Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37166978

RESUMO

Deciphering the crosstalk between metabolic reprogramming and epigenetic regulation is a promising strategy for cancer therapy. In this study, we discovered that the gluconeogenic enzyme PCK1 fueled the generation of S-adenosylmethionine (SAM) through the serine synthesis pathway. The methyltransferase SUV39H1 catalyzed SAM, which served as a methyl donor to support H3K9me3 modification, leading to the suppression of the oncogene S100A11. Mechanistically, PCK1 deficiency-induced oncogenic activation of S100A11 was due to its interaction with AKT1, which upregulated PI3K/AKT signaling. Intriguingly, the progression of hepatocellular carcinoma (HCC) driven by PCK1 deficiency was suppressed by SAM supplement or S100A11 KO in vivo and in vitro. These findings reveal the availability of the key metabolite SAM as a bridge connecting the gluconeogenic enzyme PCK1 and H3K9 trimethylation in attenuating HCC progression, thus suggesting a potential therapeutic strategy against HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , S-Adenosilmetionina/metabolismo , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Epigênese Genética , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
2.
Sci Rep ; 11(1): 18999, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556771

RESUMO

Growth hormone (GH) is one of the critical factors in maintaining glucose metabolism. B-cell translocation gene 2 (BTG2) and yin yang 1 (YY1) are key regulators of diverse metabolic processes. In this study, we investigated the link between GH and BTG2-YY1 signaling pathway in glucose metabolism. GH treatment elevated the expression of hepatic Btg2 and Yy1 in primary mouse hepatocytes and mouse livers. Glucose production in primary mouse hepatocytes and serum blood glucose levels were increased during GH exposure. Overexpression of hepatic Btg2 and Yy1 induced key gluconeogenic enzymes phosphoenolpyruvate carboxykinase 1 (PCK1) and glucose-6 phosphatase (G6PC) as well as glucose production in primary mouse hepatocytes, whereas this phenomenon was markedly diminished by knockdown of Btg2 and Yy1. Here, we identified the YY1-binding site on the Pck1 and G6pc gene promoters using reporter assays and point mutation analysis. The regulation of hepatic gluconeogenic genes induced by GH treatment was clearly linked with YY1 recruitment on gluconeogenic gene promoters. Overall, this study demonstrates that BTG2 and YY1 are novel regulators of GH-dependent regulation of hepatic gluconeogenic genes and glucose production. BTG2 and YY1 may be crucial therapeutic targets to intervene in metabolic dysfunction in response to the GH-dependent signaling pathway.


Assuntos
Gluconeogênese/genética , Hormônio do Crescimento/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular , Glucose/biossíntese , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Hormônio do Crescimento/administração & dosagem , Hepatócitos , Humanos , Injeções Intraperitoneais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Modelos Animais , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Mutação Puntual , Cultura Primária de Células , Regiões Promotoras Genéticas , Transdução de Sinais/genética
3.
J Ethnopharmacol ; 271: 113897, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33567306

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Caralluma tuberculata (C. tuberculata) has traditionally been used in Pakistan and other parts of the world as a folk treatment for diabetes mellitus. A few studies indicated its antihyperglycemic effect, however, the mystery remained unfolded as how did it modify the pathophysiological condition. AIM OF STUDY: Hence, this study aimed to explore underlying mechanism(s) for its hypoglycemic activity at biochemical and molecular levels. MATERIALS AND METHODS: Methanol extract (ME) of C. tuberculata as well as its hexane (HF) and aqueous (AF) fractions were explored for their effect on total glycogen in liver and skeletal muscle of alloxan-induced rats by spectroscopy. Moreover, the expression of genes related to hepatic carbohydrate metabolizing enzymes was quantified. At molecular level, mRNA expression of glucose transporter 2 (GLUT-2), glycogen synthase (GS), glucokinase (GK), hexokinase 1 (HK-1), pyruvate kinase (PK), glucose 6 phosphate dehydrogenase (G-6-PDH), pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G-6-Pase) was determined by using quantitative real time polymerase chain reaction (qRT-PCR) after administration of ME (350 mg), HF(3 mg), AF (10 mg) and metformin (500 mg). The doses were administered twice daily according to per kg of body weight. RESULTS: A significant reduction in hepatic and skeletal muscle glycogen content was exhibited. The data of qRT-PCR revealed that gene's expression of GLUT-2 was significantly decreased after treatment with ME and HF, whilst it was unaltered by AF, however, a significant decrease was observed in genes corresponding to GS, GK and HK-1 after treatment with ME. Similarly, there was a significant decrease in expression of genes corresponding to GS, GK and HK-1 following treatment with HF. Surprisingly, post-treatment with AF didn't modify the gene's expression of GS and GK, whilst it caused a profound decrease in expression of HK-1 gene. Contrarily, the expression of gene related to PK was significantly up-regulated post-administration with ME, HF and AF. The expression levels of G-6-PDH, however, remained unaltered after treatment with the experimental extract and fractions of the plant. In addition, HF and AF did not cause any modification in PEPCK, whereas ME caused a significant down-regulation of the gene. Treatment with all the extract and fractions of the plant caused a substantial decrease in the gene's expression of PC, while there was a significant increase in the expression of gene related to G-6-Pase. CONCLUSION: The three experimental extract and fractions caused a substantial decrease in glycogen content in liver and skeletal muscle tissues. The analysis by qRT-PCR showed that glucose transport via GLUT-2 was profoundly declined by ME and HF. The expression of genes related to various metabolic pathways involved in metabolism of carbohydrate in hepatocytes revealed explicitly that the ME, HF and AF decreased the phenomena of glycogenesis and gluconeogenesis. Contrarily, all the extract and fractions of the plant activated glycogenolysis and glycolysis but did not modify the pentose phosphate shunt pathway.


Assuntos
Apocynaceae/química , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Aloxano/toxicidade , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Glucoquinase/genética , Transportador de Glucose Tipo 2/genética , Glucose-6-Fosfatase/genética , Glucosefosfato Desidrogenase/genética , Glicogênio/metabolismo , Glicogênio Sintase/genética , Hexanos/química , Hexoquinase/genética , Hipoglicemiantes/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fígado/efeitos dos fármacos , Fígado/enzimologia , Metanol/química , Músculo Esquelético/efeitos dos fármacos , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Extratos Vegetais/uso terapêutico , Piruvato Carboxilase/genética , Piruvato Quinase/genética , Ratos Wistar , Água/química
4.
Nutrition ; 43-44: 47-53, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28935144

RESUMO

OBJECTIVE: Despite increasing evidence that pharmacologic concentrations of biotin modify glucose metabolism, to our knowledge there have not been any studies addressing the effects of biotin supplementation on glucagon production and secretion, considering glucagon is one of the major hormones in maintaining glucose homeostasis. The aim of this study was to investigate the effects of dietary biotin supplementation on glucagon expression, secretion, and action. METHODS: Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet (1.76 or 97.7 mg biotin/kg diet) for 8 wk postweaning. Glucagon gene mRNA expression was measured by the real-time polymerase chain reaction. Glucagon secretion was assessed in isolated islets and by glucagon concentration in plasma. Glucagon action was evaluated by glucagon tolerance tests, phosphoenolpyruvate carboxykinase (Pck1) mRNA expression, and glycogen degradation. RESULTS: Compared with the control group, glucagon mRNA and secretion were increased from the islets of the biotin-supplemented group. Fasting plasma glucagon levels were higher, but no differences between the groups were observed in nonfasting glucagon levels. Despite the elevated fasting glucagon levels, no differences were found in fasting blood glucose concentrations, fasting/fasting-refeeding glucagon tolerance tests, glycogen content and degradation, or mRNA expression of the hepatic gluconeogenic rate-limiting enzyme, Pck1. CONCLUSIONS: These results demonstrated that dietary biotin supplementation increased glucagon expression and secretion without affecting fasting blood glucose concentrations or glucagon tolerance and provided new insights into the effect of biotin supplementation on glucagon production and action.


Assuntos
Biotina/administração & dosagem , Glucagon/metabolismo , Glucagon/farmacologia , Animais , Dieta , Suplementos Nutricionais , Expressão Gênica/efeitos dos fármacos , Glucagon/genética , Gluconeogênese/efeitos dos fármacos , Glicogênio/metabolismo , Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , RNA Mensageiro/análise
5.
Afr J Tradit Complement Altern Med ; 14(4): 108-119, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638873

RESUMO

BACKGROUND: Diabetes is a serious disease affects human health. Diabetes in advanced stages is accompanied by general weakness and alteration in fats and carbohydrates metabolism. Recently there are some scientific trends about the usage of camel milk (CM) in the treatment of diabetes and its associated alterations. CM contains vital active particles with insulin like action that cure diabetes and its complications but how these effects occur, still unclear. MATERIALS AND METHODS: Seventy-five adult male rats of the albino type divided into five equal groups. Group 1 served as a negative control (C). Group 2 was supplemented with camel milk (CM). Diabetes was induced in the remaining groups (3, 4 and 5). Group 3 served as positive diabetic control (D). Group 4 served as diabetic and administered metformin (D+MET). Group 5 served as diabetes and supplemented with camel milk (D+CM). Camel milk was supplemented for two consecutive months. Serum glucose, leptin, insulin, liver, kidney, antioxidants, MDA and lipid profiles were assayed. Tissues from liver and adipose tissues were examined using RT-PCR analysis for the changes in mRNA expression of genes of carbohydrates and lipid metabolism. Pancreas and liver were used for immunohistochemical examination using specific antibodies. RESULTS: Camel milk supplementation ameliorated serum biochemical measurements that altered after diabetes induction. CM supplementation up-regulated mRNA expression of IRS-2, PK, and FASN genes, while down-regulated the expression of CPT-1 to control mRNA expression level. CM did not affect the expression of PEPCK gene. On the other hand, metformin failed to reduce the expression of CPT-1 compared to camel milk administered rats. Immunohistochemical findings revealed that CM administration restored the immunostaining reactivity of insulin and GLUT-4 in the pancreas of diabetic rats. CONCLUSION: CM administration is of medical importance and helps physicians in the treatment of diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 1/dietoterapia , Hipoglicemiantes/metabolismo , Leite/química , Leite/metabolismo , Animais , Glicemia/metabolismo , Camelus , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Masculino , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Ratos
6.
Clin Nutr ; 36(1): 229-237, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26778339

RESUMO

BACKGROUND & AIMS: Non-alcoholic fatty-liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. Previously, we showed that a high-protein diet minimized diet-induced development of fatty liver and even reversed pre-existing steatosis. A high-protein diet leads to amino-acid catabolism, which in turn causes anaplerosis of the tricarboxylic-acid (TCA) cycle. Therefore, we hypothesized that anaplerosis of the TCA cycle could be responsible for the high-protein diet-induced improvement of NAFLD by channeling amino acids into the TCA cycle. Next we considered that an efficient anaplerotic agent, the odd-carbon medium-chain triglyceride triheptanoin (TH), might have similar beneficial effects. METHODS: C57BL/6J mice were fed low-fat (8en%) or high-fat (42en%) oleate-containing diets with or without 15en% TH for 3 weeks. RESULTS: TH treatment enhanced the hepatic capacity for fatty-acid oxidation by a selective increase in hepatic Ppara, Acox, and Cd36 expression, and a decline in plasma acetyl-carnitines. It also induced pyruvate cycling through an increased hepatic PCK1 protein concentration and it increased thermogenesis reflected by an increased Ucp2 mRNA content. TH, however, did not reduce hepatic lipid content. CONCLUSION: The comparison of the present effects of dietary triheptanoin with a previous study by our group on protein supplementation shows that the beneficial effects of the high-protein diet are not mimicked by TH. This argues against anaplerosis as the sole explanatory mechanism for the anti-steatotic effect of a high-protein diet.


Assuntos
Dieta Rica em Proteínas , Fígado Gorduroso/prevenção & controle , Triglicerídeos/farmacologia , Acil-CoA Oxidase/genética , Acil-CoA Oxidase/metabolismo , Animais , Glicemia/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Carnitina/sangue , Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Fígado Gorduroso/etiologia , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , PPAR alfa/genética , PPAR alfa/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Triglicerídeos/sangue , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
7.
J Dairy Sci ; 99(10): 8451-8460, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27474977

RESUMO

Metabolizable methionine (Met) concentrations can be increased by feeding rumen-protected dl-Met or the isopropyl ester of 2-hydroxy-4-(methylthio) butanoic acid (HMBi). Hepatic responses to increasing concentrations of metabolizable Met as a result of supplementation of different Met sources have not been comparatively examined. The objective of this experiment was to examine the regulation of key genes for Met metabolism, gluconeogenesis, and fatty acid oxidation in response to increasing concentrations of dl-Met or 2-hydroxy-4-(methylthio) butanoic acid (HMB) in bovine primary hepatocytes. Hepatocytes isolated from 4 Holstein calves less than 7d old were maintained as monolayer cultures for 24h before addition of treatments. Cells were then exposed to treatments of dl-Met or HMB (0, 10, 20, 40, or 60 µM) in Met-free medium for 24h and collected for RNA isolation and quantification of gene expression by quantitative PCR. Expression of betaine-homocysteine methyltransferase (BHMT), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), and 5,10 methylenetetrahydrofolate reductase (MTHFR) genes, which catalyze regeneration of Met from betaine and homocysteine, decreased linearly with increasing dl-Met concentration. We observed similar effects with increasing HMB concentration, except expression of MTHFR, which was not altered. Expression of Met adenosyltransferase 1A (MAT1A), which catalyzes the first step of Met metabolism to generate S-adenosylmethionine (SAM), a primary methyl donor, was decreased with increasing dl-Met or HMB concentration. Expression of S-adenosylhomocysteine hydrolase (SAHH) was decreased linearly with increasing HMB concentration, but not altered by dl-Met. Increasing concentrations of dl-Met and HMB decreased cytosolic phosphoenolpyruvate carboxykinase (PCK1) expression, but did not alter the expression of mitochondrial phosphoenolpyruvate carboxykinase (PCK2) or pyruvate carboxylase (PC). Expression of glucose-6-phosphatase(G6PC) decreased linearly with increasing HMB concentration, but not altered by dl-Met. Neither dl-Met nor HMB altered the expression of carnitine palmitoyltransferase 1A(CPT1a). These findings demonstrate reduced necessity for Met regeneration with increased Met concentrations in the medium, regardless of the Met source. The lack of upregulation of gluconeogenesis indicates that increased dl-Met or HMB is not prioritized for glucose synthesis in primary bovine hepatocytes.


Assuntos
Fígado/efeitos dos fármacos , Metionina/análogos & derivados , Metionina/farmacologia , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Adenosil-Homocisteinase/genética , Animais , Animais Recém-Nascidos , Betaína/metabolismo , Betaína-Homocisteína S-Metiltransferase/genética , Carnitina O-Palmitoiltransferase/genética , Bovinos , Regulação para Baixo , Gluconeogênese/genética , Glucose-6-Fosfatase/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Homocisteína/metabolismo , Fígado/metabolismo , Metionina Adenosiltransferase/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , S-Adenosilmetionina/metabolismo , Regulação para Cima
8.
Biochem Cell Biol ; 94(3): 270-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27248905

RESUMO

The use of phytochemicals and herbal medicines has accompanied human history. Advances in modern biomedical sciences have allowed us to investigate the functional mechanisms of herbal medicines and phytochemicals. Veratrilla baillonii Franch. has long been used as a medicinal herb in southwestern China. Here, we analyzed the effects of an ethanol extract from V. baillonii (VBFE) on the expression levels of the cytosolic form of the phosphoenolpyruvate carboxykinase gene (Pck1) mRNA and components of the insulin signalling cascade in HL1C hepatoma cells. Compared with the insulin control, VBFE treatment inhibited the expression of Pck1 mRNA in a dose-dependent manner. This was associated with the phosphorylation of Akt and Erk1/2 in a time-dependent manner. Further analysis of the purified components of VBFE indicated that gentiopicroside and sweroside from VBFE, alone and in combination, suppressed Pck1 expression and induced Akt and Erk1/2 phosphorylation. In conclusion, gentiopicroside and sweroside suppress Pck1 expression and induce phosphorylation of components in the insulin signalling cascade. This is the first study to demonstrate that gentiopicroside and sweroside show insulin-mimicking effects on the regulation of Pck1 expression. Further studies are warranted to explore the potential of gentiopicroside and sweroside in the control of blood glucose in animals.


Assuntos
Gentianales/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glucosídeos Iridoides/farmacologia , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , RNA Mensageiro , Ratos
9.
Br J Nutr ; 114(8): 1143-56, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26306559

RESUMO

Plant feedstuffs (PF) are rich in carbohydrates, which may interact with lipid metabolism. Thus, when considering dietary replacement of fishery by-products with PF, knowledge is needed on how dietary lipid source (LS) and carbohydrates affect lipid metabolism and other metabolic pathways. For that purpose, a 73-d growth trial was performed with European sea bass juveniles (IBW 74 g) fed four diets differing in LS (fish oil (FO) or a blend of vegetable oils (VO)) and carbohydrate content (0 % (CH-) or 20 % (CH+) gelatinised starch). At the end of the trial no differences among diets were observed on growth and feed utilisation. Protein efficiency ratio was, however, higher in the CH+ groups. Muscle and liver fatty acid profiles reflected the dietary LS. Dietary carbohydrate promoted higher plasma cholesterol and phospholipids (PL), whole-body and hepatic (mainly 16 : 0) lipids and increased muscular and hepatic glycogen. Except for PL, which were higher in the FO groups, no major alterations between FO and VO groups were observed on plasma metabolites (glucose, TAG, cholesterol, PL), liver and muscle glycogen, and lipid and cholesterol contents. Activities of glucose-6-phosphate dehydrogenase and malic enzyme - lipogenesis-related enzymes - increased with carbohydrate intake. Hepatic expression of genes involved in cholesterol metabolism was up-regulated with carbohydrate (HMGCR and CYP3A27) and VO (HMGCR and CYP51A1) intake. No dietary regulation of long-chain PUFA biosynthesis at the transcriptional level was observed. Overall, very few interactions between dietary carbohydrates and LS were observed. However, important insights on the direct relation between dietary carbohydrate and the cholesterol biosynthetic pathway in European sea bass were demonstrated.


Assuntos
Bass/metabolismo , Colesterol/sangue , Dieta/veterinária , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Metabolismo dos Lipídeos , Ração Animal , Animais , Glicemia/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Óleos de Peixe/administração & dosagem , Glucoquinase/genética , Glucoquinase/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Óleos de Plantas/administração & dosagem , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Amido/administração & dosagem , Amido/química , Triglicerídeos/sangue , Regulação para Cima
10.
J Anim Physiol Anim Nutr (Berl) ; 99(3): 465-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25040769

RESUMO

The aim of this work was to evaluate the effect of sorghum grain supplementation on plasma glucose, insulin and glucagon concentrations, and hepatic mRNA concentrations of insulin receptor (INSR), pyruvate carboxylase (PC), and phosphoenolpyruvate carboxykinase (PCK1) mRNA and their association with nutrient intake, digestion and rumen volatile fatty acids (VFA) in cattle and sheep fed a fresh temperate pasture. Twelve Hereford × Aberdeen Angus heifers and 12 Corriedale × Milchschaf wethers in positive energy balance were assigned within each species to one of two treatments (n = 6 per treatment within specie): non-supplemented or supplemented with sorghum grain at 15 g/kg of their body weight (BW). Supplemented cattle had greater plasma glucose concentrations, decreased plasma glucagon concentrations and tended to have greater plasma insulin and insulin-to-glucagon ratio than non-supplemented ones. Hepatic expression of INSR and PC mRNA did not differ between treatments but PCK1 mRNA was less in supplemented than non-supplemented cattle. Supplemented sheep tended to have greater plasma glucagon concentrations than non-supplemented ones. Plasma glucose, insulin, insulin-to-glucagon ratio, and hepatic expression of INSR and PC mRNA did not differ between treatments, but PCK1 mRNA was less in supplemented than non-supplemented sheep. The inclusion of sorghum grain in the diet decreased PCK1 mRNA but did not affect PC mRNA in both species; these effects were associated with changes in glucose and endocrine profiles in cattle but not in sheep. Results would suggest that sorghum grain supplementation of animals in positive energy balance (cattle and sheep) fed a fresh temperate pasture would modify hepatic metabolism to prioritize the use of propionate as a gluconeogenic precursor.


Assuntos
Suplementos Nutricionais , Glucose/metabolismo , Sementes , Ovinos/metabolismo , Sorghum , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bovinos , Dieta/veterinária , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucagon , Insulina , Masculino , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Piruvato Carboxilase/genética , Piruvato Carboxilase/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
11.
Mol Cell Endocrinol ; 381(1-2): 88-96, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23916575

RESUMO

Endotoxic hypoglycaemia has an important role in the survival rates of septic patients. Previous studies have demonstrated that hypothalamic AMP-activated protein kinase (hyp-AMPK) activity is sufficient to modulate glucose homeostasis. However, the role of hyp-AMPK in hypoglycaemia associated with endotoxemia is unknown. The aims of this study were to examine hyp-AMPK dephosphorylation in lipopolysaccharide (LPS)-treated mice and to determine whether pharmacological hyp-AMPK activation could reduce the effects of endotoxemia on blood glucose levels. LPS-treated mice showed reduced food intake, diminished basal glycemia, increased serum TNF-α and IL-1ß levels and increased hypothalamic p-TAK and TLR4/MyD88 association. These effects were accompanied by hyp-AMPK/ACC dephosphorylation. LPS-treated mice also showed diminished liver expression of PEPCK/G6Pase, reduction in p-FOXO1, p-AMPK, p-STAT3 and p-JNK level and glucose production. Pharmacological hyp-AMPK activation blocked the effects of LPS on the hyp-AMPK phosphorylation, liver PEPCK expression and glucose production. Furthermore, the effects of LPS were TLR4-dependent because hyp-AMPK phosphorylation, liver PEPCK expression and fasting glycemia were not affected in TLR4-mutant mice. These results suggest that hyp-AMPK activity may be an important pharmacological target to control glucose homeostasis during endotoxemia.


Assuntos
Adenilato Quinase/metabolismo , Gluconeogênese , Hipotálamo/enzimologia , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Glicemia , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Glucagon/sangue , Hipotálamo/imunologia , Interleucina-1beta/sangue , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/sangue
12.
J Dairy Sci ; 96(4): 2258-2270, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23375968

RESUMO

Trans-10,cis-12 conjugated linoleic acid (CLA) supplementation causes milk fat depression in dairy cows, but CLA effects on glucose metabolism are not clear. The objective of the study was to investigate glucose metabolism, especially endogenous glucose production (eGP) and glucose oxidation (GOx), as well as hepatic genes involved in endogenous glucose production in Holstein cows supplemented either with 50 g of rumen-protected CLA (9% trans-10,cis-12 and 10% cis-9,trans-11; CLA; n=10) or 50 g of control fat (24% C18:2; Ctrl; n=10) from wk 2 before parturition to wk 9 of lactation. Animal performance data were recorded and blood metabolites and hormones were taken weekly from 2 wk before to 12 wk after parturition. During wk 3 and 9 after parturition, glucose tolerance tests were performed and eGP and GOx were measured by [U-(13)C] glucose infusion. Liver biopsies were taken at the same time to measure total fat and glycogen concentrations and gene expression of pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and carnitine palmitoyl-transferase 1. Conjugated linoleic acid feeding reduced milk fat, but increased milk lactose output; milk yield was higher starting 5 wk after parturition in CLA-fed cows than in Ctrl-fed cows. Energy balance was more negative during CLA supplementation, and plasma concentrations of glucose were higher immediately after calving in CLA-fed cows. Conjugated linoleic acid supplementation did not affect insulin release during glucose tolerance tests, but reduced eGP in wk 3, and eGP and GOx increased with time after parturition. Hepatic gene expression of cytosolic phosphoenolpyruvate carboxykinase tended to be lower in CLA-fed cows than in Ctrl-fed cows. In spite of lower eGP in CLA-fed cows, lactose output and plasma glucose concentrations were greater in CLA-fed cows than in Ctrl-fed cows. This suggests a CLA-related glucose sparing effect most likely due to lower glucose utilization for milk fat synthesis and probably because of a more efficient whole-body energy utilization in CLA-fed cows.


Assuntos
Bovinos/metabolismo , Glucose/biossíntese , Lactação/metabolismo , Ácidos Linoleicos Conjugados/administração & dosagem , Animais , Glicemia/análise , Dieta/veterinária , Suplementos Nutricionais , Feminino , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Teste de Tolerância a Glucose/veterinária , Insulina/sangue , Fígado/química , Fígado/metabolismo , Oxirredução , Parto , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Período Pós-Parto/metabolismo , Gravidez
13.
Diabetes ; 62(4): 1152-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23274895

RESUMO

The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes. Our results showed that increasing the availability of proline in rats either centrally (MBH) or systemically acutely lowered blood glucose. Pancreatic clamp studies revealed that this hypoglycemic effect was due to a decrease of hepatic glucose production secondary to an inhibition of glycogenolysis, gluconeogenesis, and glucose-6-phosphatase flux. The effect of proline was mimicked by glutamate, an intermediary of proline metabolism. Interestingly, proline's action was markedly blunted by pharmacological inhibition of hypothalamic lactate dehydrogenase (LDH) suggesting that metabolic flux through LDH was required. Furthermore, short hairpin RNA-mediated knockdown of hypothalamic LDH-A, an astrocytic component of the ANLS, also blunted the glucoregulatory action of proline. Thus our studies suggest not only a new role for proline in the regulation of hepatic glucose production but also indicate that hypothalamic astrocytes are involved in the regulatory mechanism as well.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , Hipotálamo/citologia , Prolina/metabolismo , Animais , Glicemia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucose/administração & dosagem , Glucose/farmacologia , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Insulina/farmacologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Ratos , Ratos Sprague-Dawley , Somatostatina/farmacologia
14.
Clin Nutr ; 32(4): 630-5, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23092637

RESUMO

BACKGROUND & AIMS: Genetic background may interact with habitual dietary fat composition, and affect development of the metabolic syndrome (MetS). The phosphoenolpyruvate carboxykinase gene (PCK1) plays a significant role regulating glucose metabolism, and fatty acids are key metabolic regulators, which interact with transcription factors and influence glucose metabolism. We explored genetic variability at the PCK1 gene locus in relation to degree of insulin resistance and plasma fatty acid levels in MetS subjects. Moreover, we analyzed the PCK1 gene expression in the adipose tissue of a subgroup of MetS subjects according to the PCK1 genetic variants. METHODS: Insulin sensitivity, insulin secretion, glucose effectiveness, plasma concentrations of C-peptide, fatty acid composition and three PCK1 tag-single nucleotide polymorphisms (SNPs) were determined in 443 MetS participants in the LIPGENE cohort. RESULTS: The rs2179706 SNP interacted with plasma concentration of n - 3 polyunsaturated fatty acids (n - 3 PUFA), which were significantly associated with plasma concentrations of fasting insulin, peptide C, and HOMA-IR. Among subjects with n - 3 PUFA levels above the population median, carriers of the C/C genotype exhibited lower plasma concentrations of fasting insulin (P = 0.036) and HOMA-IR (P = 0.019) as compared with C/C carriers with n - 3 PUFA below the median. Moreover, homozygous C/C subjects with n - 3 PUFA levels above the median showed lower plasma concentrations of peptide C as compared to individuals with the T-allele (P = 0.006). Subjects carrying the T-allele showed a lower gene PCK1 expression as compared with carriers of the C/C genotype (P = 0.015). CONCLUSIONS: The PCK1 rs2179706 polymorphism interacts with plasma concentration of n - 3 PUFA levels modulating insulin resistance in MetS subjects.


Assuntos
Interação Gene-Ambiente , Resistência à Insulina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndrome Metabólica/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Adulto , Idoso , Alelos , Glicemia/análise , Índice de Massa Corporal , Peptídeo C/sangue , Estudos Transversais , Gorduras na Dieta/administração & dosagem , Jejum , Ácidos Graxos Ômega-3/sangue , Feminino , Loci Gênicos , Genótipo , Homozigoto , Humanos , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Lineares , Masculino , Síndrome Metabólica/sangue , Pessoa de Meia-Idade , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Polimorfismo de Nucleotídeo Único , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
Int J Vitam Nutr Res ; 82(1): 34-40, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22811375

RESUMO

Pyridoxamine supplementation caused the alteration of the expression of genes encoding six gluconeogenesis-related proteins. The expression levels of phosphoenolpyruvate carboxykinase, pyruvate kinase, and pyruvate dehydrogenase kinase 4 in the pyridoxamine-supplemented mice were higher than those in the control mice. In contrast, the pyridoxamine supplementation caused lower expression levels of peroxisome proliferator-activated receptor-gamma coactivator-1alpha, carbohydrate response element-binding protein, glucocorticoid receptor, and glucose-6-phosphatase. The pyridoxamine-supplemented mice showed significantly low glucose clearance in a glucose tolerance test, but they showed no symptoms of diabetes, which was estimated according to the levels of hemoglobin A1c and blood glucose. Pyruvate challenge testing suggested that pyridoxamine supplementation enhanced gluconeogenic activity from pyruvate. The results showed that a high-dose of pyridoxamine may require a careful inquiry concerning its validity.


Assuntos
Gluconeogênese , Piridoxamina/administração & dosagem , Animais , Glicemia/análise , Suplementos Nutricionais , Glucose-6-Fosfatase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Receptores de Glucocorticoides/genética
16.
J Agric Food Chem ; 60(11): 2799-806, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22352711

RESUMO

We investigated the effects of the oral administration of lophenol (Lo) and cycloartanol (Cy), two kinds of antidiabetic phytosterol isolated from Aloe vera , on glucose and lipid metabolism in Zucker diabetic fatty (ZDF) rats. We demonstrated that the administrations of Lo and Cy suppressed random and fasting glucose levels and reduced visceral fat weights significantly. It was also observed that treatments with Lo and Cy decreased serum and hepatic lipid concentrations (triglyceride, nonesterified fatty acid, and total cholesterol). Additionally, Lo and Cy treatments resulted in a tendency for reduction in serum monocyte chemotactic protein-1 (MCP-1) level and an elevation in serum adiponectin level. Furthermore, the expression levels of hepatic genes encoding gluconeogenic enzymes (G6 Pase, PEPCK), lipogenic enzymes (ACC, FAS), and SREBP-1 were decreased significantly by the administrations of aloe sterols. In contrast, Lo and Cy administration increased mRNA levels of glycolysis enzyme (GK) in the liver. It was also observed that the hepatic ß-oxidation enzymes (ACO, CPT1) and PPARα expressions tended to increase in the livers of the Lo- and Cy-treated rats compared with those in ZDF-control rats. We therefore conclude that orally ingested aloe sterols altered the expressions of genes related to glucose and lipid metabolism, and ameliorated obesity-associated metabolic disorders in ZDF rats. These findings suggest that aloe sterols could be beneficial in preventing and improving metabolic disorders with obesity and diabetes in rats.


Assuntos
Aloe/química , Fígado/enzimologia , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/genética , Obesidade/complicações , Fitosteróis/administração & dosagem , Extratos Vegetais/administração & dosagem , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Acil-CoA Oxidase/genética , Acil-CoA Oxidase/metabolismo , Administração Oral , Animais , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Doenças Metabólicas/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Ratos , Ratos Zucker
17.
Int J Biol Sci ; 7(5): 673-84, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21647250

RESUMO

The effects of hormonal and dietary stimuli on hepatic glucose and lipid homeostasis include regulation of gene expression. Berberine, an effective compound in certain Chinese medicinal herbs, has been reported to lower plasma glucose and lipid levels in diabetic and hypercholesterolemic patients. We hypothesized that it may affect the expression of hepatic genes involved in glucose and lipid metabolism. The effects of berberine hydrochloride on viability, gene expression, and activation of AMP activated protein kinase (AMPK) in primary hepatocytes from Sprague-Dawley (SD), Zucker lean (ZL) or fatty (ZF) rats were examined with MTT assay, real-time PCR, and western blotting, respectively. Berberine hydochloride at 50 µM or higher caused cytotoxic effects on hepatocytes. In SD and ZL hepatocytes, it induced Gck and suppressed G6pc expression at 10 and 25 µM, but not as potent as 1 nM insulin. Its effects on Pck1, and insulin-regulated Gck and G6pc expression depended on the hepatocyte sources and the dosage used. In ZF hepatocytes, it increased Gck, and suppressed Pck1 and G6pc expression without insulin. Its effects on Gck and G6pc, but not Pck1 expression, were additive with insulin. Berberine hydrochloride at 25 µM attenuated insulin-suppressed Pck1 (ZL/ZF cells), and insulin-induced Srebp-1c expression (SD/ZL/ZF cells), suggesting modulation of insulin action. Berberine hydrochloride did not alter these genes' mRNA stability. Its treatment caused a dose-dependent increase of phosphorylation of AMPKα, and its substrate, acetyl-CoA carboxylase, in primary hepatocytes. We conclude that berberine hydrochloride regulated the transcription of hepatic genes involved in glucose and fatty acid metabolism.


Assuntos
Berberina/farmacologia , Glucoquinase/metabolismo , Glucose-6-Fosfatase/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Células Cultivadas , Glucoquinase/genética , Glucose-6-Fosfatase/genética , Immunoblotting , Masculino , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
18.
Br J Nutr ; 104(2): 180-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20487577

RESUMO

The antioxidant activity of lemon balm (Melissa officinalis) essential oil (LBEO) on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and its hypoglycaemic effect in db/db mice were investigated. LBEO scavenged 97 % of DPPH radicals at a 270-fold dilution. Mice administered LBEO (0.015 mg/d) for 6 weeks showed significantly reduced blood glucose (65 %; P < 0.05) and TAG concentrations, improved glucose tolerance, as assessed by an oral glucose tolerance test, and significantly higher serum insulin levels, compared with the control group. The hypoglycaemic mechanism of LBEO was further explored via gene and protein expression analyses using RT-PCR and Western blotting, respectively. Among all glucose metabolism-related genes studied, hepatic glucokinase and GLUT4, as well as adipocyte GLUT4, PPAR-gamma, PPAR-alpha and SREBP-1c expression, were significantly up-regulated, whereas glucose-6-phosphatase and phosphoenolpyruvate carboxykinase expression was down-regulated in the livers of the LBEO group. The results further suggest that LBEO administered at low concentrations is an efficient hypoglycaemic agent, probably due to enhanced glucose uptake and metabolism in the liver and adipose tissue and the inhibition of gluconeogenesis in the liver.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/enzimologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Melissa/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucoquinase/efeitos dos fármacos , Glucoquinase/genética , Glucoquinase/metabolismo , Teste de Tolerância a Glucose , Proteínas Facilitadoras de Transporte de Glucose/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucose-6-Fosfatase/efeitos dos fármacos , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Insulina/sangue , Camundongos , Óleos Voláteis/química , Óleos Voláteis/uso terapêutico , Receptores Ativados por Proliferador de Peroxissomo/efeitos dos fármacos , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/efeitos dos fármacos , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fitoterapia , Óleos de Plantas/química , Óleos de Plantas/uso terapêutico , Proteína de Ligação a Elemento Regulador de Esterol 1/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
19.
Horm Behav ; 58(3): 355-67, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20350549

RESUMO

Though obesity is common, some people remain resistant to weight gain even in an obesogenic environment. The propensity to remain lean may be partly associated with high endurance capacity along with high spontaneous physical activity and the energy expenditure of activity, called non-exercise activity thermogenesis (NEAT). Previous studies have shown that high-capacity running rats (HCR) are lean compared to low-capacity runners (LCR), which are susceptible to cardiovascular disease and metabolic syndrome. Here, we examine the effect of diet on spontaneous activity and NEAT, as well as potential mechanisms underlying these traits, in rats selectively bred for high or low intrinsic aerobic endurance capacity. Compared to LCR, HCR were resistant to the sizeable increases in body mass and fat mass induced by a high-fat diet; HCR also had lower levels of circulating leptin. HCR were consistently more active than LCR, and had lower fuel economy of activity, regardless of diet. Nonetheless, both HCR and LCR showed a similar decrease in daily activity levels after high-fat feeding, as well as decreases in hypothalamic orexin-A content. The HCR were more sensitive to the NEAT-activating effects of intra-paraventricular orexin-A compared to LCR, especially after high-fat feeding. Lastly, levels of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) in the skeletal muscle of HCR were consistently higher than LCR, and the high-fat diet decreased skeletal muscle PEPCK-C in both groups of rats. Differences in muscle PEPCK were not secondary to the differing amount of activity. This suggests the possibility that intrinsic differences in physical activity levels may originate at the level of the skeletal muscle, which could alter brain responsiveness to neuropeptides and other factors that regulate spontaneous daily activity and NEAT.


Assuntos
Gorduras na Dieta/administração & dosagem , Obesidade/etiologia , Condicionamento Físico Animal/fisiologia , Corrida/fisiologia , Adiposidade/genética , Adiposidade/fisiologia , Animais , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Hipotálamo/química , Hipotálamo/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/análise , Leptina/sangue , Masculino , Músculo Esquelético/enzimologia , Neuropeptídeos/análise , Obesidade/genética , Obesidade/metabolismo , Orexinas , Fosfoenolpiruvato Carboxiquinase (GTP)/análise , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Ratos , Termogênese/genética , Termogênese/fisiologia , Aumento de Peso/genética , Aumento de Peso/fisiologia
20.
Phytomedicine ; 17(8-9): 626-34, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20096551

RESUMO

The antidiabetic actions of Paeoniae Radix involve stimulating glucose uptake and reducing glucose absorption. However, the importance of this herb in the transcriptional regulation of hepatic gluconeogenesis has not previously been investigated, although hepatic gluconeogenesis contributes the most to fasting hyperglycemia. Using rats with streptozotocin-induced diabetes and db/db mice, the dose- and time-dependent suppressive effects of the ethanol extract of Paeoniae Radix (PR-Et) on diabetic hyperglycemia and phosphoenopyruvate carboxykinase (PEPCK) transcription are first demonstrated. Second, by employing H4IIE cells, the inhibitory action of PR-Et on both dexamethasone- and 8-bromo-cAMP-induced-PEPCK expression was also confirmed without causing any cytotoxicity. In addition, this inhibitory effect could be sustained for over 24 h with repeated treatment. Most importantly, PR-Et's action was unaffected by either insulin desensitization or palmitate stimulation. Finally, paeonol and paeoniflorin, two well-known constituents in Paeoniae Radix, did not suppress PEPCK expression at testing concentration. In conclusion, it was clearly demonstrated that transcriptional inhibition of gluconeogenesis is one of the important antidiabetic actions of Paeoniae Radix. Future development of this herb as a dietary supplement or drug should bring substantial benefits for the diabetic population.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Gluconeogênese/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Fígado/efeitos dos fármacos , Paeonia/química , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica , Acetofenonas/isolamento & purificação , Acetofenonas/farmacologia , Acetofenonas/uso terapêutico , Animais , Benzoatos/isolamento & purificação , Benzoatos/farmacologia , Benzoatos/uso terapêutico , Hidrocarbonetos Aromáticos com Pontes/isolamento & purificação , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Linhagem Celular , Dexametasona , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Expressão Gênica/efeitos dos fármacos , Gluconeogênese/genética , Glucosídeos/isolamento & purificação , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Humanos , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoterpenos , Ácido Palmítico/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fitoterapia , Raízes de Plantas , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA