Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Virol ; 166(10): 2869-2873, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34292373

RESUMO

Eriophyid mites are commonly found on the leaf surface of different plant species. In the present study, a novel virus associated with an eriophyid mite species was detected using high-throughput sequencing (HTS) of total RNA from fruit tree leaves, primarily growing under greenhouse conditions. The complete genome sequence was characterized using rapid amplification of cDNA ends followed by Sanger sequencing, revealing a genome of 8885 nucleotides in length. The single positive-stranded RNA genome was predicted to encode typical conserved domains of members of the genus Iflavirus in the family Iflaviridae. Phylogenetic analysis showed this virus to be closely related to the unclassified iflavirus tomato matilda associated virus (TMaV), with a maximum amino acid sequence identity of 59% in the RNA-dependent RNA polymerase domain. This low identity value justifies the recognition of the novel virus as a potential novel iflavirus. In addition to a lack of graft-transmissibility evidence, RT-PCR and HTS detection of this virus in the putative host plants were not consistent through different years and growing seasons, raising the possibility that rather than a plant virus, this was a virus infecting an organism associated with fruit tree leaves. Identification of Tetra pinnatifidae HTS-derived contigs in all fruit tree samples carrying the novel virus suggested this mite as the most likely host of the new virus (p-value < 1e-11), which is tentatively named "eriophyid mite-associated virus" (EMaV). This study highlights the importance of a careful biological study before assigning a new virus to a particular plant host when using metagenomics data.


Assuntos
Frutas/parasitologia , Ácaros/virologia , Vírus de RNA de Cadeia Positiva/classificação , Árvores/parasitologia , Sequência de Aminoácidos , Animais , Frutas/virologia , Genoma Viral/genética , Metagenômica , Filogenia , Extratos Vegetais , Folhas de Planta/parasitologia , Folhas de Planta/virologia , Vírus de RNA de Cadeia Positiva/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA , Árvores/virologia
2.
J Gen Virol ; 102(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34097597

RESUMO

Potato yellow vein virus (PYVV) was detected in potatoes grown in the Central highlands, north of Bogotá (~3000 m altitude), Colombia. At this altitude viral whitefly vectors are largely absent, but infection persists because of the use of uncertified tubers. Plants with typical PYVV-induced yellowing symptoms, as well as with atypical yellowing or non-symptomatic symptoms were sampled at three separate geographical locations. PYVV presence was assessed by RT-PCR, and several plants were subjected to high-throughput sequencing (HTS) of their small RNA (sRNA) populations. Complete or almost complete sequences of four PYVV isolates were thus reconstructed, all from symptomatic plants. Three viral isolates infected plants singly, while the fourth co-infected the plant together with a potyvirus. Relative proportions of sRNAs to each of the three crinivirus genomic RNAs were found to remain comparable among the four infections. Genomic regions were identified as hotspots of sRNA formation, or as regions that poorly induced sRNAs. Furthermore, PYVV titres in the mixed versus single infections remained comparable, indicating an absence of synergistic/antagonistic effects of the potyvirus on the accumulation of PYVV. Daughter plants raised in the greenhouse from tubers of the infected, field-sampled plants displayed mild PYVV infection symptoms that disappeared with time, demonstrating the occurrence of recovery and asymptomatic infection phenotypes in this pathosystem.


Assuntos
Crinivirus/genética , Crinivirus/isolamento & purificação , Genoma Viral , Doenças das Plantas/virologia , Solanum tuberosum/virologia , Colômbia , Folhas de Planta/virologia , Tubérculos/virologia , Potyvirus , RNA Viral/análise , RNA Viral/genética
3.
Mol Plant Pathol ; 22(7): 829-842, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33951264

RESUMO

Sugar beet cultivation is dependent on an effective control of beet necrotic yellow vein virus (BNYVV, family Benyviridae), which causes tremendous economic losses in sugar production. As the virus is transmitted by a soilborne protist, the use of resistant cultivars is currently the only way to control the disease. The Rz2 gene product belongs to a family of proteins conferring resistance towards diverse pathogens in plants. These proteins contain coiled-coil and leucine-rich repeat domains. After artificial inoculation of homozygous Rz2 resistant sugar beet lines, BNYVV and beet soilborne mosaic virus (BSBMV, family Benyviridae) were not detected. Analysis of the expression of Rz2 in naturally infected plants indicated constitutive expression in the root system. In a transient assay, coexpression of Rz2 and the individual BNYVV-encoded proteins revealed that only the combination of Rz2 and triple gene block protein 1 (TGB1) resulted in a hypersensitive reaction (HR)-like response. Furthermore, HR was also triggered by the TGB1 homologues from BSBMV as well as from the more distantly related beet soilborne virus (family Virgaviridae). This is the first report of an R gene providing resistance across different plant virus families.


Assuntos
Beta vulgaris/genética , Resistência à Doença/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Vírus de Plantas/fisiologia , Sequência de Aminoácidos , Beta vulgaris/imunologia , Beta vulgaris/virologia , Morte Celular , Expressão Gênica , Genes Dominantes , Variação Genética , Especificidade de Órgãos , Doenças das Plantas/virologia , Folhas de Planta/imunologia , Folhas de Planta/virologia , Proteínas de Plantas/genética , Domínios Proteicos , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/virologia , Virulência
4.
Lett Appl Microbiol ; 73(1): 64-72, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33825200

RESUMO

Potato viral disease has been a major problem in potato production worldwide including Russia. Here, we detected Potato Virus M (PVM), P (PVP), S (PVS), Y (PVY), and X (PVX) and Potato Leaf Roll Virus (PLRV) by RT-PCR on potato leaves and tubers from the Northwestern (NW), Volga (VF), and Far Eastern (FE) federal districts of Russia. Each sample was co-infected with up to five viruses. RT-PCR disclosed all six viruses in NW, three in VF, and five in FE. Phylogenetic analyses of PVM and PVS strains resolved all PVM isolates in Group O (ordinary) and all PVS isolates in Group O. Seven PVY strains were detected, and they included only recombinants. PVY recombinants were thus the dominant potato virus strains in Russia, although they widely varied among the regions. Our research provides insights into the geographical distribution and genetic variability of potato viruses in Russia.


Assuntos
Carlavirus/fisiologia , Luteoviridae/fisiologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Solanum tuberosum/virologia , Filogenia , Folhas de Planta/virologia , Vírus de Plantas/genética , Federação Russa
5.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33709906

RESUMO

Single aphids can simultaneously or sequentially acquire and transmit multiple potato virus Y (PVY) strains. Multiple PVY strains are often found in the same field and occasionally within the same plant, but little is known about how PVY strains interact in plants or in aphid stylets. Immuno-staining and confocal microscopy were used to examine the spatial and temporal dynamics of PVY strain mixtures (PVYO and PVYNTN or PVYO and PVYN) in epidermal leaf cells of 'Samsun NN' tobacco and 'Goldrush' potato. Virus binding and localization was also examined in aphid stylets following acquisition. Both strains systemically infected tobacco and co-localized in cells of all leaves examined; however, the relative amounts of each virus changed over time. Early in the tobacco infection, when mosaic symptoms were observed, PVYO dominated the infection although PVYNTN was detected in some cells. As the infection progressed and vein necrosis developed, PVYNTN was prevalent. Co-localization of PVYO and PVYN was also observed in epidermal cells of potato leaves with most cells infected with both viruses. Furthermore, two strains could be detected binding to the distal end of aphid stylets following virus acquisition from a plant infected with a strain mixture. These data are in contrast with the traditional belief of spatial separation of two closely related potyviruses and suggest apparent non-antagonistic interaction between PVY strains that could help explain the multitude of emerging recombinant PVY strains discovered in potato in recent years.


Assuntos
Afídeos/virologia , Nicotiana/virologia , Potyvirus/patogenicidade , Solanum tuberosum/virologia , Animais , Transmissão de Doença Infecciosa , Células Epidérmicas/virologia , Doenças das Plantas , Folhas de Planta/virologia , Potyvirus/classificação , Potyvirus/genética
6.
Arch Virol ; 166(6): 1615-1622, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33774730

RESUMO

We identified a novel plant rhabdovirus infecting native joá (Solanum aculeatissimum) plants in Brazil. Infected plants showed yellow blotches on the leaves, and typical enveloped bacilliform rhabdovirus particles associated with the nucleus were seen in thin sections by electron microscopy. The virus could be graft-transmitted to healthy joá and tomato plants but was not mechanically transmissible. RT-PCR using degenerate plant rhabdovirus L gene primers yielded an amplicon from extracted total RNA, the sequence of which was similar to those of alphanucleorhabdoviruses. Based on close sequence matches, especially with the type member potato yellow dwarf virus (PYDV), we adopted a degenerate-primer-walking strategy towards both genome ends. The complete genome of joá yellow blotch-associated virus (JYBaV) is comprised of 12,965 nucleotides, is less than 75% identical to that of its closest relative PYDV, and clusters with PYDV and other alphanucleorhabdoviruses in L protein phylogenetic trees, suggesting that it should be taxonomically classified in a new species in the genus Alphanucleorhabdovirus, family Rhabdoviridae. The genome organization of JYBaV is typical of the 'PYDV-like' subgroup of alphanucleorhabdoviruses, with seven genes (N-X-P-Y-M-G-L) separated by conserved intergenic regions and flanked by partly complementary 3' leader and 5' trailer regions.


Assuntos
Doenças das Plantas/virologia , Rhabdoviridae/isolamento & purificação , Solanum/virologia , Brasil , Genoma Viral , Filogenia , Folhas de Planta/virologia , Vírus de Plantas , Rhabdoviridae/genética
7.
Sci Rep ; 10(1): 22016, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328519

RESUMO

Viruses cause many severe plant diseases, resulting in immense losses of crop yield worldwide. Therefore, developing novel approaches to control plant viruses is crucial to meet the demands of a growing world population. Recently, RNA interference (RNAi) has been widely used to develop virus-resistant plants. Once genome replication and assembly of virion particles is completed inside the host plant, mature virions or sometimes naked viral genomes spread cell-to-cell through plasmodesmata by interacting with the virus-encoded movement protein (MP). We used the RNAi approach to suppress MP gene expression, which in turn prevented potato leafroll virus (PLRV) systemic infection in Solanum tuberosum cv. Khufri Ashoka. Potato plants agroinfiltrated with MP siRNA constructs exhibited no rolling symptoms upon PLRV infection, indicating that the silencing of MP gene expression is an efficient method for generating PLRV-resistant potato plants. Further, we identified novel ATPase motifs in MP that may be involved in DNA binding and translocation through plasmodesmata. We also showed that the ATPase activity of MP was stimulated in the presence of DNA/RNA. Overall, our findings provide a robust technology to generate PLRV-resistant potato plants, which can be extended to other species. Moreover, this approach also contributes to the study of genome translocation mechanisms of plant viruses.


Assuntos
Adenosina Trifosfatases/química , Luteoviridae/crescimento & desenvolvimento , Proteínas do Movimento Viral em Plantas/química , Proteínas do Movimento Viral em Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Replicação Viral/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Vetores Genéticos/metabolismo , Interações Hospedeiro-Patógeno , Luteoviridae/patogenicidade , Doenças das Plantas/virologia , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas/isolamento & purificação , Domínios Proteicos , Solanum tuberosum/genética , Solanum tuberosum/virologia
8.
Viruses ; 12(11)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143128

RESUMO

Geminivirus particles, consisting of a pair of twinned isometric structures, have one of the most distinctive capsids in the virological world. Until recently, there was little information as to how these structures are generated. To address this, we developed a system to produce capsid structures following the delivery of geminivirus coat protein and replicating circular single-stranded DNA (cssDNA) by the infiltration of gene constructs into plant leaves. The transencapsidation of cssDNA of the Begomovirus genus by coat protein of different geminivirus genera was shown to occur with full-length but not half-length molecules. Double capsid structures, distinct from geminate capsid structures, were also generated in this expression system. By increasing the length of the encapsidated cssDNA, triple geminate capsid structures, consisting of straight, bent and condensed forms were generated. The straight geminate triple structures generated were similar in morphology to those recorded for a potato-infecting virus from Peru. These finding demonstrate that the length of encapsidated DNA controls both the size and stability of geminivirus particles.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/química , DNA de Cadeia Simples/química , DNA Viral/química , Geminiviridae/fisiologia , Folhas de Planta/virologia , Empacotamento do Genoma Viral , Sequência de Aminoácidos , Geminiviridae/genética , Solanum tuberosum/virologia
9.
Virol J ; 17(1): 181, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208142

RESUMO

BACKGROUND: Virus disease is one of the main diseases in grapevine, and there has been no report on Plum bark necrosis and stem pitting-associated virus infecting grapevine in China. OBJECTIVE: The leaf samples of grapevine cultivar 'Cabernet Gernischt' were collected from Shandong province, which the leaves suffered from viral-like symptoms with spotting and crinkle. METHODS: Small RNA-seq combined with reverse transcription PCR (RT-PCR) were performed to detect the potential viruses in these field samples. Phylogenetic tree was constructed using the neighbor joining method in MEGA 5.1 CONCLUSIONS: This is the first report of PBNSPaV infecting grapevine in China, contributing to a better understanding of the epidemiology and host range distribution of this pathogen.


Assuntos
Closteroviridae/genética , Especificidade de Hospedeiro , Doenças das Plantas/virologia , Folhas de Planta/virologia , Prunus domestica/virologia , Vitis/virologia , China , Closteroviridae/classificação , Closteroviridae/patogenicidade , Genoma Viral , Filogenia , Casca de Planta/virologia , RNA Viral/genética
10.
Virol J ; 17(1): 149, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032637

RESUMO

BACKGROUND: In plants, the RNA silencing system functions as an antiviral defense mechanism following its induction with virus-derived double-stranded RNAs. This occurs through the action of RNA silencing components, including Dicer-like (DCL) nucleases, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDR). Plants encode multiple AGOs, DCLs, and RDRs. The functions of these components have been mainly examined in Arabidopsis thaliana and Nicotiana benthamiana. In this study, we investigated the roles of DCL2, DCL4, AGO2, AGO3 and RDR6 in tomato responses to viral infection. For this purpose, we used transgenic tomato plants (Solanum lycopersicum cv. Moneymaker), in which the expression of these genes were suppressed by double-stranded RNA-mediated RNA silencing. METHODS: We previously created multiple DCL (i.e., DCL2 and DCL4) (hpDCL2.4) and RDR6 (hpRDR6) knockdown transgenic tomato plants and here additionally did multiple AGO (i.e., AGO2 and AGO3) knockdown plants (hpAGO2.3), in which double-stranded RNAs cognate to these genes were expressed to induce RNA silencing to them. Potato virus X (PVX) and Y (PVY) were inoculated onto these transgenic tomato plants, and the reactions of these plants to the viruses were investigated. In addition to observation of symptoms, viral coat protein and genomic RNA were detected by western and northern blotting and reverse transcription-polymerase chain reaction (RT-PCR). Host mRNA levels were investigated by quantitative RT-PCR. RESULTS: Following inoculation with PVX, hpDCL2.4 plants developed a more severe systemic mosaic with leaf curling compared with the other inoculated plants. Systemic necrosis was also observed in hpAGO2.3 plants. Despite the difference in the severity of symptoms, the accumulation of PVX coat protein (CP) and genomic RNA in the uninoculated upper leaves was not obviously different among hpDCL2.4, hpRDR6, and hpAGO2.3 plants and the empty vector-transformed plants. Moneymaker tomato plants were asymptomatic after infection with PVY. However, hpDCL2.4 plants inoculated with PVY developed symptoms, including leaf curling. Consistently, PVY CP was detected in the uninoculated symptomatic upper leaves of hpDCL2.4 plants through western blotting. Of note, PVY CP was rarely detected in other asymptomatic transgenic or wild-type plants. However, PVY was detected in the uninoculated upper leaves of all the inoculated plants using reverse transcription-polymerase chain reactions. These findings indicated that PVY systemically infected asymptomatic Moneymaker tomato plants at a low level (i.e., no detection of CP via western blotting). CONCLUSION: Our results indicate that the tomato cultivar Moneymaker is susceptible to PVX and shows mild mosaic symptoms, whereas it is tolerant and asymptomatic to systemic PVY infection with a low virus titer. In contrast, in hpDCL2.4 plants, PVX-induced symptoms became more severe and PVY infection caused symptoms. These results indicate that DCL2, DCL4, or both contribute to tolerance to infection with PVX and PVY. PVY CP and genomic RNA accumulated to a greater extent in DCL2.4-knockdown plants. Hence, the contribution of these DCLs to tolerance to infection with PVY is at least partly attributed to their roles in anti-viral RNA silencing, which controls the multiplication of PVY in tomato plants. The necrotic symptoms observed in the PVX-infected hpAGO2.3 plants suggest that AGO2, AGO3 or both are also distinctly involved in tolerance to infection with PVX.


Assuntos
Doenças das Plantas/virologia , Potexvirus/genética , Potyvirus/genética , Interferência de RNA , RNA Viral/genética , Solanum lycopersicum/virologia , Proteínas Argonautas/genética , Proteínas do Capsídeo/genética , Folhas de Planta/virologia , RNA Polimerase Dependente de RNA/genética , Ribonuclease III/genética , Solanum tuberosum/virologia
11.
Sci Rep ; 10(1): 13555, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782359

RESUMO

Lithospermum erythrorhizon is a medicinal plant that produces shikonin, a red lipophilic naphthoquinone derivative that accumulates exclusively in roots. The biosynthetic steps required to complete the naphthalene ring of shikonin and its mechanism of secretion remain unclear. Multiple omics studies identified several candidate genes involved in shikonin production. The functions of these genes can be evaluated using virus-induced gene silencing (VIGS) systems, which have been shown advantageous in introducing iRNA genes into non-model plants. This study describes the development of a VIGS system using an apple latent spherical virus (ALSV) vector and a target gene, phytoene desaturase (LePDS1). Virus particles packaged in Nicotiana benthamiana were inoculated into L. erythrorhizon seedlings, yielding new leaves with albino phenotype but without disease symptoms. The levels of LePDS1 mRNAs were significantly lower in the albino plants than in mock control or escape plants. Virus-derived mRNA was detected in infected plants but not in escape and mock plants. Quantitative PCR and deep sequencing analysis indicated that transcription of another hypothetical PDS gene (LePDS2) also decreased in the defective leaves. Virus infection, however, had no effect on shikonin production. These results suggest that virus-based genetic transformation and the VIGS system silence target genes in soil-grown L. erythrorhizon.


Assuntos
Regulação da Expressão Gênica de Plantas , Inativação Gênica , Lithospermum/genética , Doenças das Plantas/genética , Folhas de Planta/genética , Proteínas de Plantas/antagonistas & inibidores , Plantas Medicinais/genética , Secoviridae/genética , Lithospermum/virologia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Proteínas de Plantas/genética , Plantas Medicinais/virologia , Secoviridae/patogenicidade
12.
Virology ; 548: 192-199, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32758716

RESUMO

Plum pox virus (PPV) is a worldwide threat to stone fruit production. Its woody perennial hosts provide a dynamic environment for virus evolution over multiple growing seasons. To investigate the impact seasonal host development plays in PPV population structure, next generation sequencing of ribosome associated viral genomes, termed translatome, was used to assess PPV variants derived from phloem or whole leaf tissues over a range of plum leaf and bud developmental stages. Results show that translatome PPV variants occur at proportionately higher levels in bud and newly developing leaf tissues that have low infection levels while more mature tissues with high infection levels display proportionately lower numbers of viral variants. Additional variant analysis identified distinct groups based on population frequency as well as sets of phloem and whole tissue specific variants. Combined, these results indicate PPV population dynamics are impacted by the tissue type and developmental stage of their host.


Assuntos
Doenças das Plantas/virologia , Vírus Eruptivo da Ameixa/fisiologia , Prunus domestica/virologia , Frutas/virologia , Genoma Viral , Floema/virologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/virologia , Vírus Eruptivo da Ameixa/genética , Vírus Eruptivo da Ameixa/crescimento & desenvolvimento , Prunus domestica/crescimento & desenvolvimento
13.
Viruses ; 12(8)2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823665

RESUMO

Soybean mosaic virus (SMV), which belongs to the Potyviridae, causes significant reductions in soybean yield and seed quality. In this study, both tag-free and reporter gene green fluorescent protein (GFP)-containing infectious clones for the SMV N1 strain were constructed by Gibson assembly and with the yeast homologous recombination system, respectively. Both infectious clones are suitable for agroinfiltration on the model host N. benthamiana and show strong infectivity for the natural host soybean and several other legume species. Both infectious clones were seed transmitted and caused typical virus symptoms on seeds and progeny plants. We used the SMV-GFP infectious clone to further investigate the role of key amino acids in the silencing suppressor helper component-proteinase (Hc-Pro). Among twelve amino acid substitution mutants, the co-expression of mutant 2-with an Asparagine→Leucine substitution at position 182 of the FRNK (Phe-Arg-Asn-Lys) motif-attenuated viral symptoms and alleviated the host growth retardation caused by SMV. Moreover, the Hc-Prom2 mutant showed stronger oligomerization than wild-type Hc-Pro. Taken together, the SMV infectious clones will be useful for studies of host-SMV interactions and functional gene characterization in soybeans and related legume species, especially in terms of seed transmission properties. Furthermore, the SMV-GFP infectious clone will also facilitate functional studies of both virus and host genes in an N. benthamiana transient expression system.


Assuntos
Aminoácidos/genética , Cisteína Endopeptidases/genética , Inativação Gênica , Potyvirus/genética , Proteínas Virais/genética , Substituição de Aminoácidos , DNA Complementar/genética , Proteínas de Fluorescência Verde/genética , Recombinação Homóloga , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Folhas de Planta/virologia , Glycine max/virologia , Nicotiana/genética
14.
BMC Plant Biol ; 20(1): 355, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727361

RESUMO

BACKGROUND: Infection of plants by viruses interferes with expression and subcellular localization of plant proteins. Potyviruses comprise the largest and most economically damaging group of plant-infecting RNA viruses. In virus-infected cells, at least two potyviral proteins localize to nucleus but reasons remain partly unknown. RESULTS: In this study, we examined changes in the nuclear proteome of leaf cells from a diploid potato line (Solanum tuberosum L.) after infection with potato virus A (PVA; genus Potyvirus; Potyviridae) and compared the data with that acquired for healthy leaves. Gel-free liquid chromatography-coupled to tandem mass spectrometry was used to identify 807 nuclear proteins in the potato line v2-108; of these proteins, 370 were detected in at least two samples of healthy leaves. A total of 313 proteins were common in at least two samples of healthy and PVA-infected leaves; of these proteins, 8 showed differential accumulation. Sixteen proteins were detected exclusively in the samples from PVA-infected leaves, whereas other 16 proteins were unique to healthy leaves. The protein Dnajc14 was only detected in healthy leaves, whereas different ribosomal proteins, ribosome-biogenesis proteins, and RNA splicing-related proteins were over-represented in the nuclei of PVA-infected leaves. Two virus-encoded proteins were identified in the samples of PVA-infected leaves. CONCLUSIONS: Our results show that PVA infection alters especially ribosomes and splicing-related proteins in the nucleus of potato leaves. The data increase our understanding of potyvirus infection and the role of nucleus in infection. To our knowledge, this is the first study of the nuclear proteome of potato leaves and one of the few studies of changes occurring in nuclear proteomes in response to plant virus infection.


Assuntos
Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Potyvirus/patogenicidade , Solanum tuberosum/virologia , Núcleo Celular/metabolismo , Núcleo Celular/virologia , GTP Fosfo-Hidrolases/metabolismo , Interações Hospedeiro-Patógeno , Proteínas Nucleares/metabolismo , Doenças das Plantas/virologia , Ploidias , Proteoma/metabolismo , Solanum tuberosum/metabolismo , Proteínas Virais/metabolismo
15.
PLoS Pathog ; 16(6): e1008608, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32574227

RESUMO

Transmission is a crucial part of a viral life cycle and transmission mode can have an important impact on virus biology. It was demonstrated that transmission mode can influence the virulence and evolution of a virus; however, few empirical data are available to describe the direct underlying changes in virus population structure dynamics within the host. Potato virus Y (PVY) is an RNA virus and one of the most damaging pathogens of potato. It comprises several genetically variable strains that are transmitted between plants via different transmission modes. To investigate how transmission modes affect the within-plant viral population structure, we have used a deep sequencing approach to examine the changes in the genetic structure of populations (in leaves and tubers) of three PVY strains after successive passages by horizontal (aphid and mechanical) and vertical (via tubers) transmission modes. Nucleotide diversities of viral populations were significantly influenced by transmission modes; lineages transmitted by aphids were the least diverse, whereas lineages transmitted by tubers were the most diverse. Differences in nucleotide diversities of viral populations between leaves and tubers were transmission mode-dependent, with higher diversities in tubers than in leaves for aphid and mechanically transmitted lineages. Furthermore, aphid and tuber transmissions were shown to impose stronger genetic bottlenecks than mechanical transmission. To better understand the structure of virus populations within the host, transmission mode, movement of the virus within the host, and the number of replication cycles after transmission event need to be considered. Collectively, our results suggest a significant impact of virus transmission modes on the within-plant diversity of virus populations and provide quantitative fundamental data for understanding how transmission can shape virus diversity in the natural ecosystems, where different transmission modes are expected to affect virus population structure and consequently its evolution.


Assuntos
Modelos Biológicos , Doenças das Plantas/virologia , Folhas de Planta , Tubérculos , Potyvirus , Solanum tuberosum , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Tubérculos/metabolismo , Tubérculos/virologia , Potyvirus/metabolismo , Potyvirus/patogenicidade , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia
16.
Virus Res ; 284: 197979, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32335149

RESUMO

Tobacco streak virus incidence in the cotton field, cv.CO14 at Department of Cotton, Tamil Nadu Agricultural University (TNAU), Coimbatore, India was nearly 36.50 %. Cotton plants infected with TSV exhibits different types of symptoms, including necrotic spots, lesions, mosaic, purplish necrotic rings, square drying, veinal necrosis and drying of terminal shoots. The highly prevalent thrips species in this cotton ecosystem was established as Thrips palmi (60.00 %) by morphological (ESEM) and molecular methods (RT-PCR using mtCOI primers). The density of the alternate weed host, Parthenium hysterophorus, was 15.05 plants per m2 in these fields. Association of Thrips palmi with Parthenium was confirmed, when observed under environmental scanning electron microscope (ESEM), Parthenium pollen grains (i.e., average size @ 15000X =12.94 µm) were found adhering to its body. Molecular studies through RT-PCR confirmed the presence of TSV in the leaves and pollen grains of symptomatic and symptom-free Parthenium plants collected from the cotton field (cv. CO14). Therefore, the combined role of Thrips palmi and the Parthenium pollen grains in the transmission of TSV was examined; acquiring of TSV and its presence in the body of Thrips palmi instars and adults after 72 h of AAP was convincingly demonstrated using RT-PCR, NASH and qPCR. However virus acquired thrips could not transmit the virus. Pollen from TSV infected Parthenium plants when dusted on cotton (ANKUR 2110) seedlings along with virus acquired or non-acquired thrips led to symptom development 22 days after sowing. From the study it is evident that thrips only facilitate the movement of TSV borne pollen grains, and thereby contributing to active spread of the virus.


Assuntos
Asteraceae/virologia , Ecossistema , Gossypium/virologia , Ilarvirus/fisiologia , Folhas de Planta/virologia , Pólen/virologia , Tisanópteros/virologia , Animais , Ilarvirus/genética , Ilarvirus/isolamento & purificação , Viroses/transmissão
17.
J Sci Food Agric ; 100(8): 3418-3427, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32166770

RESUMO

BACKGROUND: Plant viral infections induce changes in metabolic components in the host plant, with potential effects on compositional, organoleptic and storability features of agricultural products. Identification of modulated metabolites may provide clues concerning pathways implementing responses in plant-pathogen interactions. A time course study of metabolic fingerprinting of onion yellow dwarf virus (OYDV)-infected versus healthy 'Rossa di Tropea' onion bulbs was performed using proton high-resolution magic angle spinning nuclear magnetic resonance (1 H HR-MAS NMR) and ultra-performance liquid chromatography (UPLC), providing an overview of the metabolic state of the bulb in response to OYDV infection during storage. RESULTS: Metabolites accumulated/depleted upon infection were identified, belonging to flavonoid, saccharide, amino acid and organic acid classes. A decrease in quercetin glucosides content and antioxidant activity was observed in infected bulbs; some amino acids (Arg, Asn, Phe, Val) accumulated, while others were depleted (Leu); for some metabolites, a bimodal time-course was observed during storage (Glc, Lys). Virus interference on metabolic pathways, and the effects of the metabolic shift on edible product storability, organoleptic and nutritional quality were discussed. CONCLUSIONS: OYDV infection induces a metabolic shift in 'Rossa di Tropea' onion during bulb storage, involving several pathways and affecting storability and organoleptic and nutritional quality of bulbs at marketable stage. © 2020 Society of Chemical Industry.


Assuntos
Cebolas/metabolismo , Cebolas/virologia , Doenças das Plantas/virologia , Potyvirus/fisiologia , Antioxidantes/química , Antioxidantes/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Armazenamento de Alimentos , Espectroscopia de Ressonância Magnética , Valor Nutritivo , Cebolas/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/virologia
18.
J Gen Virol ; 101(5): 565-570, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32149597

RESUMO

Pepper mild mottle virus (PMMoV) causes serious economic losses in pepper production in China. In a survey for viral diseases on pepper, two PMMoV isolates (named PMMoV-ZJ1 and PMMoV-ZJ2) were identified with different symptoms in Zhejiang province. Sequence alignment analysis suggested there were only four amino acid differences between the isolates: Val262Gly, Ile629Met and Ala1164Thr in the replicase, and Asp20Asn in the coat protein. Infectious cDNA clones of both isolates were constructed and shown to cause distinctive symptoms. Chlorosis symptoms appeared only on PMMoV-ZJ2-infected plants and the Asp20Asn substitution in the CP was shown to be responsible. Confocal assays revealed that the subcellular localization pattern of the two CPs was different, CP20Asp was mainly located at the cell periphery, whereas most CP20Asn located in the chloroplast. Thus, a single amino acid in the CP determined the chlorosis symptom, accompanied by an altered subcellular localization.


Assuntos
Aminoácidos/genética , Capsicum/virologia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Tobamovirus/genética , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , China , Cloroplastos/virologia , DNA Complementar/genética , Genoma Viral/genética , Alinhamento de Sequência , Virulência/genética
19.
Virus Res ; 282: 197944, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32222379

RESUMO

Potato yellowing virus (PYV, original code SB-22), an unassigned member of the Genus Ilarvirus Family Bromoviridae, has been reported infecting potatoes in Peru, Ecuador and Chile. It is associated with symptomless infections, however yellowing of young leaves has been observed in some potato cultivars. Thirteen potato and yacon isolates were selected after routine screening of CIP-germplasm and twenty-four were identified from 994 potato plants collected in Peru whereas one was intercepted from yacon in the UK. These isolates were identified using high throughput sequencing, ELISA, host range and RT-PCR. Here we report the sequence characterization of the complete genomes of nine PYV isolates found infecting Solanum tuberosum, four complete genome isolates infecting Smallanthus sonchifolius (yacon), and in addition 15 complete RNA3 sequences from potato and partial sequences of RNA1, 2 and 3 of isolates infecting potato and yacon from Ecuador, Peru and Bolivia. Results of phylogenetic and recombination analysis showed RNA3 to be the most variable among the virus isolates and suggest potato infecting isolates have resulted through acquisition of a movement protein variant through recombination with an unknown but related ilarvirus, whereas one yacon isolate from Bolivia also had resulted from a recombination event with another related viruses in the same region. Yacon isolates could be distinguished from potato isolates by their inability to infect Physalis floridana, and potato isolates from Ecuador and Peru could be distinguished by their symptomatology in this host as well as phylogenetically. The non-recombinant yacon isolates were closely related to a recently described isolate from Solanum muricatum (pepino dulce), and all isolates were related to Fragaria chiloensis latent virus (FCiLV) reported in strawberry from Chile, and probably should be considered the same species. Although PYV is not serologically related to Alfalfa mosaic virus (AMV), they are both transmitted by aphids and share several other characteristics that support the previous suggestion to reclassify AMV as a member in the genus Ilarvirus.


Assuntos
Afídeos/virologia , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Hospedeiro , Ilarvirus/genética , Doenças das Plantas/virologia , Animais , Ilarvirus/classificação , Ilarvirus/isolamento & purificação , Filogenia , Folhas de Planta/virologia , Recombinação Genética , Solanum tuberosum/virologia , América do Sul , Reino Unido
20.
Theor Appl Genet ; 133(3): 967-980, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31950199

RESUMO

KEY MESSAGE: Novel major gene resistance against Potato virus Y in diploid populations of Solanum tuberosum Groups Phureja and Tuberosum was biologically and genetically characterised. Named Ry(o)phu, it mapped to chromosome 9. A new source of genetic resistance derived from Solanum tuberosum Group Phureja against Potato virus Y (PVY) was identified and genetically characterised in three diploid biparental potato populations. Segregation data for two populations (05H1 and 08H1) suggested the presence of a single dominant gene for resistance to PVY which, following DaRT analysis of the 08H1 cross, was mapped to chromosome 9. More detailed genetic analysis of resistance utilised a well-characterised SNP-linkage map for the 06H1 population, together with newly generated marker data. In these plants, which have both S. tuberosum Group Phureja and S. tuberosum Group Tuberosum in their pedigree, the resistance was shown to map to chromosome 9 at a locus not previously associated with PVY resistance, although there is evidence for at least one other genetic factor controlling PVY infection. The resistance factor location on chromosome 9 (named as Ry(o)phu) suggests a potential role of NB-LRR genes in this resistance. Phenotypic analysis using a GUS-tagged virus revealed that a small amount of PVY replication occurred in occasional groups of epidermal cells in inoculated leaves of resistant plants, without inducing any visible hypersensitive response. However, the virus did not enter the vascular system and systemic spread was completely prevented.


Assuntos
Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Potyvirus/patogenicidade , Solanum tuberosum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Genes de Plantas , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Ploidias , Polimorfismo de Nucleotídeo Único , Potyvirus/genética , Potyvirus/metabolismo , Locos de Características Quantitativas , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA