Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 104919, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315792

RESUMO

Coenzymes are important for all classes of enzymatic reactions and essential for cellular metabolism. Most coenzymes are synthesized from dedicated precursors, also referred to as vitamins, which prototrophic bacteria can either produce themselves from simpler substrates or take up from the environment. The extent to which prototrophs use supplied vitamins and whether externally available vitamins affect the size of intracellular coenzyme pools and control endogenous vitamin synthesis is currently largely unknown. Here, we studied coenzyme pool sizes and vitamin incorporation into coenzymes during growth on different carbon sources and vitamin supplementation regimes using metabolomics approaches. We found that the model bacterium Escherichia coli incorporated pyridoxal, niacin, and pantothenate into pyridoxal 5'-phosphate, NAD, and coenzyme A (CoA), respectively. In contrast, riboflavin was not taken up and was produced exclusively endogenously. Coenzyme pools were mostly homeostatic and not affected by externally supplied precursors. Remarkably, we found that pantothenate is not incorporated into CoA as such but is first degraded to pantoate and ß-alanine and then rebuilt. This pattern was conserved in various bacterial isolates, suggesting a preference for ß-alanine over pantothenate utilization in CoA synthesis. Finally, we found that the endogenous synthesis of coenzyme precursors remains active when vitamins are supplied, which is consistent with described expression data of genes for enzymes involved in coenzyme biosynthesis under these conditions. Continued production of endogenous coenzymes may ensure rapid synthesis of the mature coenzyme under changing environmental conditions, protect against coenzyme limitation, and explain vitamin availability in naturally oligotrophic environments.


Assuntos
Coenzimas , Escherichia coli , beta-Alanina , beta-Alanina/metabolismo , Coenzima A/biossíntese , Coenzimas/biossíntese , Piridoxal , Fosfato de Piridoxal/metabolismo , Vitaminas/metabolismo , Escherichia coli/metabolismo , NAD/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo
2.
Int J Biol Macromol ; 235: 123814, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36841388

RESUMO

Pyridoxal 5'-phosphate (PLP), an essential cofactor for multiple enzymes, was used as a protein decoy to prompt enzyme expression and activity for the first time. The best chassis, denoted as WJK, was developed using a pyridoxal kinase (PdxK) and integrated at the HK022 phage attack site of Escherichia coli W3110. When compared with the original strain, the amount and activity of lysine decarboxylase (CadA) in WJK were significantly increased by 100 % and 120 %, respectively. When supplementary nineteen amino acids as second carbon source, cell growth and protein trade-off were observed. The transcriptional levels of genes from glycolysis to TCA cycle, adhE, argH and gdhA were dominating and redirected more flux into α-ketoglutarate, thus facilitated cell growth. Stepwise improvement was conducted with pyridoxal and nitrogen-rich medium; hence, CadA activity was increased to 60 g-cadaverine/g-dry cell weight/h. By reutilizing the whole-cell biocatalysts in two repeated reactions with the supplementation of fresh cells, a total cadaverine of 576 g/L was obtained even without additional PLP. Notably, PLP decoy augment the enzymatic activities of 5-aminolevulinic acid synthase and glutamate/lysine/arginine decarboxylases by over 100 %. Finally, a conserved PLP-binding pocket, Ser-His-Lys, was identified as a vital PLP sponge site that simultaneously improved protein quality and quantity.


Assuntos
Escherichia coli , Engenharia Metabólica , Fosfato de Piridoxal , Escherichia coli/metabolismo , Fosfato de Piridoxal/metabolismo , Carboxiliases/metabolismo , Transformação Genética , Cadaverina/metabolismo , Piridoxal Quinase/metabolismo , Engenharia Metabólica/métodos
3.
Arch Biochem Biophys ; 726: 109238, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35680445

RESUMO

1-Aminocyclopropanecarboxylate (ACC) synthase, which catalyzes the conversion of S-adenosylmethionine (SAM) to ACC and methylthioadenosine, was demonstrated in tomato extract. Methylthioadenosine was then rapidly hydrolyzed to methylthioribose by a nucleosidase present in the extract. ACC synthase had an optimum pH of 8.5, and a Km of 20 µM with respect to SAM. S-Adenosylethionine also served as a substrate for ACC synthase, but at a lower efficiency than that of SAM. Since S-adenosylethionine had a higher affinity for the enzyme than SAM, it inhibited the reaction of SAM when both were present. S-Adenosylhomocysteine was, however, an inactive substrate. The enzyme was activated by pyridoxal phosphate at a concentration of 0.1 µM or higher, and competitively inhibited by aminoethoxyvinylglycine and aminooxyacetic acid, which are known to inhibit pyridoxal phosphate-mediated enzymic reactions. These results support the view that ACC synthase is a pyridoxal enzyme. The biochemical role of pyridoxal phosphate is catalyzing the formation of ACC by α,γ-elimination of SAM is discussed.


Assuntos
Liases , Fosfato de Piridoxal , Etilenos/metabolismo , Liases/metabolismo , Extratos Vegetais , Fosfato de Piridoxal/metabolismo , S-Adenosilmetionina/metabolismo
4.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33218995

RESUMO

Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B6, essential for cellular function in all domains of life. In many organisms, such as Salmonella enterica serovar Typhimurium and Escherichia coli, this cofactor can be synthesized de novo or salvaged from B6 vitamers in the environment. Unexpectedly, S. enterica strains blocked in PLP biosynthesis were able to use exogenous PLP and pyridoxine 5'-phosphate (PNP) as the source of this required cofactor, while E. coli strains of the same genotype could not. Transposon mutagenesis found that phoN was essential for the salvage of PLP and PNP under the conditions tested. phoN encodes a class A nonspecific acid phosphatase (EC 3.1.3.2) that is transcriptionally regulated by the PhoPQ two-component system. The periplasmic location of PhoN was essential for PLP and PNP salvage, and in vitro assays confirmed PhoN has phosphatase activity with PLP and PNP as substrates. The data suggest that PhoN dephosphorylates B6 vitamers, after which they enter the cytoplasm and are phosphorylated by kinases of the canonical PLP salvage pathway. The connection of phoN with PhoPQ and the broad specificity of the gene product suggest S. enterica is exploiting a moonlighting activity of PhoN for PLP salvage.IMPORTANCE Nutrient salvage is a strategy used by species across domains of life to conserve energy. Many organisms are unable to synthesize all required metabolites de novo and must rely exclusively on salvage. Others supplement de novo synthesis with the ability to salvage. This study identified an unexpected mechanism present in S. enterica that allows salvage of phosphorylated B6 vitamers. In vivo and in vitro data herein determined that the periplasmic phosphatase PhoN can facilitate the salvage of PLP and PNP. We suggest a mechanistic working model of PhoN-dependent utilization of PLP and PNP and discuss the general role of promiscuous phosphatases and kinases in organismal fitness.


Assuntos
Proteínas de Bactérias/metabolismo , Periplasma/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Fosfato de Piridoxal/análogos & derivados , Salmonella enterica/enzimologia , Escherichia coli/genética , Fosfato de Piridoxal/metabolismo , Salmonella enterica/genética
5.
J Nutr ; 150(Suppl 1): 2556S-2560S, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000154

RESUMO

Lysine is an essential amino acid, and inherited diseases of its metabolism therefore represent defects of lysine catabolism. Although some of these enzyme defects are not well described yet, glutaric aciduria type I (GA1) and antiquitin (2-aminoadipic-6-semialdehyde dehydrogenase) deficiency represent the most well-characterized diseases. GA1 is an autosomal recessive disorder due to a deficiency of glutaryl-CoA dehydrogenase. Untreated patients exhibit early onset macrocephaly and may present a neurological deterioration with regression and movement disorder at the time of a presumably "benign" infection most often during the first year of life. This is associated with a characteristic neuroimaging pattern with frontotemporal atrophy and striatal injuries. Diagnosis relies on the identification of glutaric and 3-hydroxyglutaric acid in urine along with plasma glutarylcarnitine. Treatment consists of a low-lysine diet aiming at reducing the putatively neurotoxic glutaric and 3-hydroxyglutaric acids. Additional therapeutic measures include administration of l-carnitine associated with emergency measures at the time of intercurrent illnesses aiming at preventing brain injury. Early treated (ideally through newborn screening) patients exhibit a favorable long-term neurocognitive outcome, whereas late-treated or untreated patients may present severe neurocognitive irreversible disabilities. Antiquitin deficiency is the most common form of pyridoxine-dependent epilepsy. α-Aminoadipic acid semialdehyde (AASA) and Δ-1-piperideine-6-carboxylate (P6C) accumulate proximal to the enzymatic block. P6C forms a complex with pyridoxal phosphate (PLP), a key vitamer of pyridoxine, thereby reducing PLP bioavailability and subsequently causing epilepsy. Urinary AASA is a biomarker of antiquitin deficiency. Despite seizure control, only 25% of the pyridoxine-treated patients show normal neurodevelopment. Low-lysine diet and arginine supplementation are proposed in some patients with decrease of AASA, but the impact on neurodevelopment is unclear. In summary, GA1 and antiquitin deficiency are the 2 main human defects of lysine catabolism. Both include neurological impairment. Lysine dietary restriction is a key therapy for GA1, whereas its benefits in antiquitin deficiency appear less clear.


Assuntos
Aldeído Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encefalopatias Metabólicas Congênitas/metabolismo , Encefalopatias Metabólicas/metabolismo , Encéfalo/metabolismo , Epilepsia/metabolismo , Glutaril-CoA Desidrogenase/deficiência , Lisina/metabolismo , Ácido 2-Aminoadípico/análogos & derivados , Ácido 2-Aminoadípico/metabolismo , Aldeído Desidrogenase/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Arginina/uso terapêutico , Encéfalo/patologia , Encefalopatias Metabólicas/terapia , Encefalopatias Metabólicas Congênitas/terapia , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina/uso terapêutico , Epilepsia/terapia , Glutaratos/metabolismo , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/terapia , Fosfato de Piridoxal/metabolismo , Piridoxina/metabolismo , Piridoxina/uso terapêutico
6.
J Nutr ; 150(10): 2699-2706, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32805038

RESUMO

BACKGROUND: Riboflavin is required to generate the active form of vitamin B-6 (pyridoxal 5'-phosphate; PLP) in tissues, but the relevance of this metabolic interaction for nutritional status of vitamin B-6 is unclear because riboflavin biomarkers are rarely measured in human studies. OBJECTIVES: The purpose of this study was to identify the determinants of biomarkers of vitamin B-6 and riboflavin status and to examine the relationship between these nutrients in healthy adults. METHODS: Multiple linear regression was performed on observational data in 407 healthy adults aged 18-92 y who did not use B-vitamin supplements. Vitamin B-6 status was assessed by plasma PLP concentrations and erythrocyte glutathione reductase activation coefficient (EGRac) was used as a functional indicator of riboflavin status. RESULTS: Dietary intakes of vitamin B-6 and riboflavin were below the average requirements in 10% and 29% of participants, respectively. Suboptimal status of vitamin B-6 (PLP ≤30.0 nmol/L) was more prevalent in adults aged ≥60 y than in younger participants (i.e., 14% compared with 5%), whereas a high proportion (i.e., overall 37%) of both age groups had deficient riboflavin status (EGRac ≥1.40). In multiple regression analysis, EGRac (P = 0.019) was a significant determinant of plasma PLP, along with dietary vitamin B-6 intake (P = 0.003), age (P < 0.001), BMI (kg/m2) (P = 0.031), and methylenetetrahydrofolate reductase gene (MTHFR) genotype (P < 0.001). Significant determinants of EGRac were dietary riboflavin intake (P < 0.001), age (P < 0.001) and MTHFR genotype (P = 0.020). Plasma PLP showed a stepwise decrease across riboflavin status categories from optimal (EGRac ≤1.26) to low (EGRac 1.27-1.39) to deficient status (P = 0.001), independent of dietary vitamin B-6 intake. CONCLUSIONS: The findings are consistent with the known metabolic dependency of vitamin B-6 on riboflavin status and indicate that riboflavin may be the limiting nutrient, particularly in older people, for maintaining adequate vitamin B-6 status.


Assuntos
Riboflavina/administração & dosagem , Vitamina B 6/administração & dosagem , Adulto , Idoso , Envelhecimento , Dieta , Humanos , Estilo de Vida , Pessoa de Meia-Idade , Fosfato de Piridoxal/sangue , Fosfato de Piridoxal/metabolismo , Adulto Jovem
7.
Int J Med Mushrooms ; 22(2): 171-181, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32479005

RESUMO

Ergothioneine is a natural 2-thiol-amidazole amino acid that plays an important role in inflammation, depression, and cardiovascular disease. Flammulina velutipes is a common basidiomycete mushroom rich in ergothioneine (EGT). However, the biosynthetic pathway of EGT in F. velutipes is still unclear. In this study, the F. velutipes ergothioneine biosynthetic gene 1 (Fvegtl), F. velutipes ergothioneine biosynthetic gene 2 (Fvegt2), and F. velutipes ergothioneine biosynthetic gene 3 (Fvegt3) were cloned and expressed, and the activities of the proteins encoded by these three genes (FvEgt1, F. velutipes ergothioneine biosynthase 1; FvEgt2, F. velutipes ergothioneine biosynthase 2; and FvEgt3, F. velutipes ergothioneine biosynthase 3) were identified. The results showed that FvEgtl not only has the function of methyltransferase, but also has the function of hercynlcysteineteine sulfoxide (Hersul) synthase, which can catalyze the production of Hersul from histidine and cysteine in F. velutipes. FvEgt2 and FvEgt3 are two functionally different cysteine desulfurase enzymes. Among them, FvEgt2 is a cysteine-cysteine desulfurase-which catalyzes the activation of the S-H bond on cysteine, while FvEgt3 is a pyridoxal phosphate (PLP)-dependent cysteine desulfurase responsible for catalyzing the production of ketimine complex. Our results show that FvEgt1/FvEgt2/FvEgt3 can simultaneously catalyze the production of EGT by histidine, cysteine, and pyridoxal phosphate. Collectively, the in vitro synthesis of EGT in the edible fungus F. velutipes was first achieved, which laid the foundation for the biological production of EGT.


Assuntos
Antioxidantes/metabolismo , Vias Biossintéticas/genética , Ergotioneína/metabolismo , Flammulina/química , Agaricales , Antioxidantes/química , Cisteína/metabolismo , Ergotioneína/química , Escherichia coli/genética , Escherichia coli/metabolismo , Flammulina/enzimologia , Flammulina/genética , Expressão Gênica , Histidina/metabolismo , Fosfato de Piridoxal/metabolismo
8.
Mol Microbiol ; 113(1): 270-284, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677193

RESUMO

The YggS/Ybl036c/PLPBP family includes conserved pyridoxal 5'-phosphate (PLP)-binding proteins that play a critical role in the homeostasis of vitamin B6 and amino acids. Disruption of members of this family causes pleiotropic effects in many organisms by unknown mechanisms. In Escherichia coli, conditional lethality of the yggS and glyA (encoding serine hydroxymethyltransferase) has been described, but the mechanism of lethality was not determined. Strains lacking yggS and serA (3-phosphoglycerate dehydrogenase) were conditionally lethality in the M9-glucose medium supplemented with Gly. Analyses of vitamin B6 pools found the high-levels of pyridoxine 5'-phosphate (PNP) in the two yggS mutants. Growth defects of the double mutants could be eliminated by overexpressing PNP/PMP oxidase (PdxH) to decrease the PNP levels. Further, a serA pdxH strain, which accumulates PNP in the presence of yggS, exhibited similar phenotype to serA yggS mutant. Together these data suggested the inhibition of the glycine cleavage (GCV) system caused the synthetic lethality. Biochemical assays confirmed that PNP disrupts the GCV system by competing with PLP in GcvP protein. Our data are consistent with a model in which PNP-dependent inhibition of the GCV system causes the conditional lethality observed in the glyA yggS or serA yggS mutants.


Assuntos
Aminoácido Oxirredutases/genética , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Complexos Multienzimáticos/genética , Fosfato de Piridoxal/análogos & derivados , Transferases/genética , Proteínas de Transporte/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Fosfato de Piridoxal/metabolismo , Mutações Sintéticas Letais
9.
Proc Natl Acad Sci U S A ; 115(5): 974-979, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29343643

RESUMO

Capuramycins are antimycobacterial antibiotics that consist of a modified nucleoside named uridine-5'-carboxamide (CarU). Previous biochemical studies have revealed that CarU is derived from UMP, which is first converted to uridine-5'-aldehyde in a reaction catalyzed by the dioxygenase CapA and subsequently to 5'-C-glycyluridine (GlyU), an unusual ß-hydroxy-α-amino acid, in a reaction catalyzed by the pyridoxal-5'-phosphate (PLP)-dependent transaldolase CapH. The remaining steps that are necessary to furnish CarU include decarboxylation, O atom insertion, and oxidation. We demonstrate that Cap15, which has sequence similarity to proteins annotated as bacterial, PLP-dependent l-seryl-tRNA(Sec) selenium transferases, is the sole catalyst responsible for complete conversion of GlyU to CarU. Using a complementary panel of in vitro assays, Cap15 is shown to be dependent upon substrates O2 and (5'S,6'R)-GlyU, the latter of which was unexpected given that (5'S,6'S)-GlyU is the isomeric product of the transaldolase CapH. The two products of Cap15 are identified as the carboxamide-containing CarU and CO2 While known enzymes that catalyze this type of chemistry, namely α-amino acid 2-monooxygenase, utilize flavin adenine dinucleotide as the redox cofactor, Cap15 remarkably requires only PLP. Furthermore, Cap15 does not produce hydrogen peroxide and is shown to directly incorporate a single O atom from O2 into the product CarU and thus is an authentic PLP-dependent monooxygenase. In addition to these unusual discoveries, Cap15 activity is revealed to be dependent upon the inclusion of phosphate. The biochemical characteristics along with initiatory mechanistic studies of Cap15 are reported, which has allowed us to assign Cap15 as a PLP-dependent (5'S,6'R)-GlyU:O2 monooxygenase-decarboxylase.


Assuntos
Oxigenases/metabolismo , Fosfato de Piridoxal/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Coenzimas/metabolismo , Genes Bacterianos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxigenases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
10.
Biochem Biophys Res Commun ; 495(2): 1815-1821, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29233695

RESUMO

l-lysine is an essential amino acid that is widely used as a food supplement for humans and animals. meso-Diaminopimelic acid decarboxylase (DAPDC) catalyzes the final step in the de novol-lysine biosynthetic pathway by converting meso-diaminopimelic acid (meso-DAP) into l-lysine by decarboxylation reaction. To elucidate its molecular mechanisms, we determined the crystal structure of DAPDC from Corynebacterium glutamicum (CgDAPDC). The PLP cofactor is bound at the center of the barrel domain and forms a Schiff base with the catalytic Lys75 residue. We also determined the CgDAPDC structure in complex with both pyridoxal 5'-phosphate (PLP) and the l-lysine product and revealed that the protein has an optimal substrate binding pocket to accommodate meso-DAP as a substrate. Structural comparison of CgDAPDC with other amino acid decarboxylases with different substrate specificities revealed that the position of the α15 helix in CgDAPDC and the residues located on the helix are crucial for determining the substrate specificities of the amino acid decarboxylases.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carboxiliases/química , Carboxiliases/metabolismo , Corynebacterium glutamicum/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Carboxiliases/genética , Domínio Catalítico , Corynebacterium glutamicum/genética , Cristalografia por Raios X , Lisina/biossíntese , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína , Fosfato de Piridoxal/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
11.
J Inherit Metab Dis ; 40(6): 883-891, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801717

RESUMO

Pyridoxal 5'-phosphate (PLP), the metabolically active form of vitamin B6, plays an essential role in brain metabolism as a cofactor in numerous enzyme reactions. PLP deficiency in brain, either genetic or acquired, results in severe drug-resistant seizures that respond to vitamin B6 supplementation. The pathogenesis of vitamin B6 deficiency is largely unknown. To shed more light on the metabolic consequences of vitamin B6 deficiency in brain, we performed untargeted metabolomics in vitamin B6-deprived Neuro-2a cells. Significant alterations were observed in a range of metabolites. The most surprising observation was a decrease of serine and glycine, two amino acids that are known to be elevated in the plasma of vitamin B6 deficient patients. To investigate the cause of the low concentrations of serine and glycine, a metabolic flux analysis on serine biosynthesis was performed. The metabolic flux results showed that the de novo synthesis of serine was significantly reduced in vitamin B6-deprived cells. In addition, formation of glycine and 5-methyltetrahydrofolate was decreased. Thus, vitamin B6 is essential for serine de novo biosynthesis in neuronal cells, and serine de novo synthesis is critical to maintain intracellular serine and glycine. These findings suggest that serine and glycine concentrations in brain may be deficient in patients with vitamin B6 responsive epilepsy. The low intracellular 5-mTHF concentrations observed in vitro may explain the favourable but so far unexplained response of some patients with pyridoxine-dependent epilepsy to folinic acid supplementation.


Assuntos
Serina/metabolismo , Vitamina B 6/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Glicina/sangue , Glicina/metabolismo , Humanos , Fosfato de Piridoxal/sangue , Fosfato de Piridoxal/metabolismo , Piridoxina/sangue , Serina/sangue , Vitamina B 6/sangue , Deficiência de Vitamina B 6/sangue , Deficiência de Vitamina B 6/metabolismo
12.
ACS Infect Dis ; 3(7): 467-478, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28636325

RESUMO

1-Deoxy-d-xylulose 5-phosphate (DXP) synthase catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate and d-glyceraldehyde 3-phosphate. DXP is at a metabolic branch point in bacteria, feeding into the methylerythritol phosphate pathway to indispensable isoprenoids and acting as a precursor for biosynthesis of essential cofactors in central metabolism, pyridoxal phosphate and ThDP, the latter of which is also required for DXP synthase catalysis. DXP synthase follows a unique random sequential mechanism and possesses an unusually large active site. These features have guided the design of sterically demanding alkylacetylphosphonates (alkylAPs) toward the development of selective DXP synthase inhibitors. alkylAPs studied here display selective, low µM inhibitory activity against DXP synthase. They are weak inhibitors of bacterial growth in standard nutrient rich conditions. However, bacteria are significantly sensitized to most alkylAPs in defined minimal growth medium, with minimal inhibitory concentrations (MICs) ranging from low µM to low mM and influenced by alkyl-chain length. The longest analog (C8) displays the weakest antimicrobial activity and is a substrate for efflux via AcrAB-TolC. The dependence of inhibitor potency on growth environment emphasizes the need for antimicrobial screening conditions that are relevant to the in vivo microbial microenvironment during infection. DXP synthase expression and thiamin supplementation studies offer support for DXP synthase as an intracellular target for some alkylAPs and reveal both the challenges and intriguing aspects of these approaches to study target engagement.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Organofosfonatos/farmacologia , Transferases/antagonistas & inibidores , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Antibacterianos/síntese química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Inibidores Enzimáticos/síntese química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Gliceraldeído 3-Fosfato/metabolismo , Testes de Sensibilidade Microbiana , Organofosfonatos/síntese química , Plasmídeos/química , Plasmídeos/metabolismo , Fosfato de Piridoxal/metabolismo , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiamina Pirofosfato/metabolismo , Transferases/genética , Transferases/metabolismo
13.
PLoS One ; 12(1): e0170163, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28095457

RESUMO

Lysine decarboxylase (LDC) catalyzes the decarboxylation of l-lysine to produce cadaverine, an important industrial platform chemical for bio-based polyamides. However, due to high flexibility at the pyridoxal 5-phosphate (PLP) binding site, use of the enzyme for cadaverine production requires continuous supplement of large amounts of PLP. In order to develop an LDC enzyme from Selenomonas ruminantium (SrLDC) with an enhanced affinity for PLP, we introduced an internal disulfide bond between Ala225 and Thr302 residues with a desire to retain the PLP binding site in a closed conformation. The SrLDCA225C/T302C mutant showed a yellow color and the characteristic UV/Vis absorption peaks for enzymes with bound PLP, and exhibited three-fold enhanced PLP affinity compared with the wild-type SrLDC. The mutant also exhibited a dramatically enhanced LDC activity and cadaverine conversion particularly under no or low PLP concentrations. Moreover, introduction of the disulfide bond rendered SrLDC more resistant to high pH and temperature. The formation of the introduced disulfide bond and the maintenance of the PLP binding site in the closed conformation were confirmed by determination of the crystal structure of the mutant. This study shows that disulfide bond-mediated spatial reconstitution can be a platform technology for development of enzymes with enhanced PLP affinity.


Assuntos
Cadaverina/metabolismo , Carboxiliases/metabolismo , Dissulfetos/metabolismo , Lisina/metabolismo , Proteínas Mutantes/metabolismo , Fosfato de Piridoxal/metabolismo , Selenomonas/enzimologia , Sítios de Ligação , Carboxiliases/química , Carboxiliases/genética , Domínio Catalítico , Dissulfetos/química , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação/genética , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Mol Aspects Med ; 53: 10-27, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27593095

RESUMO

The active form of vitamin B6, pyridoxal 5'-phosphate (PLP), serves as a co-factor in more than 150 enzymatic reactions. Plasma PLP has consistently been shown to be low in inflammatory conditions; there is a parallel reduction in liver PLP, but minor changes in erythrocyte and muscle PLP and in functional vitamin B6 biomarkers. Plasma PLP also predicts the risk of chronic diseases like cardiovascular disease and some cancers, and is inversely associated with numerous inflammatory markers in clinical and population-based studies. Vitamin B6 intake and supplementation improve some immune functions in vitamin B6-deficient humans and experimental animals. A possible mechanism involved is mobilization of vitamin B6 to the sites of inflammation where it may serve as a co-factor in pathways producing metabolites with immunomodulating effects. Relevant vitamin B6-dependent inflammatory pathways include vitamin B6 catabolism, the kynurenine pathway, sphingosine 1-phosphate metabolism, the transsulfuration pathway, and serine and glycine metabolism.


Assuntos
Inflamação/tratamento farmacológico , Vitamina B 6/uso terapêutico , Animais , Biomarcadores/sangue , Humanos , Imunidade/efeitos dos fármacos , Inflamação/imunologia , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Transdução de Sinais , Vitamina B 6/química
15.
PLoS One ; 11(11): e0166667, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27861532

RESUMO

Lysine decarboxylase (LDC) is a crucial enzyme for acid stress resistance and is also utilized for the biosynthesis of cadaverine, a promising building block for bio-based polyamides. We determined the crystal structure of LDC from Selenomonas ruminantium (SrLDC). SrLDC functions as a dimer and each monomer consists of two distinct domains; a PLP-binding barrel domain and a sheet domain. We also determined the structure of SrLDC in complex with PLP and cadaverine and elucidated the binding mode of cofactor and substrate. Interestingly, compared with the apo-form of SrLDC, the SrLDC in complex with PLP and cadaverine showed a remarkable structural change at the PLP binding site. The PLP binding site of SrLDC contains the highly flexible loops with high b-factors and showed an open-closed conformational change upon the binding of PLP. In fact, SrLDC showed no LDC activity without PLP supplement, and we suggest that highly flexible PLP binding site results in low PLP affinity of SrLDC. In addition, other structurally homologous enzymes also contain the flexible PLP binding site, which indicates that high flexibility at the PLP binding site and low PLP affinity seems to be a common feature of these enzyme family.


Assuntos
Carboxiliases/química , Modelos Moleculares , Conformação Molecular , Fosfato de Piridoxal/química , Selenomonas/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Carboxiliases/metabolismo , Domínio Catalítico , Ativação Enzimática , Ligação Proteica , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes , Relação Estrutura-Atividade , Especificidade por Substrato
16.
Biochimie ; 126: 21-6, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26765812

RESUMO

The transsulfuration pathway (TS) acts in sulfur amino acid metabolism by contributing to the regulation of cellular homocysteine, cysteine production, and the generation of H2S for signaling functions. Regulation of TS pathway kinetics involves stimulation of cystathionine ß-synthase (CBS) by S-adenosylmethionine (SAM) and oxidants such as H2O2, and by Michaelis-Menten principles whereby substrate concentrations affect reaction rates. Although pyridoxal phosphate (PLP) serves as coenzyme for both CBS and cystathionine γ-lyase (CSE), CSE exhibits much greater loss of activity than CBS during PLP insufficiency. Thus, cellular and plasma cystathionine concentrations increase in vitamin B6 deficiency mainly due to the bottleneck caused by reduced CSE activity. Because of the increase in cystathionine, the canonical production of cysteine (homocysteine â†’ cystathionine â†’ cysteine) is largely maintained even during vitamin B6 deficiency. Typical whole body transsulfuration flux in humans is 3-7 µmol/h per kg body weight. The in vivo kinetics of H2S production via side reactions of CBS and CSE in humans are unknown but they have been reported for cultured HepG2 cells. In these studies, cells exhibit a pronounced reduction in H2S production capacity and rates of lanthionine and homolanthionine synthesis in deficiency. In humans, plasma concentrations of lanthionine and homolanthionine exhibit little or no mean change due to 4-wk vitamin B6 restriction, nor do they respond to pyridoxine supplementation of subjects in chronically low-vitamin B6 status. Wide individual variation in responses of the H2S biomarkers to such perturbations of human vitamin B6 status suggests that the resulting modulation of H2S production may have physiological consequences in a subset of people. Supported by NIH grant DK072398. This paper refers to data from studies registered at clinicaltrials.gov as NCT01128244 and NCT00877812.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Estado Nutricional , Fosfato de Piridoxal/metabolismo , Vitamina B 6/metabolismo , Animais , Ensaios Clínicos como Assunto , Feminino , Células Hep G2 , Humanos , Masculino
17.
J Trace Elem Med Biol ; 32: 21-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26302908

RESUMO

This study aimed to assess the interaction between vitamin B6 and selenium (Se) for the flow of Se towards the Se-dependent glutathione peroxidase (GPX) system in response to oxidative stress naturally induced by oestrus in a pubertal pig model. At first oestrus, forty-five gilts were randomly assigned to the experimental diets (n=9/group): basal diet (CONT); CONT+0.3mg/kg of Na-selenite (MSeB60); MSeB60+10mg/kg of HCl-B6 (MSeB610); CONT+0.3mg/kg of Se-enriched yeast (OSeB60); and OSeB60+10mg/kg of HCl-B6 (OSeB610). Blood samples were collected at each oestrus (long-term profiles), and daily from day -4 to +3 (slaughter) of the fourth oestrus (peri-oestrus profiles) after which liver, kidneys, and ovaries were collected. For long-term profiles, CONT had lower blood Se than Se-supplemented gilts (p<0.01) and OSe was higher than MSe (p<0.01). Lower erythrocyte pyridoxal-5-phosphate was found in B60 than B610 (p<0.01). No treatment effect was observed on GPX activity. For peri-oestrus profiles, treatment effects were similar to long-term profiles. Treatment effects on liver Se were similar to those for long-term blood Se profiles and OSe had higher renal Se concentrations than MSe gilts (p<0.01). Gene expressions of GPX1, GPX3, GPX4, and selenocysteine lyase in liver and kidney were greatest in OSeB610 gilts (p<0.05). These results suggest that dietary B6 modulate the metabolic pathway of OSe towards the GPX system during the peri-oestrus period in pubertal pigs.


Assuntos
Estro/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Puberdade/efeitos dos fármacos , Selênio/farmacologia , Vitamina B 6/farmacologia , Animais , Antioxidantes/farmacologia , Dieta , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/sangue , Glutationa Peroxidase/genética , Rim/efeitos dos fármacos , Rim/enzimologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Hormônio Luteinizante/metabolismo , Metaboloma/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Fosfato de Piridoxal/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Selênio/sangue , Fatores de Tempo , Útero/efeitos dos fármacos , Útero/metabolismo
18.
PLoS One ; 10(4): e0124056, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25884707

RESUMO

Threonine aldolases catalyze the pyridoxal phosphate (PLP) dependent cleavage of threonine into glycine and acetaldehyde and play a major role in the degradation of this amino acid. In nature, L- as well as D-specific enzymes have been identified, but the exact physiological function of D-threonine aldolases (DTAs) is still largely unknown. Both types of enantio-complementary enzymes have a considerable potential in biocatalysis for the stereospecific synthesis of various ß-hydroxy amino acids, which are valuable building blocks for the production of pharmaceuticals. While several structures of L-threonine aldolases (LTAs) have already been determined, no structure of a DTA is available to date. Here, we report on the determination of the crystal structure of the DTA from Alcaligenes xylosoxidans (AxDTA) at 1.5 Å resolution. Our results underline the close relationship of DTAs and alanine racemases and allow the identification of a metal binding site close to the PLP-cofactor in the active site of the enzyme which is consistent with the previous observation that divalent cations are essential for DTA activity. Modeling of AxDTA substrate complexes provides a rationale for this metal dependence and indicates that binding of the ß-hydroxy group of the substrate to the metal ion very likely activates this group and facilitates its deprotonation by His193. An equivalent involvement of a metal ion has been implicated in the mechanism of a serine dehydratase, which harbors a metal ion binding site in the vicinity of the PLP cofactor at the same position as in DTA. The structure of AxDTA is completely different to available structures of LTAs. The enantio-complementarity of DTAs and LTAs can be explained by an approximate mirror symmetry of crucial active site residues relative to the PLP-cofactor.


Assuntos
Alcaligenes/enzimologia , Aldeído Liases/química , Proteínas de Bactérias/química , Acetaldeído/metabolismo , Alanina Racemase/química , Alanina Racemase/genética , Alcaligenes/genética , Aldeído Liases/genética , Aldeído Liases/isolamento & purificação , Aldeído Liases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli , Glicina/biossíntese , Manganês/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Família Multigênica , Conformação Proteica , Estrutura Terciária de Proteína , Prótons , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Serina/análogos & derivados , Serina/química , Serina/metabolismo , Relação Estrutura-Atividade , Treonina/metabolismo
19.
Drug Discov Today ; 20(4): 411-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25463039

RESUMO

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) participate in pathological tissue damage. Mitochondrial manganese superoxide dismutase (MnSOD) normally keeps ROS and RNS in check. During development of mangafodipir (MnDPDP) as a magnetic resonance imaging (MRI) contrast agent, it was discovered that MnDPDP and its metabolite manganese pyridoxyl ethyldiamine (MnPLED) possessed SOD mimetic activity. MnDPDP has been tested as a chemotherapy adjunct in cancer patients and as an adjunct to percutaneous coronary intervention in patients with myocardial infarctions, with promising results. Whereas MRI contrast depends on release of Mn(2+), the SOD mimetic activity depends on Mn(2+) that remains bound to DPDP or PLED. Calmangafodipir [Ca4Mn(DPDP)5] is stabilized with respect to Mn(2+) and has superior therapeutic activity. Ca4Mn(DPDP)5 is presently being explored as a chemotherapy adjunct in a clinical multicenter Phase II study in patients with metastatic colorectal cancer.


Assuntos
Antineoplásicos/uso terapêutico , Antioxidantes/uso terapêutico , Mimetismo Biológico , Ácido Edético/análogos & derivados , Etilenodiaminas/uso terapêutico , Manganês/metabolismo , Fosfato de Piridoxal/análogos & derivados , Superóxido Dismutase/metabolismo , Animais , Antineoplásicos/química , Antioxidantes/química , Antioxidantes/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Ácido Edético/química , Ácido Edético/metabolismo , Ácido Edético/uso terapêutico , Etilenodiaminas/química , Etilenodiaminas/metabolismo , Humanos , Manganês/química , Estrutura Molecular , Infarto do Miocárdio/terapia , Estresse Oxidativo/efeitos dos fármacos , Intervenção Coronária Percutânea , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Resultado do Tratamento
20.
G3 (Bethesda) ; 4(6): 1147-54, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24739647

RESUMO

The concept of auxotrophic complementation has been proposed as an approach to identify genes in essential metabolic pathways in Drosophila melanogaster. However, it has achieved limited success to date, possibly due to the low probability of finding mutations fit with the chemically defined profile. Instead of using the chemically defined culture media lacking specific nutrients, we used bare minimum culture medium, i.e., 4% sucrose, for adult Drosophila. We identified a nutritional conditional lethal mutant and localized a c.95C > A mutation in the Drosophila pyridoxine 5'-phosphate oxidase gene [dPNPO or sugarlethal (sgll)] using meiotic recombination mapping, deficiency mapping, and whole genome sequencing. PNPO converts dietary vitamin B6 such as pyridoxine to its active form pyridoxal 5'-phosphate (PLP). The missense mutation (sgll(95)) results in the substitution of alanine to aspartate (p.Ala32Asp). The sgll(95) flies survive well on complete medium but all die within 6 d on 4% sucrose only diet, which can be rescued by pyridoxine or PLP supplement, suggesting that the mutation does not cause the complete loss of PNPO activity. The sgll knockdown further confirms its function as the Drosophila PNPO. Because better tools for positional cloning and cheaper whole genome sequencing have made the identification of point mutations much easier than before, alleviating the necessity to pinpoint specific metabolic pathways before gene identification, we propose that nutritional conditional screens based on bare minimum growth media like ours represent promising approaches for discovering important genes and mutations in metabolic pathways, thereby accelerating the establishment of in vivo models that recapitulate human metabolic diseases.


Assuntos
Drosophila melanogaster/genética , Genes Letais , Mutação , Piridoxaminafosfato Oxidase/deficiência , Alelos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas da Membrana Bacteriana Externa , Mapeamento Cromossômico , Cromossomos , Cruzamentos Genéticos , Análise Mutacional de DNA , Elementos de DNA Transponíveis , Drosophila melanogaster/metabolismo , Técnicas de Silenciamento de Genes , Genótipo , Masculino , Meiose/genética , Dados de Sequência Molecular , Fenótipo , Fosfato de Piridoxal/metabolismo , Piridoxina/metabolismo , Recombinação Genética , Alinhamento de Sequência , Sacarose/metabolismo , Vitamina B 6
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA