S)-hydroxyeicosatetraenoic acid, cholesterol, and arachidonic acid, and adverse to that of sFF, making sFF play an antagonistic role, thereby, sPF&sFF could prevent a series of side effects caused by over-regulation and suitably relieve the symptoms of osmotic diuresis, polyuria, malnutrition, and weight loss; and (iii) adverse to the positive effects of sPF and sFF on thromboxane A2, sphinganine and sphingosine, making sFF play a synergistic role, thereby, sPF&sFF could prevent a series of side effects and moderately relieve the symptoms of metabolic diarrhoea and polyuria. CONCLUSIONS: Salt-processing indirectly affected on the correlations between chemical components in extracts and critical metabolites in vivo, and exhibited both conducive and adverse effects on the efficacy, making sPF and sFF cooperate with each other to moderately repair the metabolic disorders. Thereby, sPF&sFF could suitably relieve the diarrhoea and polyuria symptoms in the model and exert the most appropriate efficacy. Moreover, this novel strategy provided a feasible approach for further studying the compatibility mechanism of herbs.


Assuntos
Medicamentos de Ervas Chinesas/química , Foeniculum/química , Frutas/química , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Psoralea/química , Aminoácidos/metabolismo , Animais , Ácido Araquidônico/metabolismo , Biomarcadores/sangue , Colesterol/metabolismo , Correlação de Dados , Diarreia/tratamento farmacológico , Diarreia/metabolismo , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Foeniculum/metabolismo , Frutas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Poliúria/tratamento farmacológico , Poliúria/metabolismo , Psoralea/metabolismo , Ratos Sprague-Dawley , Sais/química , Esfingolipídeos/metabolismo
5.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1433-1444, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28887228

RESUMO

Fennel is attracted attention as a useful resource as researching medicinal plant for drought tolerance. To elucidate the response mechanism in drought-sensitive and -tolerant genotypes of fennel leaf, a gel-free/label-free proteomic technique was used. Fifty-day-old plants were subjected to drought stress for 60days. The relative water and proline contents were decreased and increased in sensitive genotypes, respectively; however, they were not a big change in tolerant genotypes. Photosynthesis was decreased in the sensitive genotypes under drought; however, it was increased in the tolerant genotype. In both drought-sensitive and -tolerant genotypes, proteins related to protein metabolism and cell organization were predominately affected under drought stress. The abundance of phosphoribulokinase and phosphoglycerate kinase enzymes were decreased and increased in drought-sensitive and -tolerant genotypes, respectively; however, the abundance of RuBisCO and glyceraldehyde-3-phosphate dehydrogenase enzymes were increased and decreased in drought-sensitive and -tolerant genotypes, respectively. Under drought stress, the abundance of glycolysis-related proteins was decreased in sensitive genotypes; however, they were increased in tolerance genotypes. Commonly changed proteins with polyethylene glycol fractionation such as cobalamin-independent methionine synthase were decreased and increased in drought-sensitive and -tolerant genotypes, respectively. These results suggest that cobalamin-independent methionine synthetase is involved in the tolerance of drought-tolerant fennel leaf under drought stress.


Assuntos
Foeniculum/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Metiltransferases/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Adaptação Fisiológica/genética , Secas , Foeniculum/metabolismo , Perfilação da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Metiltransferases/metabolismo , Anotação de Sequência Molecular , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fotossíntese/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Estresse Fisiológico/genética , Água/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 34(7): 829-32, 2009 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-19623973

RESUMO

OBJECTIVE: To analysis the changes of chemical compounds in fried Foeniculum vulgare. METHOD: Cleaned F. vulgare were fried with honey, Pharbitis nil, salt solution, vinegar, wine and bran, respectively, according to different Chinese medicine frying theories. Different volatile ingredints were extracted from fried products, and their contents and physical constants were detected. Gas chromatography-mass spectrometry (GC-MS) was developed for analyzing the changes of chemical compounds in different samples of fried F. vulgare. RESULT: The experimental results showed that the content of volatile oil in F. vulgare decreased after been fried. Among these effective ingredients in fried samples, trans-anethole was the ingredient of the maximum content, and the contents of all twenty-four ingredinets had changed. Furthermore, other eighteen compounds were created; Among them, linalylacetate, farnesene, p-allyiphenyl aromatic oxide, menthone, and hexyl octanoate were detected firstly in F. vulgare. CONCLUSION: GC-MS is effective to fleetly analyse the frying changes of herbs flectly.


Assuntos
Medicamentos de Ervas Chinesas/química , Foeniculum/química , Temperatura Alta , Culinária , Dessecação , Medicamentos de Ervas Chinesas/metabolismo , Foeniculum/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/análise , Óleos Voláteis/metabolismo
7.
J Nat Med ; 63(1): 28-31, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18668304

RESUMO

Foeniculi fructus were irradiated with an electron beam and organic free radicals were detected by electron spin resonance (ESR) spectroscopy for the purpose of identifying radio-disinfected and sterilized herbal drugs. An ESR single-line spectrum near g = 2.005 was observed in the sample before irradiation. After irradiation, the intensity of the signal near g = 2.005 increased. In addition, two subsignals derived from cellulose radicals were observed approximately 3 mT to either side of the main signal, at g = 2.023 and g = 1.987. The intensity of the subsignal at g = 2.023 was proportional to the absorbed dose of radiation. The decrease in intensity of the signals was considerable 2 weeks after irradiation, and continued to decrease steadily thereafter. Among the signals, the fading of the subsignal at g = 2.023 was relatively small. The intensity of the subsignal at g = 2.023 was detectable for over 1 year in the sample that had been irradiated to the level of disinfection and sterilization. Therefore, organic free radicals in irradiated Foeniculi fructus can be measured rapidly and with high sensitivity by ESR spectroscopy. The stable signal at g = 2.023 is a promising indicator of the detection of irradiated herbal drugs.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Foeniculum/metabolismo , Foeniculum/efeitos da radiação , Radicais Livres/análise , Elétrons , Frutas/metabolismo , Frutas/efeitos da radiação , Reprodutibilidade dos Testes
8.
Biomacromolecules ; 8(10): 3008-14, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17877395

RESUMO

Biodegradable, flexible, and moisture-resistant films were obtained by recycling fennel waste and adding to fennel homogenates the bean protein phaseolin that was modified or not modified by the enzyme transglutaminase. All films were analyzed for their morphology, mechanical properties, water vapor permeability, and susceptibility to biodegradation under soil-like conditions. Our experiments showed that transglutaminase treatment of the phaseolin-containing fennel waste homogenates allowed us to obtain films comparable in their mechanical properties and water vapor permeability to the commercial films Ecoflex and Mater-Bi. Furthermore, biodegradability tests demonstrated that the presence of the enzyme in the film-casting sample significantly influences the integrity of such a product that lasts longer than films obtained either with fennel waste alone or with a mixture of fennel waste and phaseolin. These findings indicate the fennel-phaseolin film prepared in the presence of transglutaminase to be a promising candidate for a new environmentally friendly mulching bioplastic.


Assuntos
Materiais Biocompatíveis/química , Foeniculum/metabolismo , Agricultura/métodos , Biodegradação Ambiental , Carbono/química , Celulose/química , Meio Ambiente , Fabaceae/metabolismo , Manipulação de Alimentos , Resíduos Industriais , Microscopia Eletrônica de Varredura , Oligonucleotídeos/química , Pectinas/química , Proteínas de Plantas/química , Plásticos , Espectrofotometria Ultravioleta , Fatores de Tempo , Transglutaminases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA