RESUMO
Glutamate decarboxylase (GAD) has the potential of converting L-glutamate to gamma-aminobutyric acid (GABA), which is an important non-proteinogenic amino acid that has a potential use as food additive or dietary supplement for its physiological functions. A novel pyridoxal 5'-phosphate (PLP)-dependent glutamate decarboxylase (LsGAD) was cloned from GRAS (generally recognized as safe) Lactobacillus senmaizukei by genome mining and efficiently expressed in Escherichia coli BL21. The LsGAD displayed excellent temperature property, pH property and kinetic parameters compared with the probe LbGAD and the other GADs. By increasing the copy number of the LsGAD encoding gene, the expression level of LsGAD and the biosynthesis yield of GABA were increased, which was near to 2 times of that was expressed in single copy. These results established a solid foundation for increasing the added value of L-glutamate and the biosynthesis of GABA.
Assuntos
Escherichia coli/genética , Glutamato Descarboxilase/genética , Ácido gama-Aminobutírico/genética , Fermentação/genética , Cinética , Lactobacillus/genética , Fosfato de Piridoxal/genética , TemperaturaRESUMO
Vitamin B6 is an essential vitamin needed for many chemical reactions in the human body. It exists as several vitamins forms but pyridoxal 5'-phosphate (PLP) is the phosphorylated form needed for transamination, deamination, and decarboxylation. PLP is important in the production of neurotransmitters, acts as a Schiff base and is essential in the metabolism of homocysteine, a toxic amino acid involved in cardiovascular disease, stroke, thrombotic and Alzheimer's disease. This report announces the connection between a deficit of PLP with a genetically linked physical foot form known as the Morton's foot. Morton's foot has been associated with fibromyalgia/myofascial pain syndrome. Another gene mutation methylenetetrahydrofolate reductase (MTHFr) is now being recognized much commonly than previous with chronic fatigue, chronic Lyme diseases and as "the missing link" in other chronic diseases. PLP deficiency also plays a role in impaired glucose tolerance and may play a much bigger role in the obesity, diabetes, fatty liver and metabolic syndrome. Without the Schiff-base of PLP acting as an electron sink, storing electrons and dispensing them in the mitochondria, free radical damage occurs! The recognition that a phenotypical expression (Morton's foot) of a gene resulting in deficiency of an important cofactor enzyme pyridoxal 5'-phosphate will hopefully alert physicians and nutritionist to these phenomena. Supplementation with PLP, L5-MTHF, B12 and trimethylglycine should be used in those patients with hyperhomocysteinemia and/or MTHFR gene mutation.
Assuntos
Deformidades do Pé/genética , Síndromes da Dor Miofascial/genética , Fosfato de Piridoxal/deficiência , Fibromialgia/genética , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Mitocôndrias/metabolismo , Mutação , Síndromes da Dor Miofascial/metabolismo , Síndromes da Dor Miofascial/terapia , Neurotransmissores/metabolismo , Fenótipo , Fosfato de Piridoxal/genética , Bases de Schiff/metabolismo , Vitamina B 12/metabolismoRESUMO
Although pyridoxine-dependent seizures have been reported for decades, pyridoxamine phosphate oxidase deficiency has only been recently described. Pyridoxamine phosphate oxidase (PNPO) is one of a series of enzymes involved in converting pyridoxine to pyridoxal 5'-phosphate, the biologically active form of pyridoxine. PNPO deficiency is associated with decreased levels of pyridoxal 5'-phosphate in CSF, as well as epilepsy. We describe four children up to 16 years of age with intractable seizures who all had low cerebrospinal fluid (CSF) levels of pyridoxal 5'-phosphate. Only one of the four children possessed a genetic alteration, a novel homozygous variant in exon one of the PNPO gene. Three of four, however, showed at least some clinical improvement with pyridoxal 5'-phosphate supplementation. Low CSF pyridoxal 5'-phosphate levels, although considered a diagnostic biomarker for PNPO deficiency, lack specificity and may result from multiple other causes. Genetic testing and CSF evaluation, along with clinical response are all necessary for accurate diagnosis.
Assuntos
Fosfato de Piridoxal/líquido cefalorraquidiano , Convulsões/líquido cefalorraquidiano , Deficiência de Vitamina B 6/líquido cefalorraquidiano , Adolescente , Biomarcadores/líquido cefalorraquidiano , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Fosfato de Piridoxal/deficiência , Fosfato de Piridoxal/genética , Fosfato de Piridoxal/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/genética , Resultado do Tratamento , Vitamina B 6/genética , Deficiência de Vitamina B 6/genéticaRESUMO
We describe the electroencephalographic and clinical seizure manifestations of pyridoxal 5'-phosphate-dependent epilepsy (PLP-DE) in two patients [diagnosis confirmed by low cerebrospinal fluid (CSF) PLP, complete resolution of previously intractable seizures with PLP supplementation, negative pyridoxine-dependent epilepsy CSF biomarkers, and/or positive disease causing pyridox(am)ine 5'-phosphate oxidase gene mutation] along with a comprehensive review of the literature. One patient presented with neonatal tonic status epilepticus with subsequent generalized tonic-clonic seizures, and the second, with refractory complex partial seizures starting at 2 years of age. The pretreatment EEG revealed, interictally, burst suppression, multifocal independent sharp waves, and electrical status epilepticus in sleep. Ictally and interictally, it revealed runs of unilateral spike/slow waves. Previously reported features include burst suppression, myoclonus, tonic seizures, clonic seizures, and spasms. In the appropriate clinical scenario, the aforementioned features should raise the possibility of PLP-DE and appropriate treatment should be initiated. The first late-onset case (at 2 years) of PLP-DE is reported.