Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Protein Expr Purif ; 110: 7-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25573389

RESUMO

The cDNA encoding for a Solanum tuberosum cytosolic pyruvate kinase 1 (PKc1) highly expressed in tuber tissue was cloned in the bacterial expression vector pProEX HTc. The construct carried a hexahistidine tag in N-terminal position to facilitate purification of the recombinant protein. Production of high levels of soluble recombinant PKc1 in Escherichia coli was only possible when using a co-expression strategy with the chaperones GroES-GroEL. Purification of the protein by Ni(2 +) chelation chromatography yielded a single protein with an apparent molecular mass of 58kDa and a specific activity of 34unitsmg(-1) protein. The recombinant enzyme had an optimum pH between 6 and 7. It was relatively heat stable as it retained 80% of its activity after 2min at 75°C. Hyperbolic saturation kinetics were observed with ADP and UDP whereas sigmoidal saturation was observed during analysis of phosphoenolpyruvate binding. Among possible effectors tested, aspartate and glutamate had no effect on enzyme activity, whereas α-ketoglutarate and citrate were the most potent inhibitors. When tested on phosphoenolpyruvate saturation kinetics, these latter compounds increased S0.5. These findings suggest that S. tuberosum PKc1 is subject to a strong control by respiratory metabolism exerted via citrate and other tricarboxylic acid cycle intermediates.


Assuntos
Citosol/química , Fosfoenolpiruvato/química , Proteínas de Plantas/isolamento & purificação , Piruvato Quinase/isolamento & purificação , Solanum tuberosum/química , Difosfato de Adenosina/química , Ácido Cítrico/química , Clonagem Molecular , Citosol/enzimologia , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Concentração de Íons de Hidrogênio , Ácidos Cetoglutáricos/química , Cinética , Peso Molecular , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/biossíntese , Piruvato Quinase/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Solanum tuberosum/enzimologia , Difosfato de Uridina/química
2.
J Am Chem Soc ; 125(15): 4662-9, 2003 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-12683839

RESUMO

In this report the mode of inhibition of mechanism-based inhibitor (2, K(i) = 0.4 microM) of 3-deoxy-d-manno-2-octulosonate-8-phosphate synthase (KDO8PS), which was designed to mimic the combined key features of its natural substrates arabinose-5-phosphate (A5P) and phoshoenolpyruvate (PEP) into a single molecule, was investigated. Our earlier solid-state NMR observations identified the inhibitor to bind in a way that partly mimics A5P, while the phosphonate moiety of its PEP-mimicking part exhibits no interactions with enzyme residues. This result was apparently in disagreement with the competitive inhibition of 2 against PEP and with the later solved crystal structure of KDO8PS-2 binary complex identifying the interactions of its PEP-mimicking part with the enzyme residues that were not detected by solid-state NMR. To solve this discrepancy, further solid-state REDOR NMR and (31)P solution NMR experiments were applied to a variety of enzyme complexes with the substrates and inhibitor. In particular, a novel frequency-selective REDOR experiment was developed and applied. Integration of the solution and solid-state NMR data clearly demonstrates that under conditions of stoichiometric enzyme-ligand ratio at thermodynamic equilibrium (a) PEP binding is unperturbed by the presence of 2 and (b) both PEP and 2 can bind simultaneously to the synthase, i.e., form a ternary complex with PEP occupying its own subsite and 2 occupying A5P's subsite. The latter observation suggests that under the conditions used in our NMR measurements, the inhibition pattern of 2 against PEP should have a mixed type character. Furthermore, the NMR data directly demonstrate the distinction between the relative binding strength of the two moieties of 2: enzyme interactions with PEP-mimicking moiety are much weaker than those with the A5P moiety. This observation is in agreement with KDO8PS-2 crystal structure showing only remote contacts of the phosphonate due to large structural changes of binding site residues. It is concluded that these phosphonate-enzyme interactions evidenced by both (31)P solution NMR and X-ray are too weak to be preserved under the lyophilization of KDO8PS-2 binary complex and therefore are not evidenced by the solid-state REDOR spectra.


Assuntos
Aldeído Liases/antagonistas & inibidores , Inibidores Enzimáticos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Pentosefosfatos/química , Fosfoenolpiruvato/análogos & derivados , Aldeído Liases/metabolismo , Sítios de Ligação , Ligação Competitiva , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Pentosefosfatos/metabolismo , Fosfoenolpiruvato/química , Fosfoenolpiruvato/metabolismo , Fósforo/química
3.
Eur J Biochem ; 269(13): 3226-36, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12084063

RESUMO

The synthesis of 10 new phosphoenolpyruvate (PEP) analogues with modifications in the phosphate and the carboxylate function is described. Included are two potential irreversible inhibitors of PEP-utilizing enzymes. One incorporates a reactive chloromethylphosphonate function replacing the phosphate group of PEP. The second contains a chloromethyl group substituting for the carboxylate function of PEP. An improved procedure for the preparation of the known (Z)- and (E)-3-chloro-PEP is also given. The isomers were obtained as a 4 : 1 mixture, resolved by anion-exchange chromatography after the last reaction step. The stereochemistry of the two isomers was unequivocally assigned from the (3)J(H-C) coupling constants between the carboxylate carbons and the vinyl protons. All of these and other known PEP-analogues were tested as reversible and irreversible inhibitors of Mg2+- and Mn2+- activated PEP-utilizing enzymes: enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), pyruvate kinase, PEP carboxylase and enolase. Without exception, the most potent inhibitors were those with substitution of a vinyl proton. Modification of the phosphate and the carboxylate groups resulted in less effective compounds. Enzyme I was the least tolerant to such modifications. Among the carboxylate-modified analogues, only those replaced by a negatively charged group inhibited pyruvate kinase and enolase. Remarkably, the activity of PEP carboxylase was stimulated by derivatives with neutral groups at this position in the presence of Mg2+, but not with Mn2+. For the irreversible inhibition of these enzymes, (Z)-3-Cl-PEP was found to be a very fast-acting and efficient suicide inhibitor of enzyme I (t(1/2) = 0.7 min).


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/antagonistas & inibidores , Fosfoenolpiruvato/química , Fosfoenolpiruvato/farmacologia , Bioquímica/métodos , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Isomerismo , Fosfoenolpiruvato/análogos & derivados , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxilase/antagonistas & inibidores , Fosfoenolpiruvato Carboxilase/metabolismo , Fosfopiruvato Hidratase/antagonistas & inibidores , Fosfopiruvato Hidratase/metabolismo , Fosfotransferases (Aceptor do Grupo Nitrogenado)/antagonistas & inibidores , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/metabolismo , Relação Estrutura-Atividade
4.
Biochemistry ; 35(14): 4628-35, 1996 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-8605214

RESUMO

Phosphoenolpyruvate phosphomutase (PEP mutase) from Tetrahymena pyriformis catalyzes the rearrangement of phosphoenolpyruvate (PEP) to phosphonopyruvate (P-pyr). A spectrophotometric P-pyr assay consisting of the coupled actions of P-pyr decarboxylase, phosphonoacetaldehyde hydrolase, and alcohol dehydrogenase was devised to monitor mutase catalysis. The reaction constants determined for PEP mutase catalyzed conversion of PEP to P-pyr at pH 7.5 and 25 degrees C in the presence of Mg(II) are kcat = 5 s(-1), Km = 0.77 +/- 0.05 mM, and Keq = (2-9) x 10(-4). In the PEP forming direction, kcat = 100 s(-1) and Km = 3.5 +/- 0.1 microM. Retention of stereochemistry at phosphorus and strong inhibition displayed by the pyruvyl enolate analog, oxalate, have been cited as two lines of evidence that PEP mutase catalysis proceeds via a phosphoenzyme-pyruvyl enolate intermediate [Seidel, H. M., & Knowles, J. R. (1994) Biochemistry 33, 5641-5646]. In this study, single turnover reactions of oxalyl phosphate with the PEP mutase were carried out to test the formation of the phosphoenzyme intermediate. If formed. the phosphoenzyme-oxalate complex should be sufficiently stable to isolate. Reaction of the mutase with [32P]oxalyl phosphate in the presence of Mg(II)/Mn(II) cofactor failed to produce a detectable level of the [32P]phosphoenzyme-oxalate complex. In contrast, the same reaction carried out with pyruvate phosphate dikinase (PPDK), an enzyme known to catalyze the phosphorylation of its active site histidine with PEP, occurred at a rate of 4 x 10(-4) s(-1) (15% E-P formed) in the presence Mg(II) and at a rate of 3 x 10(-3) s(-1) (60% E-P formed) in the presence of Mn(II). Both oxalyl phosphate (Ki = 180 +/- 10 microM) and oxalate (Ki = 32 +/- 1O microM) were competitive inhibitors of PEP mutase catalysis, but neither displayed slow, tight binding inhibition. These results do not support the intermediacy of a phosphoenzyme-pyruvyl enolate complex in PEP mutase catalysis.


Assuntos
Fosfoenolpiruvato/metabolismo , Fosfotransferases (Fosfomutases)/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Sítios de Ligação , Carbono/química , Catálise , Metabolismo Energético , Cinética , Espectroscopia de Ressonância Magnética , Malato Desidrogenase/metabolismo , Estrutura Molecular , Fosfoenolpiruvato/química , Fósforo/química , Espectrofotometria , Tetrahymena pyriformis/enzimologia , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA