Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503229

RESUMO

Almost all iron ore tailings (IOTs) required activation prior to use as SCMs, which limited their application in building materials. This study investigated HMPT-IOTs and discovered that they possess latent hydraulic and pozzolanic properties. In order to better utilize as SCM, mechanical properties, hydration reactions, hydration products, microstructure, and pores were comprehensively studied through mechanical tests, hydration heat tests, XRD, SEM, TG, and MIP. The results show that when HMPT-IOTs replace cement at 10 wt%, 20 wt% and 30 wt%, the compressive strength at 28 days is 41.9 MPa, 47.9 MPa and 37.5 MPa, respectively. When the substitution amount reaches 30 wt%, it will reduce the cumulative heat of hydration and promote early hydration reactions. The main hydration products are ettringite and Ca(OH)2. As the nucleation site of C-S-H, hydration products are interconnected, making the microstructure denser. At this substitution level, Ca(OH)2 consumption was about 2% at 28 days of age. Simultaneously, the total pore volume was only 0.01 mL/g greater than that of the control group, and the number of micropores and transition pores decreased by approximately 3%.


Assuntos
Materiais de Construção , Hidrogênio , Força Compressiva , Minerais , Ferro
2.
Environ Sci Pollut Res Int ; 30(43): 97765-97785, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37597144

RESUMO

This study aims to present a multi-perspective evaluation of green concretes produced using supplementary cementitious material and recycled concrete aggregates and to balance the reduction in compressive strength values caused by using recycled concrete aggregates with silica fume. For these purposes, statistical analyses were performed on the response surface method using the data of 9 reference and 27 green concrete series mixtures, and mathematical models were developed to predict the compressive strength with high accuracy. Then, energy consumption, global warming potential, and waste generation were taken into account from the environmental impact categories, and the environmental impact scores obtained were compared in detail to examine the impact of the use of silica fume and recycled concrete aggregates on sustainable development. Significant reductions in energy consumption and global warming potential values with the use of silica fume and waste generation values with the use of recycled concrete aggregates were achieved, and it was seen that supplementary cementitious material and recycled concrete aggregates are of great importance in terms of sustainable development. It was seen that these waste materials could be utilized, especially in regions with high earthquake risk, and that these waste materials are of great importance.


Assuntos
Terremotos , Força Compressiva , Gases , Aquecimento Global , Dióxido de Silício
3.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838679

RESUMO

Natural polysaccharides with high viscosity, good thermal stability, and biocompatibility can improve the mechanical properties of inorganic silica aerogels and enhance their application safety. However, the effects of the preparation methods of polysaccharide-silica aerogels on their microstructure and application properties have not been systematically studied. To better investigate the effect of the microstructure on the properties of aerogel materials, two aerogels with different structures were prepared using Konjac glucomannan (KGM) and tetraethoxysilane (TEOS) via physical blending (KTB) and co-precursor methods (KTC), respectively. The structural differences between the KTB and KTC aerogels were characterized, and the thermal insulation and fire-retardant properties were further investigated. The compressive strength of the KTC aerogels with a cross-linked interpenetrating network (IPN) structure was three times higher than that of the KTB aerogels, while their thermal conductivity was 1/3 of that of the KTB aerogels. The maximum limiting oxygen index (LOI) of the KTC aerogels was 1.4 times, the low peak heat release rate (PHRR) was reduced by 61.45%, and the lowest total heat release (THR) was reduced by 41.35% compared with the KTB aerogels. The results showed that the KTC aerogels with the IPN have better mechanical properties, thermal insulation, and fire-retardant properties than the simple physically blending KTB aerogels. This may be due to the stronger hydrogen-bonding interactions between KGM and silica molecules in the KTC aerogels under the unique forcing effect of the IPN, thus enhancing their structural stability and achieving complementary properties. This work will provide new ideas for the microstructure design of aerogels and the research of new thermal insulation and fire-retardant aerogels.


Assuntos
Retardadores de Chama , Mananas , Força Compressiva , Dióxido de Silício
4.
Environ Sci Pollut Res Int ; 30(17): 49905-49916, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36787067

RESUMO

Foam concrete possesses low density and excellent thermal insulation properties and has been widely used in construction industry. Considering the recycling and reusing of coal gasification slag (CGS), a solid waste product in the coal chemical industry, CGS was used as the supplementary cementations material to prepare foam concrete (CGS-FC) in this work. The influence of the CGS content and water-binder ratio on the pore structure, mechanical and thermal properties was investigated. The results show that the CGS content and water-binder ratio directly impact the fluidity of the slurry, which affects the internal pore structure of the specimens after molding. And a CGS-FC with a compressive strength of 6.89 MPa, thermal conductivity of 0.24 W/m K, and a bulk density of 867 kg/m3 was successfully produced when the CGS content was 30% and water-binder ratio was 0.5. In particular, the utilization of CGS to prepare foam concrete product has recycling efficiency and environmental benefit.


Assuntos
Cinza de Carvão , Carvão Mineral , Resíduos Sólidos , Força Compressiva , Água
5.
J Biomed Mater Res B Appl Biomater ; 111(2): 382-391, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053824

RESUMO

Calcium sulfate, an injectable and biodegradable bone-void filler, is widely used in orthopedic surgery. Based on clinical experience, bone-defect substitutes can also serve as vehicles for the delivery of drugs, for example, antibiotics, to prevent or to treat infections such as osteomyelitis. However, antibiotic additions change the characteristics of calcium sulfate cement. Moreover, high-dose antibiotics may also be toxic to bony tissues. Accordingly, cefazolin at varying weight ratios was added to calcium sulfate samples and characterized in vitro. The results revealed that cefazolin changed the hydration reaction and prolonged the initial setting times of calcium sulfate bone cement. For the crystalline structure identification, X-ray diffractometer revealed that cefazolin additive resulted in the decrease of peak intensity corresponding to calcium sulfate dihydrate which implying incomplete phase conversion of calcium sulfate hemihydrate. In addition, scanning electron microscope inspection exhibited cefazolin changed the morphology and size of the crystals greatly. A relatively higher amount of cefazolin additive caused a faster degradation and a lower compressive strength of calcium sulfate compared with those of uploaded samples. Furthermore, the extract of cefazolin-impregnated calcium sulfate impaired cell viability, and caused the death of osteoblast-like cells. The results of this study revealed that the cefazolin additives prolonged setting time, impaired mechanical strength, accelerated degradation, and caused cytotoxicity of the calcium sulfate bone-void filler. The aforementioned concerns should be considered during intra-operative applications.


Assuntos
Substitutos Ósseos , Sulfato de Cálcio , Sulfato de Cálcio/farmacologia , Sulfato de Cálcio/química , Cefazolina/farmacologia , Substitutos Ósseos/farmacologia , Substitutos Ósseos/química , Força Compressiva , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Excipientes
6.
Environ Sci Pollut Res Int ; 30(2): 5267-5279, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35982388

RESUMO

Geopolymer bricks from lead glass sludge (LGS) and alumina flakes filling (AFF) waste were synthesized in the present work. AFF waste was chemically treated to prepare sodium aluminate (NaAlO2) powder. Silicate source (untreated LGS and thermally treated one at 600 °C (LGS600)) and sodium oxide (Na2O) concentration (as NaAlO2) were the compositional parameters, which affected the physical and mechanical properties (compressive strength, water absorption, and bulk density) of the prepared bricks. High organic matter content inside LGS caused a retardation effect on the geopolymerization process, resulting in the formation of hardened bricks with modest 90-day compressive strengths (2.13 to 4.4 MPa). Using LGS600 enhanced the mechanical properties of the fabricated bricks, achieving a maximum 90-day compressive strength of 22.35 MPa at 3 wt.% Na2O. Sodium aluminosilicate hydrate was the main activation product inside all samples, as confirmed by X-ray diffraction and thermal analyses. Acetic acid leaching test also proved that all LGS600-NaAlO2 mixtures represented Pb concentrations in leachates lower than the permissible level of characteristic leaching procedures, indicating the mitigation of environmental problems caused by these wastes.


Assuntos
Resíduos Industriais , Esgotos , Resíduos Industriais/análise , Chumbo/análise , Óxido de Alumínio , Vidro , Hidróxido de Sódio/química , Força Compressiva
7.
Environ Sci Pollut Res Int ; 29(48): 72493-72514, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35606591

RESUMO

The current study aims to explore the impact of palm oil fuel ash (POFA) heat treatment on the strength activity, porosity, and water absorption of cement mortar. The cement mortar mixtures were typically comprising cement or cement in combination with ultrafine treated POFA (u-TPOFA) which is the final form of the treated POFA, sand, water, and a superplasticizer. Before utilizing the u-TPOFA in mortar mixtures, the treatment processes of POFA were undertaken via five steps (drying at 105 ℃, sieving, grinding, heat treatment, re-grinding) to form u-TPOFA. The heat treatment was performed at three different heating temperatures (i.e., 550 ℃, 600 ℃, and 650 ℃). The ratio on mass/mass basis of the blended ordinary Portland cement (OPC) with u-TPOFA was OPC:u-TPOFA of 70%:30%. A total of four mixtures were prepared, consisting of a plain control mixture (designated as PCM) and three mixtures containing 30% of u-TPOFA treated at three different temperatures designated as M1 "550 ℃," M2 "600 ℃," and M3 "650 ℃". The results show that the optimum mixture was M2 which achieved the highest strength activity index (SAI) of 101.84% and 107% among all mixtures at 7 days and 28 days, respectively. Meanwhile, the porosity (P%) and water absorption (Abs%) of M2 exhibited the lowest values of 9.3% and 4.5%, respectively, among all the mixtures at 28 days. This superior performance of u-TPOFA treated at 600 ℃ represented in the M2 mixture was due to the formation of more binding phases consisting of calcium silicate hydrate (C-S-H) type gel originated from a higher pozzolanic reaction and the filler effects caused by the fine u-TPOFA microparticles. These observations were further confirmed by the improved performance of the M2 mix among all the designed mixes which also exhibited better results in terms of bulk density (BD), ultrasonic pulse velocity (UPV), X-ray diffraction (XRD) as well as thermogravimetry (TGA) and field emission scanning electron microscopy (FESEM-EDX) analyses.


Assuntos
Materiais de Construção , Óleo de Palmeira , Força Compressiva , Materiais de Construção/análise , Temperatura Alta , Porosidade , Água/análise
8.
Waste Manag ; 146: 53-65, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35567841

RESUMO

This study aims to examine the mechanical, environmental, and economic properties of recycled aggregate concretes produced using emerged recycled concrete aggregates from the buildings that were demolished in a controlled way after the 24 January 2020, Elazig-Sivrice earthquake. For this purpose, 24 series of recycled aggregate concretes were produced, water-to-cement ratios of 0.30-0.35-0.40-0.45-0.50, and cement dosages were chosen as 320-370-420 kg/m3. 100% recycled concrete aggregate was used in the prepared concrete mixtures. Analyses were made on the response surface method using the mixture ratios and test results of 24 series. The effectiveness of the developed models was examined on 6 Control recycled aggregate concrete. Then, Energy Consumption, Global Warming Potential, Waste Generation, and Abiotic Depletion were considered to assess the environmental impacts of recycled aggregate concretes. In order to make environmental and economic comparisons of recycled aggregate concretes and natural aggregate concretes according to these impact categories, 4 different scenarios were developed. Then, a detailed feasibility analysis was made for 4 different scenarios, and the economic results of recycled aggregate concretes and natural aggregate concretes were evaluated. Regarding the arisen millions of tons of waste materials and newly constructed buildings after the earthquake, recycling waste materials is considered crucial. Therefore, a holistic assessment was taken with this study, and the usability of recycled concrete aggregates was examined in detail.


Assuntos
Terremotos , Gerenciamento de Resíduos , Força Compressiva , Materiais de Construção , Resíduos Industriais , Gerenciamento de Resíduos/métodos
9.
Chemosphere ; 291(Pt 1): 132710, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34718028

RESUMO

Recycling mining wastes to produce cemented tailings backfill (CTB) is the optimal approach to eliminate the environmental pollution caused by their accumulation. However, its low strength limits its application. Using calcium formate (CF) as an accelerator for improving its mechanical properties is of great significance to promote sustainable development. The effects of CF dosage and curing time on dilatancy deformation, compressive strength and microstructure of CTB were investigated through mechanical compression, scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) tests. The strengthening and deterioration mechanisms of CF dosage on CTB were revealed, and its engineering practicability was systematically evaluated. The results show that the variation of volumetric strain in the dilatancy deformation stage firstly increase and then decrease with the increases of CF dosage and curing time. The relationship between CF dosage and compressive strength can be characterized by quadratic polynomial, and the optimal CF dosage characterizing the superior mechanical property of CTB is between 1.60 and 1.84. The supplement of CF reduces the size and distribution of microcracks and micropores, thereby optimizing the microstructure of CTB. Nevertheless, the excessive dosages of CF deteriorate the microstructure of CTB and produce serious defects, which cannot be effectively filled by hydration products, thus weakening the strength property of CTB. This study provides an effective accelerator for improving the mechanical properties of CTB, which is of great significance to promote the recycling of tailings.


Assuntos
Materiais de Construção , Mineração , Força Compressiva , Formiatos , Reciclagem
10.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639165

RESUMO

In this study, polyurethane (PU) composite foams were modified with 2 wt.% of vermiculite fillers, which were themselves modified with casein, chitosan, and potato protein. The impact of the fillers on selected properties of the obtained composites, including their rheological (foaming behavior, dynamic viscosity), thermal (temperature of thermal decomposition stages), flame-retardant (e.g., limiting oxygen index, ignition time, heat peak release), and mechanical properties (toughness, compressive strength (parallel and perpendicular), flexural strength) were investigated. Among all the modified polyurethane composites, the greatest improvement was noticed in the PU foams filled with vermiculite modified with casein and chitosan. For example, after the addition of modified vermiculite fillers, the foams' compressive strength was enhanced by ~6-18%, their flexural strength by ~2-10%, and their toughness by ~1-5%. Most importantly, the polyurethane composites filled with vermiculite filler and modified vermiculite fillers exhibited improved flame resistance characteristics (the value of total smoke release was reduced by ~34%, the value of peak heat release was reduced by ~25%).


Assuntos
Silicatos de Alumínio/química , Caseínas/química , Quitosana/química , Retardadores de Chama/análise , Proteínas de Plantas/química , Poliuretanos/química , Solanum tuberosum/química , Força Compressiva , Viscosidade
11.
Int J Biol Macromol ; 190: 382-389, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34499952

RESUMO

As a novel material that can be used at subzero temperatures, anti-freezing hydrogels have been attracting extensive attention. Inspired by the freeze-tolerance phenomenon in seawater, which is achieved by mixing salts into water, an ionic compound (CaCl2) was used to gelatinize starch to form anti-freezing hydrogels. Native potato starch (NPS) anti-freezing hydrogels were formed at -10 °C, -18 °C, -30 °C, and - 50 °C with 6-9 kPa tensile strength and 100-230% elongation at break. The compressive stress of anti-freezing hydrogels at different environmental temperatures increased from 18.586 kPa to 36.551 kPa with the glass transform temperature of starch hydrogels dropped to -50 °C. The anti-freezing hydrogels showed excellent water retention ability, which could maintain a water content of 55% after 7 days at ambient temperature. The prototyping of anti-freezing starch hydrogels broadens the applications of starch in food, adhesives, medical materials, and intelligent materials.


Assuntos
Congelamento , Hidrogéis/química , Impressão Tridimensional , Amido/química , Água/química , Força Compressiva , Espectroscopia de Ressonância Magnética , Reologia , Solanum tuberosum/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Amido/ultraestrutura , Estresse Mecânico , Temperatura
12.
Chemosphere ; 284: 131367, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34323781

RESUMO

Reuse of sludge from a water treatment plant and fly ash for the manufacturing of adobe brick is a feasible approach for practical applications due to the numerous benefits from the cost savings of construction materials and the reduction of environmental pollution. In this study, sludge from a groundwater treatment plant and fly ash from a thermal power plant were used as alternative aggregates to replace clay, a traditional component for brick making. The main objective of this study is to produce adobe bricks by using hydraulic press technology. The optimum aggregate composition was investigated by determining the compressive strength according to Vietnam national standard TCVN 6355:1-2009. Other supplementary materials, including cement, liquid glass, and polypropylene fibers, were used as additives and adhesives. Results showed that a 2-hole brick product (8 × 4 × 8 cm) with strength M 4.0 satisfied the national quality standard, TCVN 6477-2016. In addition, the aggregate composition (wt%) as sludge: cement: fly ash: polypropylene fibers of 50 : 35: 15 : 0.5%/m3 aggregates was found to be the optimum ratio. This product shows a medium compressive strength that is appropriate in the construction of walls or fences in industrial factories or households. The results obtained in this study show a promising approach for the brick-making industry in Vietnam. A large amount of sludge can be reused as an alternative material to reduce the product price and achieve natural resource conservation.


Assuntos
Cinza de Carvão , Purificação da Água , Força Compressiva , Materiais de Construção , Resíduos Industriais/análise , Esgotos/análise
13.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298923

RESUMO

In the following study, polyurethane (PUR) composites were modified with 2 wt.% of walnut shell filler modified with selected mineral compounds-perlite, montmorillonite, and halloysite. The impact of modified walnut shell fillers on selected properties of PUR composites, such as rheological properties (dynamic viscosity, foaming behavior), mechanical properties (compressive strength, flexural strength, impact strength), dynamic-mechanical behavior (glass transition temperature, storage modulus), insulation properties (thermal conductivity), thermal characteristic (temperature of thermal decomposition stages), and flame retardant properties (e.g., ignition time, limiting oxygen index, heat peak release) was investigated. Among all modified types of PUR composites, the greatest improvement was observed for PUR composites filled with walnut shell filler functionalized with halloysite. For example, on the addition of such modified walnut shell filler, the compressive strength was enhanced by ~13%, flexural strength by ~12%, and impact strength by ~14%. Due to the functionalization of walnut shell filler with thermally stable flame retardant compounds, such modified PUR composites were characterized by higher temperatures of thermal decomposition. Most importantly, PUR composites filled with flame retardant compounds exhibited improved flame resistance characteristics-in all cases, the value of peak heat release was reduced by ~12%, while the value of total smoke release was reduced by ~23%.


Assuntos
Óxido de Alumínio/química , Bentonita/química , Argila/química , Resinas Compostas/química , Juglans/química , Poliuretanos/química , Dióxido de Silício/química , Força Compressiva , Vidro/química , Teste de Materiais/métodos , Temperatura , Viscosidade
14.
Carbohydr Polym ; 268: 118211, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34127215

RESUMO

This work explored the feasibility of using biological polysaccharide to fabricate dissolvable microneedles (MNs) for the purpose of transdermal drug delivery and skin dendritic cell (DC) activation. Panax notoginseng polysaccharide (PNPS), a naturally derived immunoactive macromolecule, was used to fabricate dissolvable MNs. The prepared PNPS MNs showed a satisfactory mechanical strength and a skin penetration depth. By Franz diffusion cell assay, the PNPS MNs demonstrated a high transdermal delivery amount of model drugs. Furthermore, with the assistance of MNs, PNPS easily penetrated across the stratum corneum and target ear skin DCs, activating the maturation and migration of immunocytes by increasing the expressions of CD40, CD80, CD86, and MHC II of skin DCs. Consequently, the matured DCs migrated to the auricular draining lymph nodes and increased the proportions of CD4+ T and CD8+ T cells. Thus, PNPS might be a promising biomaterial for transdermal drug delivery, with adjuvant potential.


Assuntos
Células de Langerhans/efeitos dos fármacos , Agulhas , Panax notoginseng/química , Polissacarídeos/química , Administração Cutânea , Animais , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Antígenos CD40/metabolismo , Força Compressiva , Doxorrubicina/administração & dosagem , Fluoresceína/administração & dosagem , Fluoruracila/administração & dosagem , Células de Langerhans/metabolismo , Masculino , Camundongos , Cadeias Pesadas de Miosina/metabolismo , Ratos Sprague-Dawley , Pele/citologia , Pele/efeitos dos fármacos , Pele/metabolismo , Solubilidade
15.
AAPS PharmSciTech ; 22(4): 151, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33977355

RESUMO

As commonly known, the product development stage is quite complex, requires intensive knowledge, and is time-consuming. The selection of the excipients with the proper functionality and their corresponding levels is critical to drug product performance. The objective of this study was to apply quality by design (QbD) principles for formulation development and to define the desired product quality profile (QTPP) and critical quality attributes (CQA) of a product. QbD is a risk- and science-based holistic approach for upgraded pharmaceutical development. In this study, Ibuprofen DC 85W was used as a model drug, Cellactose® 80 along with MicroceLac® 100 as a filler, and magnesium stearate, stearic acid, and sodium stearyl fumarate as lubricants. By applying different formulation parameters to the filler and lubricants, the QbD approach furthers the understanding of the effect of critical formulation and process parameters on CQAs and the contribution to the overall quality of the drug product. An experimental design study was conducted to determine the changes of the obtained outputs of the formulations, which were evaluated using the Modde Pro 12.1 statistical computer program that enables optimization by modeling complex relationships. The results of the optimum formulation revealed that MicroceLac® 100 was the superior filler, while magnesium stearate at 1% was the optimum lubricant. A design space that indicates the safety operation limits for the process and formulation variables was also created. This study enriches the understanding of the effect of excipients in formulation and assists in enhancing formulation design using experimental design and mathematical modeling methods in the frame of the QbD approach.


Assuntos
Química Farmacêutica/métodos , Força Compressiva , Desenvolvimento de Medicamentos/métodos , Lubrificantes/síntese química , Química Farmacêutica/normas , Composição de Medicamentos/métodos , Desenvolvimento de Medicamentos/normas , Ibuprofeno/síntese química , Ibuprofeno/normas , Lubrificantes/normas , Ácidos Esteáricos/síntese química , Ácidos Esteáricos/normas , Tensoativos/síntese química , Tensoativos/normas , Comprimidos , Resistência à Tração
16.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946213

RESUMO

In the following study, ground plum stones and silanized ground plum stones were used as natural fillers for novel polyurethane (PUR) composite foams. The impact of 1, 2, and 5 wt.% of fillers on the cellular structure, foaming parameters, and mechanical, thermomechanical, and thermal properties of produced foams were assessed. The results showed that the silanization process leads to acquiring fillers with a smoother surface compared to unmodified filler. The results also showed that the morphology of the obtained materials is affected by the type and content of filler. Moreover, the modified PUR foams showed improved properties. For example, compared with the reference foam (PUR_REF), the foam with the addition of 1 wt.% of unmodified plum filler showed better mechanical properties, such as higher compressive strength (~8% improvement) and better flexural strength (~6% improvement). The addition of silanized plum filler improved the thermal stability and hydrophobic character of PUR foams. This work shows the relationship between the mechanical, thermal, and application properties of the obtained PUR composites depending on the modification of the filler used during synthesis.


Assuntos
Poliuretanos/química , Prunus domestica/química , Silanos/química , Técnicas de Química Sintética , Força Compressiva , Materiais de Construção , Teste de Materiais , Poliuretanos/síntese química , Porosidade , Reologia , Silanos/síntese química
17.
Molecules ; 26(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918502

RESUMO

Electroactive biomaterials are fascinating for tissue engineering applications because of their ability to deliver electrical stimulation directly to cells, tissue, and organs. One particularly attractive conductive filler for electroactive biomaterials is silver nanoparticles (AgNPs) because of their high conductivity, antibacterial activity, and ability to promote bone healing. However, production of AgNPs involves a toxic reducing agent which would inhibit biological scaffold performance. This work explores facile and green synthesis of AgNPs using extract of Cilembu sweet potato and studies the effect of baking and precursor concentrations (1, 10 and 100 mM) on AgNPs' properties. Transmission electron microscope (TEM) results revealed that the smallest particle size of AgNPs (9.95 ± 3.69 nm) with nodular morphology was obtained by utilization of baked extract and ten mM AgNO3. Polycaprolactone (PCL)/AgNPs scaffolds exhibited several enhancements compared to PCL scaffolds. Compressive strength was six times greater (3.88 ± 0.42 MPa), more hydrophilic (contact angle of 76.8 ± 1.7°), conductive (2.3 ± 0.5 × 10-3 S/cm) and exhibited anti-bacterial properties against Staphylococcus aureus ATCC3658 (99.5% reduction of surviving bacteria). Despite the promising results, further investigation on biological assessment is required to obtain comprehensive study of this scaffold. This green synthesis approach together with the use of 3D printing opens a new route to manufacture AgNPs-based electroactive with improved anti-bacterial properties without utilization of any toxic organic solvents.


Assuntos
Anti-Infecciosos/farmacologia , Química Verde , Ipomoea batatas/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Impressão Tridimensional , Prata/farmacologia , Alicerces Teciduais/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Coloides/química , Força Compressiva , Difusão Dinâmica da Luz , Módulo de Elasticidade , Condutividade Elétrica , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Poliésteres/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Molhabilidade , Difração de Raios X
18.
Carbohydr Polym ; 260: 117345, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33712116

RESUMO

The biotechnological applications of cellulose nanocrystals (CNCs) continue to grow due to their sustainable nature, impressive mechanical, rheological, and emulsifying properties, upscaled production capacity, and compatibility with other materials, such as protein and polysaccharides. In this study, hydrogels from CNCs and pectin, a plant cell wall polysaccharide broadly used in food and pharma, were produced by calcium ion-mediated internal ionotropic gelation (IG). In the absence of pectin, a minimum of 4 wt% CNC was needed to produce self-supporting gels by internal IG, whereas the addition of pectin at 0.5 wt% enabled hydrogel formation at CNC contents as low as 0.5 wt%. Experimental data indicate that CNCs and pectin interact to give robust and self-supporting hydrogels at solid contents below 2.5 %. Potential applications of these gels could be as carriers for controlled release, scaffolds for cell growth, or wherever else distinct and porous network morphologies are required.


Assuntos
Celulose/química , Hidrogéis/química , Nanopartículas/química , Pectinas/química , Força Compressiva , Espalhamento a Baixo Ângulo , Temperatura , Difração de Raios X
19.
Environ Sci Pollut Res Int ; 28(29): 38947-38968, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33745050

RESUMO

The production of cement contributes to 10% of global carbon dioxide (CO2) pollution and 74 to 81% towards the total CO2 pollution by concrete. In addition to that, its low strength-to-weight ratio, high density and thermal conductivity are among the few limitations of heavy weight concrete. Therefore, this study was carried out to provide a solution to these limitations by developing innovative eco-friendly lightweight foamed concrete (LFC) of 1800 kg/m3 density incorporating 20-25% palm oil fuel ash (POFA) and 5-15% eggshell powder (ESP) by weight of total binder as supplementary cementitious material (SCM). The influence of combined utilization of POFA and ESP on the fresh state properties of eco-friendly LFC was determined using the J-ring test. To determine the mechanical properties, a total of 48 cubes and 24 cylinders were prepared for compressive strength, splitting tensile strength and modulus of elasticity each. A total of 24 panels were prepared to determine the thermal properties in terms of surface temperature and thermal conductivity. Furthermore, to assess the environmental impact and eco-friendliness of the developed LFC, the embodied carbon and eco-strength efficiency was calculated. It was determined that the utilization of POFA and ESP reduced the workability slightly but enhanced the mechanical properties of LFC (17.05 to 22.60 MPa compressive strength and 1.43 to 2.61 MPa tensile strength), thus satisfies the ACI213R requirements for structural lightweight concrete and that it can be used for structural applications. Additionally, the thermal conductivity reduced ranging from 0.55 to 0.63 W/mK compared to 0.82 W/mK achieved by control sample. Furthermore, the developed LFC showed a 16.96 to 33.55% reduction in embodied carbon and exhibited higher eco-strength efficiency between 47.82 and 76.97%. Overall, the combined utilization of POFA and ESP as SCMs not only enhanced the thermo-mechanical performance, makes the sustainable LFC as structural lightweight concrete, but also has reduced the environmental impacts caused by the disposal of POFA and ESP in landfills as well as reducing the total CO2 emissions during the production of eco-friendly LFC.


Assuntos
Materiais de Construção , Casca de Ovo , Animais , Força Compressiva , Óleo de Palmeira , Pós
20.
Molecules ; 25(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339088

RESUMO

In this study, poly(lactic acid) (PLA)/starch blends were prepared through reactive melt blending by using PLA and starch as raw materials and vegetable oil polyols, polyethylene glycol (PEG), and citric acid (CA) as additives. The effects of CA and PEG on the toughness of PLA/starch blends were analyzed using a mechanical performance test, scanning electron microscope analysis, differential scanning calorimetry, Fourier-transform infrared spectroscopy, X-ray diffraction, rheological analysis, and hydrophilicity test. Results showed that the elongation at break and impact strength of the PLA/premixed starch (PSt)/PEG/CA blend were 140.51% and 3.56 kJ·m-2, which were 13.4 and 1.8 times higher than those of pure PLA, respectively. The essence of the improvement in the toughness of the PLA/PSt/PEG/CA blend was the esterification reaction among CA, PEG, and starch. During the melt-blending process, the CA with abundant carboxyl groups reacted in the amorphous region of the starch. The shape and crystal form of the starch did not change, but the surface activity of the starch improved and consequently increased the adhesion between starch and PLA. As a plasticizer for PLA and starch, PEG effectively enhanced the mobility of the molecular chains. After PEG was dispersed, it participated in the esterification reaction of CA and starch at the interface and formed a branched/crosslinked copolymer that was embedded in the interface of PLA and starch. This copolymer further improved the compatibility of the PLA/starch blends. PEGs with small molecules and CA were used as compatibilizers to reduce the effect on PLA biodegradability. The esterification reaction on the starch surface improved the compatibilization and toughness of the PLA/starch blend materials and broadens their application prospects in the fields of medicine and high-fill packaging.


Assuntos
Plastificantes/química , Poliésteres/química , Amido/química , Varredura Diferencial de Calorimetria , Ácido Cítrico/química , Força Compressiva , Cristalização , Módulo de Elasticidade , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Óleos de Plantas/química , Polietilenoglicóis/química , Polímeros/química , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA