Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
NPJ Biofilms Microbiomes ; 10(1): 24, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503759

RESUMO

Despite the potential benefits of herbal medicines for therapeutic application in preventing and treating various metabolic disorders, the mechanisms of action were understood incompletely. Ginseng (Panax ginseng), a commonly employed plant as a dietary supplement, has been reported to play its hot property in increasing body temperature and improving gut health. However, a comprehensive understanding of the mechanisms by which ginseng regulates body temperature and gut health is still incomplete. This paper illustrates that intermittent supplementation with ginseng extracts improved body temperature rhythm and suppressed inflammatory responses in peripheral metabolic organs of propylthiouracil (PTU)-induced hypothermic rats. These effects were associated with changes in gut hormone secretion and the microbiota profile. The in-vitro studies in ICE-6 cells indicate that ginseng extracts can not only act directly on the cell to regulate the genes related to circadian clock and inflammation, but also may function through the gut microbiota and their byproducts such as lipopolysaccharide. Furthermore, administration of PI3K inhibitor blocked ginseng or microbiota-induced gene expression related with circadian clock and inflammation in vitro. These findings demonstrate that the hot property of ginseng may be mediated by improving circadian clock and suppressing inflammation directly or indirectly through the gut microbiota and PI3K-AKT signaling pathways.


Assuntos
Relógios Circadianos , Microbioma Gastrointestinal , Panax , Ratos , Animais , Relógios Circadianos/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/farmacologia , Inflamação , Transdução de Sinais , Expressão Gênica
2.
Pathol Int ; 74(4): 197-209, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353379

RESUMO

Chronic hepatic diseases often involve fibrosis as a pivotal factor in their progression. This study investigates the regulatory mechanisms of Yin Yang 1 (YY1) in hepatic fibrosis. Our data reveal that YY1 binds to the prolyl hydroxylase domain 1 (PHD1) promoter. Rats treated with carbon tetrachloride (CCl4) display heightened fibrosis in liver tissues, accompanied by increased levels of YY1, PHD1, and the fibrosis marker alpha-smooth muscle actin (α-SMA). Elevated levels of YY1, PHD1, and α-SMA are observed in the liver tissues of CCl4-treated rats, primary hepatic stellate cells (HSCs) isolated from fibrotic liver tissues, and transforming growth factor beta-1 (TGF-ß1)-induced HSCs. The human HSC cell line LX-2, upon YY1 overexpression, exhibits enhanced TGF-ß1-induced activation, leading to increased expression of extracellular matrix (ECM)-related proteins and inflammatory cytokines. YY1 silencing produces the opposite effect. YY1 exerts a positive regulatory effect on the activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and PHD1 expression. PHD1 silencing rescues the promotion of YY1 in cell activation, ECM-related protein expression, and inflammatory cytokine production in TGF-ß1-treated LX-2 cells. Overall, our findings propose a model wherein YY1 facilitates TGF-ß1-induced HSC activation, ECM-related protein expression, and inflammatory cytokine production by promoting PHD1 expression and activating the PI3K/AKT signaling pathway. This study positions YY1 as a promising therapeutic target for hepatic fibrosis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator de Crescimento Transformador beta1 , Humanos , Ratos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/uso terapêutico , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Yin-Yang , Cirrose Hepática/metabolismo , Matriz Extracelular/metabolismo , Inflamação/metabolismo , Tetracloreto de Carbono
3.
Z Rheumatol ; 83(Suppl 1): 78-87, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37851166

RESUMO

BACKGROUND: Salidroside (Sal) is a natural product commonly isolated from Rhodiola rosea L., which has been found to have numerous pharmacological activities (e.g., ameliorating apoptosis and inflammation, and acting as an antioxidant) in various diseases, but its concrete function in rheumatoid arthritis (RA) has not been revealed yet. Here, we aimed to explore the specific role and underlying mechanisms of Sal in RA-fibroblast-like synoviocytes (RA-FLSs). METHODS: Cell counting kit 8 (CCK-8) was used to assess the viability of normal-FLSs and RA-FLSs. Cell apoptosis in RA-FLSs was evaluated by flow cytometry. Western blotting was prepared to examine the levels of apoptosis- and signaling-related proteins. Wound-healing and Transwell assays were conducted to examine RA-FLSs migration and invasion. Enzyme-linked immunosorbent assay (ELISA) was used to assess the effect of Sal on tumor necrosis factor-alpha (TNF-α)-induced inflammation in RA-FLSs. RA animal model was established through complete Freund's adjuvant (CFA) induction, and the histopathological changes in synovial tissues of the rat model were analyzed by H&E staining. RESULTS: RA-FLSs were treated with 200 µM Sal for 24 h, and cell viability was significantly suppressed. Sal promoted RA-FLSs apoptosis. The migratory and invasive abilities of RA-FLSs were markedly inhibited by Sal. Sal incubation reduced the levels of inflammatory cytokines interleukin­8 (IL-8), IL-1ß, and IL­6 in RA-FLSs under the stimulation of TNF­α. Subsequently, Sal downregulated phosphorylated phosphatidylinositol­3 kinase (p-PI3K) and protein kinase (p-AKT) expression in RA-FLSs. After the treatment with pathway activator 740Y­P (20 µM) in RA-FLSs, the promotive effect of Sal on cell apoptosis was reversed, and inhibitory effects of it on cell viability, migration, invasion, and inflammatory response were abolished. Sal inhibited RA development in the CFA-induced rat model. CONCLUSION: Sal suppressed cell growth and inflammation in RA-FLSs by inactivating PI3K/AKT-signaling pathways.


Assuntos
Artrite Reumatoide , Glucosídeos , Fragmentos de Peptídeos , Fenóis , Receptores do Fator de Crescimento Derivado de Plaquetas , Sinoviócitos , Ratos , Animais , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Fator de Necrose Tumoral alfa , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Células Cultivadas
4.
Altern Ther Health Med ; 29(8): 54-59, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37652429

RESUMO

Context: Treatment failure due to multidrug resistance (MDR) is a crucial hurdle during chemotherapy. MDR is generally correlated with an upregulation of adenosine triphosphate (ATP)-binding cassette (ABC) transport proteins. Also, aberrant activation of the phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) pathway can counteract chemotherapeutic induction. Identification of safe and functioning MDR-reversing compounds is necessary in gastric-cancer therapy. Objective: The study intended to examine the role of Quercetin (Qur) in the mediation of osmotic glycoprotein (P-gp) expression and activity as an ABC transporter in the PI3K/Akt/ P-gp cascade in the oxaliplatin (OxR)-resistant, gastric-cancer cell line KATOIII/OxR. Design: The research team performed a laboratory study. Setting: The study took place at Nantong Haimen People's Hospital. Outcome Measures: The research team: (1) determined the impact of OxR on cell viability after treatment with Qur using trypan blue and "3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide" (MTT) assays; (2) employed a rhodamine 123 (Rh123) assay to detect the activity of P-gp; (3) used quantitative reverse transcription polymerase chain reaction (RT-qPCR) to measure mRNA expression of P-gp; and (4) detected apoptosis using an enzyme-linked immunoassay (ELISA) cell-death assay. Results: Qur: (1) increased the cytotoxicity of OxR; (2) downregulated the expression level and activity of P-gp and reversed MDR through the enhancement of the cytotoxicity of intracellular OxR in KATOIII/OxR cells; and (3) enhanced the apoptosis rate in KATOIII/OxR cells. Conclusions: Qur induced a dramatic reduction in the survival rate of KATOIII/OxR cells and may reverse OxR resistance through a decrease in P-gp expression and activity. These data imply that exposure of KATOIII/OxR cells in the dose-dependent manner to Qur can circumvent MDR by improving the intracellular accumulation of OxR. Qur might provide a new treatment strategy and improve patients' survival after chemotherapy for gastric cancer.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Oxaliplatina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Quercetina/farmacologia , Quercetina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/farmacologia , Linhagem Celular Tumoral , Doxorrubicina
5.
Psychopharmacology (Berl) ; 240(8): 1759-1773, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37306736

RESUMO

RATIONALE: Early diagnosis of diabetic cognitive impairment (DCI) and investigation of effective medicines are significant to prevent or delay the occurrence of irreversible dementia. OBJECTIVES: In this study, proteomics was applied to investigate the changes of hippocampal proteins after administration of Panax quinquefolius-Acorus gramineus (PQ-AG) to DCI rats, with a view to discover the differentially expressed proteins of PQ-AG action and elucidated the potential biological relationships. METHODS: The model and PQ-AG group rats were injected intraperitoneally with streptozotocin, and the PQ-AG group rats were continuously administered with PQ-AG. Social interaction and Morris water maze were performed to evaluate the behavior of rats on the 17th week after the model was established, and DCI rats were screened out from the model group by a screening approach. The hippocampal protein differences were investigated with proteomics in DCI and PQ-AG-treated rats. RESULTS: The learning and memory abilities and contact duration of DCI rats were improved after 16 weeks of PQ-AG administration. Altogether, 9 and 17 differentially expressed proteins were observed in control versus DCI rats and in DCI versus PQ-AG-treated rats, respectively. Three proteins were confirmed with western blotting analyses. These proteins were mainly involved in the pathways of JAK-STAT, apoptosis, PI3K/AKT, fork-head box protein O3, fructose, and mannose metabolism. CONCLUSIONS: This suggested that PQ-AG ameliorated cognitive impairment of diabetic rats by influencing the above pathways and providing an experimental basis for the mechanism of DCI and PQ-AG.


Assuntos
Acorus , Disfunção Cognitiva , Diabetes Mellitus Experimental , Panax , Ratos , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Acorus/metabolismo , Panax/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Hipocampo
6.
Altern Lab Anim ; 51(4): 249-257, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37345436

RESUMO

The significance of angiogenesis in tumour progression has been widely documented. Hence, the identification of anti-angiogenic agents with fewer common side effects would be valuable in cancer therapy. In this study, we evaluated the anti-angiogenic and anti-proliferative effects of a hydro-alcoholic extract of fenugreek seed (HAEF) on human umbilical vein endothelial cells (HUVECs). Human umbilical vein endothelial cells were treated with various concentrations of HAEF and the half-maximal inhibitory concentration (IC50) value was estimated by using the MTT assay. Vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and matrix metalloproteinase enzyme (MMP-2 and MMP-9) gene expression profiles were evaluated by using quantitative RT-PCR (qRT-PCR). Moreover, MMP activities and PI3K, Akt and cyclin D1 protein expression levels were evaluated by gel zymography and Western blotting, respectively. HAEF reduced HUVEC viability, with an IC50 value of 200 µg/ml. The qRT-PCR results demonstrated that treatment with HAEF markedly reduced MMP-2/MMP-9, VEGF and bFGF gene expression, as compared to the control group. We also found that MMP-2/MMP-9 enzyme activity and PI3K/Akt/cyclin D1 protein expression were notably decreased in cells treated with HAEF. Our results suggest that HAEF can potentially inhibit angiogenesis, and also affect cellular proliferation by targeting the PI3K/Akt/cyclin D1 pathway. Thus, fenugreek seed extract merits further investigation as a source of compounds with anti-cancer properties.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator A de Crescimento do Endotélio Vascular , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/farmacologia , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Ciclina D1/metabolismo , Ciclina D1/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/farmacologia , Proliferação de Células , Movimento Celular
7.
J Med Microbiol ; 72(5)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37195736

RESUMO

Introduction. Huangqin Decoction (HQD), a Chinese herbal formula, is widely used for various diseases, including colorectal cancer (CRC).Hypothesis/Gap Statement. We proposed that microbial butyrate mediated PI3K/Akt pathway suppression might involve the anti-cancer effect of HQD.Aim. This study aimed to evaluate the potential mechanism of HQD against CRC.Methodology. An azoxymethane plus dextran sulphate sodium induced CRC mouse model was used, and the intestinal flora and faecal short-chain fatty acid changes were detected, respectively, after HQD administration with 16S rRNA sequencing and gas chromatography coupled with mass spectrometry. Disease activity index, colon length and levels of inflammatory cytokines were measured to evaluate the effect of HQD on intestinal inflammation. Tumour size, number and histopathology were assessed to reflect the impact of HQD on tumour burden. Apoptosis and PI3K/Akt pathway activity were measured by TUNEL staining and Western-blotting. In vitro, the effects of sodium butyrate (NaB) on the viability of CRC cell lines were detected by the Cell-counting Kit-8. The apoptotic cells were determined by TUNEL staining. Cell migration and invasion were assessed by wound healing assay and Transwell assay, respectively. Western-blotting and immunofluorescent staining were used to test the activity of PI3K/Akt pathway.Results. Animal study showed that HQD could improve the gut dysbiosis, increase the abundance of Clostridium and the level of faecal butyric acid. Then, we found that HQD could attenuate colitis, reduce tumour burden, promote cell apoptosis and suppress PI3K/Akt pathway activity in CRC mice. In vitro experiment revealed that NaB treatment could inhibit cell growth, migration and invasion in CRC cell lines. Additionally, NaB enhanced cellular apoptosis, and reduced phosphorylated PI3K and Akt expressions. Interestingly, addition of 740Y-P, an agonist of PI3K, reversed the NaB effects on CRC cells.Conclusion. Overall, in this study, we revealed that HQD could induce apoptosis through microbial butyrate mediated PI3K/Akt inhibition and perform anti-CRC activity.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Scutellaria baicalensis/química , RNA Ribossômico 16S , Neoplasias Colorretais/tratamento farmacológico , Proliferação de Células , Ácido Butírico/farmacologia
8.
Altern Ther Health Med ; 29(5): 400-409, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37171951

RESUMO

Context: At present, hormone therapy and surgery are the main treatments for thyroid cancer, and they have a quick effect but a high recurrence rate. Also, the side effects are significant. it's extremely urgent to explore treatments that can take into account both therapeutic benefits and side effects. Objective: The study intended to explore whether Xiaoluo has an inhibitory effect on the proliferation of thyroid-cancer cells in vitro and to examine the core target and key signaling pathway of Xiaoluo in the treatment of thyroid cancer, using the thyroid-cancer cell line SW579. Design: The research team performed an in-vitro study. Setting: The study took place at the College of Pharmacy at Harbin University of Commerce in Harbin, China. Outcome Measures: The research team used a Western blot analysis to detect the expression of apoptosis proteins-B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and Caspase-3-and the activity related to the signaling pathways phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin 1 (mTORC1). The team measured optical densities and inhibition rates for the 1, 2, 5, 10, and 15 mg/mL Xiaokuo groups and for a negative control group. The research team measured apoptosis, expression of Bcl-2, Bax, and Caspase-3, and expression of P13K, AKT, and mTor for the 10 µmol/L LY294002, 10 mg/mL Xiaoluo, 100 ng/mL IGF-1, and 100 ng/mL IGF-1+10 mg/mL Xiaoluo groups and for the blank control group. Results: The inhibition of SW579 cell proliferation increased with each increase in the Xiaoluo concentration from 1-15 mg/mL, and the inhibition rate reached 49.63% when the concentration was 15 mg/ml. The Xiaoluo group's late and total apoptosis rates were significantly higher (both P < .01) than those of the blank control group. The Xiaoluo group's expression of the Bcl-2 protein was significantly lower (P < .05), and its expressions of Bax and Caspase-3 were significantly higher (both P < .01) than those of the blank control group. The Xiaoluo group's expressions of P-PI3K, P-Akt, and P-MTOR were significantly lower than those of the blank group (all P < .01). These findings were comparable to those that occurred with use of the PI3K/AKT/mTORC1 signaling pathway inhibitor LY294002. Conclusions: Xiaoluo exerts its antithyroid-cancer effects through the induction of apoptosis in thyroid cancer cells through the inhibition of the PI3K/AKT/mTORC1 signaling pathway. Xiaoluo may serve as a potential therapeutic agent for the treatment of thyroid cancer.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias da Glândula Tireoide , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Caspase 3/metabolismo , Caspase 3/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Apoptose , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Sirolimo/farmacologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , Proliferação de Células , Linhagem Celular Tumoral
9.
Int J Dev Neurosci ; 83(5): 417-430, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37211717

RESUMO

Neural tube defects (NTDs) are severe congenital malformations that can lead to lifelong disability. Wuzi Yanzong Pill (WYP) is an herbal formula of traditional Chinese medicine (TCM) that has been shown to have a protective effect against NTDs in a rodent model induced by all-trans retinoic acid (atRA), but the mechanism remains unclear. In this study, the neuroprotective effect and mechanism of WYP on NTDs were investigated in vivo using an atRA-induced mouse model and in vitro using cell injury model induced by atRA in Chinese hamster ovary (CHO) cells and Chinese hamster dihydrofolate reductase-deficient (CHO/dhFr) cells. Our findings suggest that WYP has an excellent preventive effect on atRA-induced NTDs in mouse embryos, which may be related to the activation of the PI3K/Akt signaling pathway, improved embryonic antioxidant capacity, and anti-apoptotic effects, and this effect is not dependent on folic acid (FA). Our results demonstrated that WYP significantly reduced the incidence of NTDs induced by atRA; increased the activity of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and content of glutathione (GSH); decreased the apoptosis of neural tube cells; up-regulated the expression of phosphatidylinositol 3 kinase (PI3K), phospho protein kinase B (p-Akt), nuclear factor erythroid-2 related factor (Nrf2), and b-cell lymphoma-2 (Bcl-2); and down-regulated the expression of bcl-2-associated X protein (Bax). Our in vitro studies suggested that the preventive effect of WYP on atRA-treated NTDs was independent of FA, which might be attributed to the herbal ingredients of WYP. The results suggest that WYP had an excellent prevention effect on atRA-induced NTDs mouse embryos, which may be independent of FA but related to the activation of the PI3K/Akt signaling pathway and improvement of embryonic antioxidant capacity and anti-apoptosis.


Assuntos
Defeitos do Tubo Neural , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Cricetinae , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Células CHO , Cricetulus , Transdução de Sinais , Tretinoína/farmacologia , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/prevenção & controle , Estresse Oxidativo
10.
Poult Sci ; 102(6): 102675, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37088046

RESUMO

The effects of concurrent reduction of dietary metabolizable energy (ME) and crude protein (CP) levels combined or not with the dietary inclusion of a phytogenic feed additive (PFA) were studied using a nutrigenomics approach. In particular, the expression of 26 critical genes relevant for inflammation control (TLR pathway), cellular apoptosis (MAPK pathway) cell growth and nutrient metabolism (PI3K-Akt-mTOR pathway) was profiled along the broiler intestine. Two dietary types (L and H) differing in metabolizable energy and crude protein levels (L: 95% and H: 100% of optimal Cobb 500 recommendations for ME and CP requirements) supplemented or not with PFA (- or +) and their interactions (L-, L+, H-, H+) were evaluated. There were only 3 total interactions (mTOR, IL8, and HRAS P < 0.05) between diet type and PFA inclusion indicating limited concurrent effects. Diet type, L upregulated genes related with inflammation mainly in the jejunum, ileum, and cecum (P < 0.05) and MAPK pathway in the ileum and cecum (P < 0.05). Moreover, diet type L negatively affected the expression of genes related to PI3K-Akt-mTOR pathway mainly in duodenum and cecum (P < 0.05). On the other hand, PFA inclusion downregulated (P < 0.05) genes related with TLR signaling pathway (TLR2B, MyD88, TLR3, IL8, LITAF) along the intestine and MAPK pathway genes (APO1, FOS) in jejunum (P < 0.05). Finally, PFA supplementation regulated nutrient sensing and metabolism in the cecum in a manner perceived as beneficial for growth. In conclusion, the study results highlight that the reduced ME and CP specifications, especially in the absence of PFA, regulate inflammation, apoptosis and nutrient metabolism processes at homeostatic control levels that hinder maximizing the availability of dietary energy and nutrients for growth purposes. Inclusion of PFA helped to adjust the respective homeostatic responses and control to levels supporting broiler performance, especially at reduced specification diets.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Quinases Ativadas por Mitógeno , Interleucina-8 , Nutrigenômica , Digestão , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Receptores Toll-Like/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Componentes do Gene , Apoptose , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal
11.
J Vis Exp ; (192)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36912533

RESUMO

Zadi-5 is a traditional Mongolian medicine that is widely used for the treatment of depression and symptoms of irritation. Although the therapeutic effects of Zadi-5 against depression have been indicated in previously reported clinical studies, the identity and impact of the active pharmaceutical compounds present in the drug have not been fully elucidated. This study used network pharmacology to predict the drug composition and identify the therapeutically active compounds in Zadi-5 pills. Here, we established a rat model of chronic unpredicted mild stress (CUMS) and conducted an open field test (OFT), Morris water maze (MWM) analysis, and sucrose consumption test (SCT) to investigate the potential therapeutic efficacy of Zadi-5 in depression. This study aimed to demonstrate Zadi-5's therapeutic effects for depression and predict the critical pathway of the action of Zadi-5 against the disorder. The vertical and horizontal scores (OFT), SCT, and zone crossing numbers of the fluoxetine (positive control) and Zadi-5 groups were significantly higher (P < 0.05) than those of the CUMS group rats without treatment. According to the results of network pharmacology analysis, the PI3K-AKT pathway was found to be essential for the antidepressant effect of Zadi-5.


Assuntos
Depressão , Fosfatidilinositol 3-Quinases , Ratos , Animais , Depressão/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Medicina Tradicional da Mongólia , Farmacologia em Rede , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Estresse Psicológico/metabolismo , Hipocampo/metabolismo , Comportamento Animal , Modelos Animais de Doenças
12.
Behav Neurol ; 2023: 1857330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844418

RESUMO

Alzheimer's disease (AD) is the most common form of dementia and a significant social and economic burden. Estrogens can exert neuroprotective effects and may contribute to the prevention, attenuation, or even delay in the onset of AD; however, long-term estrogen therapy is associated with harmful side effects. Thus, estrogen alternatives are of interest for countering AD. Naringin, a phytoestrogen, is a key active ingredient in the traditional Chinese medicine Drynaria. Naringin is known to protect against nerve injury induced by amyloid beta-protein (Aß) 25-35, but the underlying mechanisms of this protection are unclear. To investigate the mechanisms of naringin neuroprotection, we observed the protective effect on Aß 25-35-injured C57BL/6J mice's learning and memory ability and hippocampal neurons. Then, an Aß 25-35 injury model was established with adrenal phaeochromocytoma (PC12) cells. We examined the effect of naringin treatment on Aß 25-35-injured PC12 cells and its relationship with estrogen receptor (ER), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), and glycogen synthase kinase (GSK)-3ß signaling pathways. Estradiol (E2) was used as a positive control for neuroprotection. Naringin treatment resulted in improved learning and memory ability, the morphology of hippocampal neurons, increased cell viability, and reduced apoptosis. We next examined the expression of ERß, p-AKT (Ser473, Thr308), AKT, p-GSK-3ß (Ser9), GSK-3ß, p-Tau (Thr231, Ser396), and Tau in PC12 cells treated with Aß 25-35 and either naringin or E2, with and without inhibitors of the ER, PI3K/AKT, and GSK-3ß pathways. Our results demonstrated that naringin inhibits Aß 25-35-induced Tau hyperphosphorylation by modulating the ER, PI3K/AKT, and GSK-3ß signaling pathways. Furthermore, the neuroprotective effects of naringin were comparable to those of E2 in all treatment groups. Thus, our results have furthered our understanding of naringin's neuroprotective mechanisms and indicate that naringin may comprise a viable alternative to estrogen therapy.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Peptídeos beta-Amiloides/farmacologia , Peptídeos beta-Amiloides/metabolismo , Receptores de Estrogênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Células PC12 , Fármacos Neuroprotetores/farmacologia , Proteínas tau/metabolismo , Proteínas tau/farmacologia , Fosforilação , Camundongos Endogâmicos C57BL , Transdução de Sinais , Doença de Alzheimer/tratamento farmacológico , Estrogênios/farmacologia
13.
Poult Sci ; 102(3): 102430, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36621100

RESUMO

Ligusticum chuanxiong (CX) is a traditional Chinese medicine that is widely planted throughout the world. CX is one of the most important and commonly used drugs to enhance blood circulation. The preovulatory follicles in laying hens have a large number of blood arteries and meridians that feed the follicles' growth and maturation with nutrients, hormones, and cytokines. With the extension of laying time, preovulatory follicles angiogenesis decreased gradually. In this study, we studied the mechanism of CX on preovulatory follicles angiogenesis in late-phase laying hens. The results show that CX extract can increase the angiogenesis of preovulatory follicles (F1-F3) of late-phase laying hens. CX extract can promote vascular endothelial growth factor receptor 2 (VEGFR2) phosphorylation in preovulatory follicles theca layers, promote the proliferation, invasion and migration through PI3K/AKT and RAS/ERK signaling pathways in primary follicle microvascular endothelial-like cells (FMECs). In addition, CX extract can up-regulate the expression of hypoxia inducible factor α (HIF1α) in granulosa cells (GCs) and granulosa layers through PI3K/AKT and RAS/ERK signaling pathways, thereby promoting the secretion of vascular endothelial growth factor A (VEGFA). In conclusion, the current study confirmed the promoting effect of CX extract on the preovulatory follicles angiogenesis, which sets the stage for the design of functional animal feed for late-phase laying hens.


Assuntos
Ligusticum , Folículo Ovariano , Feminino , Animais , Folículo Ovariano/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Tecais/metabolismo , Galinhas/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células da Granulosa
14.
Redox Rep ; 28(1): 2160569, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36661246

RESUMO

PURPOSE: Polycystic ovary syndrome (PCOS) has a series of reproductive and metabolic consequences. Although the link between PCOS, IR, and obesity, their impact on the pathogenesis of PCOS has yet to be determined. Dysfunction of PI3K/AKT pathway has been reported as the main cause of IR in PCOS. This study purposed to explore the effects of selenium nanoparticles (SeNPs) alone and combined with metformin (MET) in a PCOS-IR rat model. METHODS: After 3 weeks of treatment with SeNPs and/or MET, biochemical analysis of glycemic & lipid profiles, and serum reproductive hormones was performed. Inflammatory, oxidative stress, and mitochondrial dysfunction markers were determined colormetrically. The expression of PI3K and Akt genes were evaluated by Real-time PCR. Histopathological examination and Immunohistochemical analysis of Ki-67 expression were performed. RESULTS: The results showed that treatment with SeNPs and/or MET significantly attenuated insulin sensitivity, lipid profile, sex hormones levels, inflammatory, oxidative stress and mitochondrial functions markers. Additionally, PI3K and Akt genes expression were significantly upregulated with improved ovarian histopathological changes. CONCLUSION: Combined SeNPs and MET therapy could be potential therapeutic agent for PCOS-IR model via modulation of the PI3K/Akt pathway, enhancing anti-inflammatory and anti-oxidant properties and altered mitochondrial functions.HighlightsThe strong relationship between obesity, insulin resistance, and polycystic ovarian syndrome.Disturbance of the PI3K/Akt signaling pathway is involved in the progression of polycystic ovary syndrome-insulin resistance (PCOS-IR).In PCOS-IR rats, combined SeNPs and metformin therapy considerably alleviated IR by acting on the PI3K/Akt signaling pathway.The combination of SeNPs and metformin clearly repaired ovarian polycystic pathogenesis and improved hormonal imbalance in PCOS-IR rats.


Assuntos
Resistência à Insulina , Metformina , Nanopartículas , Síndrome do Ovário Policístico , Selênio , Feminino , Humanos , Ratos , Animais , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Letrozol/metabolismo , Letrozol/farmacologia , Letrozol/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Selênio/uso terapêutico , Selênio/metabolismo , Selênio/farmacologia , Metformina/uso terapêutico , Metformina/metabolismo , Metformina/farmacologia , Transdução de Sinais , Oxirredução , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Mitocôndrias/metabolismo , Lipídeos
15.
Altern Ther Health Med ; 29(1): 191-197, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36112793

RESUMO

Background: Gastric cancer is a common malignant tumor of the human digestive system. Currently, the treatment of gastric cancer is still dominated by radiotherapy, chemotherapy and surgery. Although the treatment is very effective, we are also trying to find new treatment methods. Traditional Chinese Medicine (TCM) may play an important role in the treatment of gastric cancer. Study Objective: The aim of this study is to explore the effects of naringin on the proliferation, migration, invasion and apoptosis of gastric cancer and its potential mechanisms. Methods: MGC803 and MKN45 viability were detected by MTT assay. The effects of naringin on cell cloning, migration and invasion were determined by colony formation assay, cell scratch test and transwell assay (ThermoFisher Scientific™, Waltham, Massachusetts USA), respectively. Cell cycle and apoptosis were assayed by flow cytometry. Associated proteins were measured using Western blot and immunohistochemistry (IHC). The experimental results were further verified in nude mice. Setting: This study was carried out in Department of Experimental Animal Center of Xi'an Jiaotong University and the Translation Medicine Center of the First Affiliated Hospital of Xi'an Jiaotong University in China. Results: Cells remained mainly in G0/G1 phase and apoptosis was increased. The nude mouse model showed that naringin treatment could inhibit the growth of tumors in nude mice. Cell scratch tests and transwell assay showed that the invasion and migration abilities of the gastric cancer cell line were significantly reduced after naringin treatment. Western blot showed that the expression of Vimentin, Zeb1 and P-AKT was downregulated and that E-cadherin was upregulated after naringin treatment. Conclusion: Naringin can block the cell-cycle, induce cancer cell apoptosis, and inhibit the epithelial mesenchymal transition (EMT) process by inhibiting the PI3K-AKT/Zeb1 pathway in gastric cancer cells. Therefore, naringin can inhibit the development of gastric cancer.


Assuntos
Neoplasias Gástricas , Animais , Camundongos , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Camundongos Nus , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Transdução de Sinais , Apoptose , Proliferação de Células
16.
Biomater Adv ; 135: 212734, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35929209

RESUMO

In modern clinical applications, wound healing remains a considerable challenge. Excessive inflammatory response is associated with delayed wound healing. In this study, we prepared composite nanofibrous membranes by mixing the Chinese herbal extract puerarin (PUE) with natural silk protein (SF) and synthetic polymer polyvinylpyrrolidone (PVP) using electrostatic spinning technique, and conducted a series of studies on the structural and biological properties of the fibrous membranes. The results showed that the loading of PUE increased the diameter, porosity and hydrophilicity of nanofibers, which were more favorable for cell adhesion and proliferation. ABTS radical scavenging assay also showed that the loading of PUE enhanced the antioxidant properties of the fibrous membranes. In addition, SF/PVP/PUE nanofibers are non-toxic and can be used as wound dressings. In vitro experiments showed that SF/PVP/PUE nanofibers could effectively alleviate lipopolysaccharide (LPS)-induced inflammation in Immortalized human keratinocytes (HaCaT) cells and down-regulate pro-inflammatory cytokine expression in cells. In vivo studies further showed that the SF/PVP/PUE nanofibers could effectively accelerate wound repair. The mechanism is that SF/PVP/PUE nanofibers can inhibit the activation and transduction of toll-like receptor 4/myeloid differentiation factor88/nuclear factor kappa B (TLR4/MyD88/NF-κB) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathways, thereby reducing the inflammatory response and achieving wound healing.


Assuntos
Fibroínas , Nanofibras , Animais , Fibroínas/química , Humanos , Isoflavonas , Camundongos , NF-kappa B/farmacologia , Nanofibras/química , Fosfatidilinositol 3-Quinases/farmacologia , Povidona/farmacologia , Seda/farmacologia , Cicatrização
17.
Poult Sci ; 101(7): 101938, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35679671

RESUMO

Preovulatory follicles need a network of blood vessels to growth and maturation in hens (Gallus gallus). Angelica sinensis (Oliv.) (AS), a traditional Chinese herb, displays a novel pro-angiogenic activity. The molecular mechanisms underlying AS promoting preovulatory follicles angiogenesis are poorly understand. Several recent studies investigated the expression of vascular endothelial growth factor A (VEGF-A) in angiogenesis. In order to explore the promotion effect of AS extract on angiogenesis of chicken preovulatory follicles, we studied the effect of AS extract on follicle microvascular endothelial-like cells of chicken (FMEC) and granulosa cells (GC). The current study indicated that AS extract could promote the proliferation of FMECs and GCs. The assays of wounding healing, transwell invasion and tube formation showed that AS extract could enhance the invasion and migration ability of FMECs in vitro. The results of western blot and RT-PCR showed that AS extract promoted the phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) in FMECs by activating the PI3K/AKT signaling pathway. The AS extract activated PI3K/AKT signaling pathway and up-regulated the expressions of hypoxia-inducible factor 1-α (HIF1-α) and VEGF-A in GCs. In addition, treatment of FMECs and GCs with LY294002 (a PI3K inhibitor) significantly down-regulated the phosphorylation of VEGFR2, VEGF-A, and HIF1-α. The mRNA expression levels of PI3K, AKT, VEGF-A, VEGFR2, and HIF1-α were consistent with protein expression levels. In conclusion, our research showed that AS extract can promote the follicle angiogenesis in hens in vitro, providing a basis for application of the traditional Chinese herb AS in poultry production.


Assuntos
Angelica sinensis , Fator A de Crescimento do Endotélio Vascular , Angelica sinensis/metabolismo , Animais , Proliferação de Células , Galinhas/metabolismo , Feminino , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Phytother Res ; 36(6): 2272-2299, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35583806

RESUMO

Iridoid glycosides (IGs) are found in many medicinal and edible plants, such as Gardenia jasminoides, Cistanche tubulosa, Eucommia ulmoides, Rehmanniae Radix, Lonicera japonica, and Cornus officinalis. Loganin, an IG, is one of the main active ingredient of Cornus officinalis Sieb. et Zucc., which approved as a medicinal and edible plant in China. Loganin has been widely concerned due to its extensive pharmacological effects, including anti-diabetic, antiinflammatory, neuroprotective, and anti-tumor activities, etc. Studies have shown that these underlying mechanisms include anti-oxidation, antiinflammation and anti-apoptosis by regulating a variety of signaling pathways, such as STAT3/NF-κB, JAK/STAT3, TLR4/NF-κB, PI3K/Akt, MCP-1/CCR2, and RAGE/Nox4/p65 NF-κB signaling pathways. In order to better understand the research status of loganin and promote its application in human health, this paper systematically summarized the phytochemistry, analysis methods, synthesis, pharmacological properties and related mechanisms, and pharmacokinetics based on the research in the past decades.


Assuntos
Cornus , Iridoides , Transdução de Sinais , Cornus/química , Humanos , Iridoides/farmacocinética , Iridoides/farmacologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia
19.
Int J Environ Health Res ; 32(5): 1011-1019, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32909456

RESUMO

Liquidambar orientalis Mill (LOM), is an endemic species having a local distribution in the southwestern coastal district of Turkey. Styrax liquidus gum (SLG), is a gum-like resinous which exudates in response to injury of the trunk of LOM. The aim of the study was to investigate the cytotoxic effects and the molecular mechanisms of the ethanolic SLG extract in human prostate cancer cells. GC-MS analysis was performed to identify the volatile compound composition. Cytotoxicity was determined by XTT analysis. Apoptosis and necrosis were evaluated via ELISA assay. Autophagic cell death was detected via monodansylcadaverine (MDC) staining and by measuring the levels of LC3I and LC3II. The protein levels of p-PI3K, p-Akt and p-mTOR were evaluated by western blot analysis. In the present study, it is shown that the SLG extract containing a considerable amount of ravidomycin derivate induced autophagic cell death in prostate cancer cells via inhibiting the PI3K/Akt/mTOR pathway.


Assuntos
Liquidambar , Neoplasias da Próstata , Apoptose , Autofagia , Humanos , Liquidambar/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia
20.
Oral Dis ; 28(6): 1628-1639, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33682270

RESUMO

BACKGROUND/OBJECTIVES: Fucoidan has been focused as a multifunctional therapeutic uses including bone health supplements. However, the critical molecular mechanisms of fucoidan for bone therapeutic agents have not been fully understood. We investigated the osteoinductive effect of fucoidan on periodontal ligament stem cells (PDLSCs) and how this polymer encouraged PDLSC osteogenesis. MATERIALS AND METHODS: Osteogenic induction of PDLSCs was processed by culturing cells with fucoidan treatment. Osteogenic differentiation of PDLSCs was verified by alkaline phosphatase (ALP) activity, matrix mineralization assay, intracellular calcium levels, and mRNA expression and protein levels of osteogenic markers. RESULTS: Fucoidan treatment showed higher osteogenic activity in the PDLSCs than the control groups. PDLSCs with fucoidan also presented increased levels of the phosphatidylinositol-3-kinase (PI3K) isoforms, p110α and p110γ compared to control cells. The phosphorylation of Akt, a PI3K downstream effector, was significantly increased at 90 min of fucoidan induction. Expression of ß-catenin, a coactivator of canonical Wnt pathways, was increased in PDLSCs with fucoidan. ß-catenin was found to link with PI3K activation during the fucoidan stimulation. When cells were blocked by PI3K inhibitor or ß-catenin-specific siRNA, fucoidan-induced osteogenic activity of PDLSCs was significantly attenuated. CONCLUSION: These findings suggest that the fucoidan stimulates osteogenic differentiation of PDLSCs via the PI3K/Akt and Wnt/ß-catenin pathways.


Assuntos
Ligamento Periodontal , Via de Sinalização Wnt , Diferenciação Celular , Células Cultivadas , Osteogênese , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Polissacarídeos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células-Tronco/fisiologia , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA