Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(2): 312-330.e22, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38157854

RESUMO

The FERONIA (FER)-LLG1 co-receptor and its peptide ligand RALF regulate myriad processes for plant growth and survival. Focusing on signal-induced cell surface responses, we discovered that intrinsically disordered RALF triggers clustering and endocytosis of its cognate receptors and FER- and LLG1-dependent endocytosis of non-cognate regulators of diverse processes, thus capable of broadly impacting downstream responses. RALF, however, remains extracellular. We demonstrate that RALF binds the cell wall polysaccharide pectin. They phase separate and recruit FER and LLG1 into pectin-RALF-FER-LLG1 condensates to initiate RALF-triggered cell surface responses. We show further that two frequently encountered environmental challenges, elevated salt and temperature, trigger RALF-pectin phase separation, promiscuous receptor clustering and massive endocytosis, and that this process is crucial for recovery from stress-induced growth attenuation. Our results support that RALF-pectin phase separation mediates an exoskeletal mechanism to broadly activate FER-LLG1-dependent cell surface responses to mediate the global role of FER in plant growth and survival.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfotransferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pectinas/metabolismo , Separação de Fases , Proteínas Ligadas por GPI/metabolismo
2.
Gene ; 865: 147328, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36870426

RESUMO

Polypeptides play irreplaceable roles in cell-cell communication by binding to receptor-like kinases. Various types of peptide-receptor-like kinase-mediated signaling have been identified in anther development and male-female interactions in flowering plants. Here, we provide a comprehensive summary of the biological functions and signaling pathways of peptides and receptors involved in anther development, self-incompatibility, pollen tube growth and pollen tube guidance.


Assuntos
Reprodução , Transdução de Sinais , Comunicação Celular , Fosfotransferases/metabolismo , Pólen/metabolismo , Peptídeos/metabolismo , Flores
3.
Nature ; 614(7947): 303-308, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697825

RESUMO

Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring1. Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils1,4-6. The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11)2,3 or a signal from UI pollen binds to the SI female determinant S-locus receptor kinase (SRK)2,3, recruits FERONIA (FER)7-9 and activates FER-mediated reactive oxygen species production in SI stigmas10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class12-14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops.


Assuntos
Brassicaceae , Flores , Hibridização Genética , Proteínas de Plantas , Polinização , Brassicaceae/genética , Brassicaceae/metabolismo , Depressão por Endogamia , Óxido Nítrico/metabolismo , Fosfotransferases/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie , Flores/metabolismo , Autofertilização
4.
Nature ; 607(7919): 534-539, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794475

RESUMO

Precise signalling between pollen tubes and synergid cells in the ovule initiates fertilization in flowering plants1. Contact of the pollen tube with the ovule triggers calcium spiking in the synergids2,3 that induces pollen tube rupture and sperm release. This process, termed pollen tube reception, entails the action of three synergid-expressed proteins in Arabidopsis: FERONIA (FER), a receptor-like kinase; LORELEI (LRE), a glycosylphosphatidylinositol-anchored protein; and NORTIA (NTA), a transmembrane protein of unknown function4-6. Genetic analyses have placed these three proteins in the same pathway; however, it remains unknown how they work together to enable synergid-pollen tube communication. Here we identify two pollen-tube-derived small peptides7 that belong to the rapid alkalinization factor (RALF) family8 as ligands for the FER-LRE co-receptor, which in turn recruits NTA to the plasma membrane. NTA functions as a calmodulin-gated calcium channel required for calcium spiking in the synergid. We also reconstitute the biochemical pathway in which FER-LRE perceives pollen-tube-derived peptides to activate the NTA calcium channel and initiate calcium spiking, a second messenger for pollen tube reception. The FER-LRE-NTA trio therefore forms a previously unanticipated receptor-channel complex in the female cell to recognize male signals and trigger the fertilization process.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sinalização do Cálcio , Cálcio , Proteínas de Ligação a Calmodulina , Glicoproteínas de Membrana , Fosfotransferases , Tubo Polínico , Pólen , Arabidopsis/anatomia & histologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Membrana Celular/metabolismo , Fertilização , Glicoproteínas de Membrana/metabolismo , Óvulo Vegetal/metabolismo , Hormônios Peptídicos/metabolismo , Fosfotransferases/metabolismo , Pólen/metabolismo , Tubo Polínico/metabolismo
5.
Science ; 375(6578): 290-296, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35050671

RESUMO

Fertilization of an egg by multiple sperm (polyspermy) leads to lethal genome imbalance and chromosome segregation defects. In Arabidopsis thaliana, the block to polyspermy is facilitated by a mechanism that prevents polytubey (the arrival of multiple pollen tubes to one ovule). We show here that FERONIA, ANJEA, and HERCULES RECEPTOR KINASE 1 receptor-like kinases located at the septum interact with pollen tube-specific RALF6, 7, 16, 36, and 37 peptide ligands to establish this polytubey block. The same combination of RALF (rapid alkalinization factor) peptides and receptor complexes controls pollen tube reception and rupture inside the targeted ovule. Pollen tube rupture releases the polytubey block at the septum, which allows the emergence of secondary pollen tubes upon fertilization failure. Thus, orchestrated steps in the fertilization process in Arabidopsis are coordinated by the same signaling components to guarantee and optimize reproductive success.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Peptídeos/metabolismo , Tubo Polínico/fisiologia , Transdução de Sinais , Fertilização , Ligantes , Óvulo Vegetal/fisiologia , Fosfotransferases/metabolismo , Pólen/metabolismo , Tubo Polínico/metabolismo , Polinização , Proteínas Quinases/metabolismo
6.
Curr Biol ; 32(3): 497-507.e4, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34875229

RESUMO

Sensing and signaling of cell wall status and dynamics regulate many processes in plants, such as cell growth and morphogenesis, but the underpinning mechanisms remain largely unknown. Here, we demonstrate that the CrRLK1L receptor kinase FERONIA (FER) binds the cell wall pectin, directly leading to the activation of the ROP6 guanosine triphosphatase (GTPase) signaling pathway that regulates the formation of the puzzle piece shape of pavement cells in Arabidopsis. The extracellular malectin domain of FER binds demethylesterified pectin in vivo and in vitro. Both loss-of-FER mutations and defects in pectin demethylesterification caused similar changes in pavement cell shape and ROP6 GTPase signaling. FER is required for the activation of ROP6 by demethylesterified pectin and physically and genetically interacts with the ROP6 activator, RopGEF14. Thus, our findings elucidate a signaling pathway that directly connects the cell wall pectin to cellular morphogenesis via the cell surface receptor FER.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Morfogênese , Pectinas/metabolismo , Fosfotransferases/metabolismo , Transdução de Sinais/fisiologia
7.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768885

RESUMO

Transfer RNA[Ser]Sec carries multiple post-transcriptional modifications. The A37G mutation in tRNA[Ser]Sec abrogates isopentenylation of base 37 and has a profound effect on selenoprotein expression in mice. Patients with a homozygous pathogenic p.R323Q variant in tRNA-isopentenyl-transferase (TRIT1) show a severe neurological disorder, and hence we wondered whether selenoprotein expression was impaired. Patient fibroblasts with the homozygous p.R323Q variant did not show a general decrease in selenoprotein expression. However, recombinant human TRIT1R323Q had significantly diminished activities towards several tRNA substrates in vitro. We thus engineered mice conditionally deficient in Trit1 in hepatocytes and neurons. Mass-spectrometry revealed that hypermodification of U34 to mcm5Um occurs independently of isopentenylation of A37 in tRNA[Ser]Sec. Western blotting and 75Se metabolic labeling showed only moderate effects on selenoprotein levels and 75Se incorporation. A detailed analysis of Trit1-deficient liver using ribosomal profiling demonstrated that UGA/Sec re-coding was moderately affected in Selenop, Txnrd1, and Sephs2, but not in Gpx1. 2'O-methylation of U34 in tRNA[Ser]Sec depends on FTSJ1, but does not affect UGA/Sec re-coding in selenoprotein translation. Taken together, our results show that a lack of isopentenylation of tRNA[Ser]Sec affects UGA/Sec read-through but differs from a A37G mutation.


Assuntos
Alquil e Aril Transferases/genética , RNA de Transferência/metabolismo , Selenoproteínas/metabolismo , Alquil e Aril Transferases/metabolismo , Animais , Linhagem Celular , Cisteína/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Neurônios/metabolismo , Fosfotransferases/genética , Fosfotransferases/metabolismo , Biossíntese de Proteínas/genética , RNA de Transferência/genética , Ribossomos/metabolismo , Selênio/metabolismo , Selenocisteína/genética , Selenoproteína P/genética , Selenoproteínas/genética
8.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768989

RESUMO

Nucleoside kinases (NKs) are key enzymes involved in the in vivo phosphorylation of nucleoside analogues used as drugs to treat cancer or viral infections. Having different specificities, the characterization of NKs is essential for drug design and nucleotide analogue production in an in vitro enzymatic process. Therefore, a fast and reliable substrate screening method for NKs is of great importance. Here, we report on the validation of a well-known luciferase-based assay for the detection of NK activity in a 96-well plate format. The assay was semi-automated using a liquid handling robot. Good linearity was demonstrated (r² > 0.98) in the range of 0-500 µM ATP, and it was shown that alternative phosphate donors like dATP or CTP were also accepted by the luciferase. The developed high-throughput assay revealed comparable results to HPLC analysis. The assay was exemplarily used for the comparison of the substrate spectra of four NKs using 20 (8 natural, 12 modified) substrates. The screening results correlated well with literature data, and additionally, previously unknown substrates were identified for three of the NKs studied. Our results demonstrate that the developed semi-automated high-throughput assay is suitable to identify best performing NKs for a wide range of substrates.


Assuntos
Nucleosídeos/metabolismo , Fosfotransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Drosophila melanogaster/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Luciferases/metabolismo , Fosforilação/fisiologia , Especificidade por Substrato
9.
Microbiol Spectr ; 9(2): e0029921, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34643411

RESUMO

Bovine mastitis infection in dairy cattle is a significant economic burden for the dairy industry globally. To reduce the use of antibiotics in treatment of clinical mastitis, new alternative treatment options are needed. Antimicrobial peptides from bacteria, also known as bacteriocins, are potential alternatives for combating mastitis pathogens. In search of novel bacteriocins against mastitis pathogens, we screened samples of Norwegian bovine raw milk and found a Streptococcus uberis strain with potent antimicrobial activity toward Enterococcus, Streptococcus, Listeria, and Lactococcus. Whole-genome sequencing of the strain revealed a multibacteriocin gene cluster encoding one class IIb bacteriocin, two class IId bacteriocins, in addition to a three-component regulatory system and a dedicated ABC transporter. Isolation and purification of the antimicrobial activity from culture supernatants resulted in the detection of a 6.3-kDa mass peak by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, a mass corresponding to the predicted size of one of the class IId bacteriocins. The identification of this bacteriocin, called ubericin K, was further confirmed by in vitro protein synthesis, which showed the same inhibitory spectrum as the purified antimicrobial compound. Ubericin K shows highest sequence similarity to the class IId bacteriocins bovicin 255, lactococcin A, and garvieacin Q. We found that ubericin K uses the sugar transporter mannose phosphotransferase (PTS) as a target receptor. Further, by using the pHlourin sensor system to detect intracellular pH changes due to leakage across the membrane, ubericin K was shown to be a pore former, killing target cells by membrane disruption. IMPORTANCE Bacterial infections in dairy cows are a major burden to farmers worldwide because infected cows require expensive treatments and produce less milk. Today, infected cows are treated with antibiotics, a practice that is becoming less effective due to antibiotic resistance. Compounds other than antibiotics also exist that kill bacteria causing infections in cows; these compounds, known as bacteriocins, are natural products produced by other bacteria in the environment. In this work, we discover a new bacteriocin that we call ubericin K, which kills several species of bacteria known to cause infections in dairy cows. We also use in vitro synthesis as a novel method for rapidly characterizing bacteriocins directly from genomic data, which could be useful for other researchers. We believe that ubericin K and the methods described in this work will aid in the transition away from antibiotics in the dairy industry.


Assuntos
Antibacterianos/uso terapêutico , Bacteriocinas/uso terapêutico , Doenças dos Bovinos/tratamento farmacológico , Mastite Bovina/tratamento farmacológico , Streptococcus/metabolismo , Animais , Membrana Externa Bacteriana/efeitos dos fármacos , Membrana Externa Bacteriana/patologia , Bacteriocinas/genética , Bovinos , Doenças dos Bovinos/microbiologia , Enterococcus/efeitos dos fármacos , Enterococcus/crescimento & desenvolvimento , Feminino , Lactococcus/efeitos dos fármacos , Lactococcus/crescimento & desenvolvimento , Listeria/efeitos dos fármacos , Listeria/crescimento & desenvolvimento , Mastite Bovina/microbiologia , Testes de Sensibilidade Microbiana , Fosfotransferases/metabolismo , Percepção de Quorum , Streptococcus/genética
10.
J Ethnopharmacol ; 276: 113991, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33675914

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cistanche tubulosa (Schrenk) R. Wight (Orobanchaceae) is a frequently prescribed component in many traditional herbal prescriptions which are used to treat diabetes in China. In recent studies, the antidiabetic activity of Cistanche tubulosa extracts have been confirmed. However, no systematic investigation has been reported on the total glycosides of Cistatnche tubulosa (TGCT). AIM OF THE STUDY: The present study aimed to investigate the hypoglycemic and hypolipidemic effects of TGCT and the potential mechanisms in diet/streptozotocin (STZ)-induced diabetic rats, and to chemically characterize the main constituents of TGCT. MATERIALS AND METHODS: The major constituents of TGCT were characterized by HPLC/Q-TOF-MS and the analytical quantification was performed with HPLC-DAD. Type 2 diabetic rats were induced by high-fat high-sucrose diet (HFSD) and a single injection of STZ (30 mg/kg). TGCT (50 mg/kg, 100 mg/kg and 200 mg/kg) or metformin (200 mg/kg) were orally administered for 6 weeks. Body weight and calorie intake were monitored throughout the experiment. Fasting plasma glucose (FPG), oral glucose tolerance test (OGTT), area under curve of glucose (AUC-G), glycosylated hemoglobin (HbA1c), fasting insulin, serum C-peptide, glycogen content and insulin sensitivity index were tested. The levels of phosphorylated protein kinase B and phosphorylated glycogen synthase kinase 3ß, the activities of hexokinase and pyruvate kinase were assayed. Meanwhile, the changes in serum lipid profiles, superoxide dismutase, glutathione peroxidase, malondialdehyde and inflammatory factors were measured. Histological of pancreas were also evaluated by haematoxylin-eosin stain. RESULTS: Our investigation revealed the presence of phenylethanoid glycosides (PhGs): echinacoside (500.19 ± 11.52 mg/g), acteoside (19.13 ± 1.44 mg/g) and isoacteoside (141.82 ± 5.78 mg/g) in TGCT. Pharmacological tests indicated that TGCT significantly reversed STZ-induced weight loss (11.1%, 200 mg/kg); decreased FPG (56.4%, 200 mg/kg) and HbA1c (37.4%, 200 mg/kg); ameliorated the OGTT, AUC-G and insulin sensitivity; increased glycogen content (40.8% in liver and 52.6% in muscle, 200 mg/kg) and the activities of carbohydrate metabolizing enzymes; regulated lipid profile changes and the activities of antioxidant enzymes; diminished serum markers of oxidative stress and inflammation in a dose-dependent manner (p < 0.05). CONCLUSIONS: This study confirmed that TGCT was an effective nutritional agent for ameliorating hyperglycemia and hyperlipidemia in diet/STZ-induced diabetic rats, which might be largely attributed to the activities of TGCT on inhibitions of oxidative stress and inflammation.


Assuntos
Cistanche/química , Diabetes Mellitus Experimental/tratamento farmacológico , Glicosídeos/farmacologia , Hipoglicemiantes/farmacologia , Hipolipemiantes/farmacologia , Extratos Vegetais/farmacologia , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Peptídeo C/sangue , Dieta/efeitos adversos , Ingestão de Alimentos/efeitos dos fármacos , Hemoglobinas Glicadas/efeitos dos fármacos , Glicogênio/metabolismo , Glicosídeos/química , Glicosídeos/uso terapêutico , Hipoglicemiantes/uso terapêutico , Hipolipemiantes/uso terapêutico , Inflamação/metabolismo , Insulina/sangue , Masculino , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Fosfotransferases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Ratos Sprague-Dawley , Estreptozocina
11.
Cell Calcium ; 93: 102327, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33316585

RESUMO

Inositol polyphosphate multikinase (IPMK) is a conserved protein that initiates the production of inositol phosphate intracellular messengers and is critical for regulating a variety of cellular processes. Here, we report that the C. elegans IPMK-1, which is homologous to the mammalian inositol polyphosphate multikinase, plays a crucial role in regulating rhythmic behavior and development. The deletion mutant ipmk-1(tm2687) displays a long defecation cycle period and retarded postembryonic growth. The expression of functional ipmk-1::GFP was detected in the pharyngeal muscles, amphid sheath cells, the intestine, excretory (canal) cells, proximal gonad, and spermatheca. The expression of IPMK-1 in the intestine was sufficient for the wild-type phenotype. The IP3-kinase activity of IPMK-1 is required for defecation rhythms and postembryonic development. The defective phenotypes of ipmk-1(tm2687) could be rescued by a loss-of-function mutation in type I inositol 5-phosphatase homolog (IPP-5) and improved by a supplemental Ca2+ in the medium. Our work demonstrates that IPMK-1 and the signaling molecule inositol triphosphate (IP3) pathway modulate rhythmic behaviors and development by dynamically regulating the concentration of intracellular Ca2+ in C. elegans. Advances in understanding the molecular regulation of Ca2+ homeostasis and regulation of organism development may lead to therapeutic strategies that modulate Ca2+ signaling to enhance function and counteract disease processes. Unraveling the physiological role of IPMK and the underlying functional mechanism in C. elegans would contribute to understanding the role of IPMK in other species, especially in mammals, and benefit further research on the involvement of IPMK in disease.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/enzimologia , Sinalização do Cálcio , Desenvolvimento Embrionário , Inositol 1,4,5-Trifosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Defecação , Deleção de Genes , Espaço Intracelular/metabolismo , Mutação/genética , Especificidade de Órgãos , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/química
12.
PLoS Negl Trop Dis ; 14(10): e0008091, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33017394

RESUMO

Eukaryotes from the Excavata superphylum have been used as models to study the evolution of cellular molecular processes. Strikingly, human parasites of the Trypanosomatidae family (T. brucei, T. cruzi and L. major) conserve the complex machinery responsible for selenocysteine biosynthesis and incorporation in selenoproteins (SELENOK/SelK, SELENOT/SelT and SELENOTryp/SelTryp), although these proteins do not seem to be essential for parasite viability under laboratory controlled conditions. Selenophosphate synthetase (SEPHS/SPS) plays an indispensable role in selenium metabolism, being responsible for catalyzing the formation of selenophosphate, the biological selenium donor for selenocysteine synthesis. We solved the crystal structure of the L. major selenophosphate synthetase and confirmed that its dimeric organization is functionally important throughout the domains of life. We also demonstrated its interaction with selenocysteine lyase (SCLY) and showed that it is not present in other stable assemblies involved in the selenocysteine pathway, namely the phosphoseryl-tRNASec kinase (PSTK)-Sec-tRNASec synthase (SEPSECS) complex and the tRNASec-specific elongation factor (eEFSec) complex. Endoplasmic reticulum stress with dithiothreitol (DTT) or tunicamycin upon selenophosphate synthetase ablation in procyclic T. brucei cells led to a growth defect. On the other hand, only DTT presented a negative effect in bloodstream T. brucei expressing selenophosphate synthetase-RNAi. Furthermore, selenoprotein T (SELENOT) was dispensable for both forms of the parasite. Together, our data suggest a role for the T. brucei selenophosphate synthetase in the regulation of the parasite's ER stress response.


Assuntos
Liases/metabolismo , Fosfotransferases/metabolismo , Selenocisteína/biossíntese , Selenoproteínas/metabolismo , Trypanosoma brucei brucei/enzimologia , Conformação Proteica , Proteínas de Protozoários/metabolismo , Selênio/metabolismo
13.
Nat Metab ; 2(7): 603-611, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32694795

RESUMO

The micronutrient selenium is incorporated via the selenocysteine biosynthesis pathway into the rare amino acid selenocysteine, which is required in selenoproteins such as glutathione peroxidases and thioredoxin reductases1,2. Here, we show that selenophosphate synthetase 2 (SEPHS2), an enzyme in the selenocysteine biosynthesis pathway, is essential for survival of cancer, but not normal, cells. SEPHS2 is required in cancer cells to detoxify selenide, an intermediate that is formed during selenocysteine biosynthesis. Breast and other cancer cells are selenophilic, owing to a secondary function of the cystine/glutamate antiporter SLC7A11 that promotes selenium uptake and selenocysteine biosynthesis, which, by allowing production of selenoproteins such as GPX4, protects cells against ferroptosis. However, this activity also becomes a liability for cancer cells because selenide is poisonous and must be processed by SEPHS2. Accordingly, we find that SEPHS2 protein levels are elevated in samples from people with breast cancer, and that loss of SEPHS2 impairs growth of orthotopic mammary-tumour xenografts in mice. Collectively, our results identify a vulnerability of cancer cells and define the role of selenium metabolism in cancer.


Assuntos
Inativação Metabólica , Neoplasias/metabolismo , Selênio/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Ferroptose , Humanos , Camundongos , Camundongos Nus , Neoplasias/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfotransferases/metabolismo , Compostos de Selênio/metabolismo , Selenocisteína/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
PLoS Genet ; 16(6): e1008847, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32559234

RESUMO

Plant cell growth requires the coordinated expansion of the protoplast and the cell wall, which is controlled by an elaborate system of cell wall integrity (CWI) sensors linking the different cellular compartments. LRR-eXtensins (LRXs) are cell wall-attached extracellular regulators of cell wall formation and high-affinity binding sites for RALF (Rapid ALkalinization Factor) peptide hormones that trigger diverse physiological processes related to cell growth. LRXs function in CWI sensing and in the case of LRX4 of Arabidopsis thaliana, this activity was shown to involve interaction with the transmembrane Catharanthus roseus Receptor-Like Kinase1-Like (CrRLK1L) protein FERONIA (FER). Here, we demonstrate that binding of RALF1 and FER is common to most tested LRXs of vegetative tissue, including LRX1, the main LRX protein of root hairs. Consequently, an lrx1-lrx5 quintuple mutant line develops shoot and root phenotypes reminiscent of the fer-4 knock-out mutant. The previously observed membrane-association of LRXs, however, is FER-independent, suggesting that LRXs bind not only FER but also other membrane-localized proteins to establish a physical link between intra- and extracellular compartments. Despite evolutionary diversification of various LRX proteins, overexpression of several chimeric LRX constructs causes cross-complementation of lrx mutants, indicative of comparable functions among members of this protein family. Suppressors of the pollen-growth defects induced by mutations in the CrRLK1Ls ANXUR1/2 also alleviate lrx1 lrx2-induced mutant root hair phenotypes. This suggests functional similarity of LRX-CrRLK1L signaling processes in very different cell types and indicates that LRX proteins are components of conserved processes regulating cell growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Parede Celular/metabolismo , Hormônios Peptídicos/metabolismo , Fosfotransferases/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Mutação , Fosfotransferases/genética , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Pólen/citologia , Pólen/crescimento & desenvolvimento , Domínios Proteicos/genética , Mapas de Interação de Proteínas , Plântula/citologia , Plântula/crescimento & desenvolvimento , Transdução de Sinais/genética
15.
J Bacteriol ; 202(14)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32366591

RESUMO

Staphylococcus aureus can utilize exogenous fatty acids for phospholipid synthesis. The fatty acid kinase FakA is essential for this utilization by phosphorylating exogenous fatty acids for incorporation into lipids. How FakA impacts the lipid membrane composition is unknown. In this study, we used mass spectrometry to determine the membrane lipid composition and properties of S. aureus in the absence of fakA We found the fakA mutant to have increased abundance of lipids containing longer acyl chains. Since S. aureus does not synthesize unsaturated fatty acids, we utilized oleic acid (18:1) to track exogenous fatty acid incorporation into lipids. We observed a concentration-dependent incorporation of exogenous fatty acids into the membrane that required FakA. We also tested how FakA and exogenous fatty acids impact membrane-related physiology and identified changes in membrane potential, cellular respiration, and membrane fluidity. To mimic the host environment, we characterized the lipid composition of wild-type and fakA mutant bacteria grown in mouse skin homogenate. We show that wild-type S. aureus can incorporate exogenous unsaturated fatty acids from host tissue, highlighting the importance of FakA in the presence of host skin tissue. In conclusion, FakA is important for maintaining the composition and properties of the phospholipid membrane in the presence of exogenous fatty acids, impacting overall cell physiology.IMPORTANCE Environmental fatty acids can be harvested to supplement endogenous fatty acid synthesis to produce membranes and circumvent fatty acid biosynthesis inhibitors. However, how the inability to use these fatty acids impacts lipids is unclear. Our results reveal lipid composition changes in response to fatty acid addition and when S. aureus is unable to activate fatty acids through FakA. We identify concentration-dependent utilization of oleic acid that, when combined with previous work, provides evidence that fatty acids can serve as a signal to S. aureus Furthermore, using mouse skin homogenates as a surrogate for in vivo conditions, we showed that S. aureus can incorporate host fatty acids. This study highlights how exogenous fatty acids impact bacterial membrane composition and function.


Assuntos
Proteínas de Bactérias/metabolismo , Lipídeos/química , Fosfotransferases/metabolismo , Staphylococcus aureus/enzimologia , Animais , Proteínas de Bactérias/genética , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Ácido Oleico/metabolismo , Fosfotransferases/genética , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo
16.
Int J Biol Macromol ; 156: 18-26, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32275991

RESUMO

The selenocysteine (Sec) incorporation is a co-translational event taking place at an in-frame UGA-codon and dependent on an organized molecular machinery. Selenium delivery requires mainly two enzymes, the selenocysteine lyase (CsdB) is essential for Sec recycling and conversion to selenide, further used by the selenophosphate synthetase (SelD), responsible for the conversion of selenide in selenophosphate. Therefore, understanding the catalytic mechanism involved in selenium compounds delivery, such as the interaction between SelD and CsdB (EcCsdB.EcSelD), is fundamental for the further comprehension of the selenocysteine synthesis pathway and its control. In Escherichia coli, EcCsdB.EcSelD interaction must occur to prevent cell death from the release of the toxic intermediate selenide. Here, we demonstrate and characterize the in vitro EcSelD.EcCsdB interaction by biophysical methods. The EcSelD.EcCsdB interaction occurs with a stoichiometry of 1:1 in presence of selenocysteine and at a low-nanomolar affinity (~1.8 nM). The data is in agreement with the small angle X-ray scattering model fitted using available structures. Moreover, yeast-2-hybrid assays supported the macromolecular interaction in the cellular environment. This is the first report that demonstrates the interaction between EcCsdB and EcSelD supporting the hypothesis that EcSelD.EcCsdB interaction is necessary to sequester the selenide during the selenocysteine incorporation pathway in Bacteria.


Assuntos
Liases/química , Liases/metabolismo , Fosfotransferases/química , Fosfotransferases/metabolismo , Selenocisteína/biossíntese , Varredura Diferencial de Calorimetria , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Estabilidade Proteica , Desdobramento de Proteína , Espalhamento a Baixo Ângulo , Selênio/metabolismo , Espectrometria de Fluorescência , Termodinâmica , Técnicas do Sistema de Duplo-Híbrido , Ultracentrifugação
17.
Nature ; 579(7800): 561-566, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32214247

RESUMO

Species that propagate by sexual reproduction actively guard against the fertilization of an egg by multiple sperm (polyspermy). Flowering plants rely on pollen tubes to transport their immotile sperm to fertilize the female gametophytes inside ovules. In Arabidopsis, pollen tubes are guided by cysteine-rich chemoattractants to target the female gametophyte1,2. The FERONIA receptor kinase has a dual role in ensuring sperm delivery and blocking polyspermy3. It has previously been reported that FERONIA generates a female gametophyte environment that is required for sperm release4. Here we show that FERONIA controls several functionally linked conditions to prevent the penetration of female gametophytes by multiple pollen tubes in Arabidopsis. We demonstrate that FERONIA is crucial for maintaining de-esterified pectin at the filiform apparatus, a region of the cell wall at the entrance to the female gametophyte. Pollen tube arrival at the ovule triggers the accumulation of nitric oxide at the filiform apparatus in a process that is dependent on FERONIA and mediated by de-esterified pectin. Nitric oxide nitrosates both precursor and mature forms of the chemoattractant LURE11, respectively blocking its secretion and interaction with its receptor, to suppress pollen tube attraction. Our results elucidate a mechanism controlled by FERONIA in which the arrival of the first pollen tube alters ovular conditions to disengage pollen tube attraction and prevent the approach and penetration of the female gametophyte by late-arriving pollen tubes, thus averting polyspermy.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Fertilização , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Óxido Nítrico/metabolismo , Óvulo Vegetal/metabolismo , Pectinas/metabolismo , Fosfotransferases/metabolismo , Tubo Polínico/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Óvulo Vegetal/citologia , Pectinas/química , Tubo Polínico/citologia
18.
Biochem J ; 477(2): 341-356, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31967651

RESUMO

Plant polysaccharides (cellulose, hemicellulose, pectin, starch) are either direct (i.e. leaf starch) or indirect products of photosynthesis, and they belong to the most abundant organic compounds in nature. Although each of these polymers is made by a specific enzymatic machinery, frequently in different cell locations, details of their synthesis share certain common features. Thus, the production of these polysaccharides is preceded by the formation of nucleotide sugars catalyzed by fully reversible reactions of various enzymes, mostly pyrophosphorylases. These 'buffering' enzymes are, generally, quite active and operate close to equilibrium. The nucleotide sugars are then used as substrates for irreversible reactions of various polysaccharide-synthesizing glycosyltransferases ('engine' enzymes), e.g. plastidial starch synthases, or plasma membrane-bound cellulose synthase and callose synthase, or ER/Golgi-located variety of glycosyltransferases forming hemicellulose and pectin backbones. Alternatively, the irreversible step might also be provided by a carrier transporting a given immediate precursor across a membrane. Here, we argue that local equilibria, established within metabolic pathways and cycles resulting in polysaccharide production, bring stability to the system via the arrangement of a flexible supply of nucleotide sugars. This metabolic system is itself under control of adenylate kinase and nucleoside-diphosphate kinase, which determine the availability of nucleotides (adenylates, uridylates, guanylates and cytidylates) and Mg2+, the latter serving as a feedback signal from the nucleotide metabolome. Under these conditions, the supply of nucleotide sugars to engine enzymes is stable and constant, and the metabolic process becomes optimized in its load and consumption, making the system steady and self-regulated.


Assuntos
Redes e Vias Metabólicas/genética , Fosfotransferases/genética , Fotossíntese/genética , Polissacarídeos/genética , Adenilato Quinase/genética , Parede Celular/genética , Parede Celular/metabolismo , Celulose/biossíntese , Celulose/genética , Celulose/metabolismo , Metabolismo Energético/genética , Glucose-1-Fosfato Adenililtransferase/genética , Núcleosídeo-Difosfato Quinase/genética , Pectinas/biossíntese , Pectinas/genética , Pectinas/metabolismo , Fosfotransferases/metabolismo , Plantas , Polissacarídeos/biossíntese , Polissacarídeos/metabolismo , Amido/biossíntese , Amido/genética , Amido/metabolismo
19.
Cell Microbiol ; 22(1): e13129, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31652367

RESUMO

Phagocytic cells ingest bacteria by phagocytosis and kill them efficiently inside phagolysosomes. The molecular mechanisms involved in intracellular killing and their regulation are complex and still incompletely understood. Dictyostelium discoideum has been used as a model to discover and to study new gene products involved in intracellular killing of ingested bacteria. In this study, we performed random mutagenesis of Dictyostelium cells and isolated a mutant defective for growth on bacteria. This mutant is characterized by the genetic inactivation of the lrrkA gene, which encodes a protein with a kinase domain and leucine-rich repeats. LrrkA knockout (KO) cells kill ingested Klebsiella pneumoniae bacteria inefficiently. This defect is not additive to the killing defect observed in kil2 KO cells, suggesting that the function of Kil2 is partially controlled by LrrkA. Indeed, lrrkA KO cells exhibit a phenotype similar to that of kil2 KO cells: Intraphagosomal proteolysis is inefficient, and both intraphagosomal killing and proteolysis are restored upon exogenous supplementation with magnesium ions. Bacterially secreted folate stimulates intracellular killing in Dictyostelium cells, but this stimulation is lost in cells with genetic inactivation of kil2, lrrkA, or far1. Together, these results indicate that the stimulation of intracellular killing by folate involves Far1 (the cell surface receptor for folate), LrrkA, and Kil2. This study is the first identification of a signalling pathway regulating intraphagosomal bacterial killing in Dictyostelium cells.


Assuntos
Dictyostelium/enzimologia , Ácido Fólico/metabolismo , Fagossomos/microbiologia , Fosfotransferases/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Dictyostelium/genética , Dictyostelium/microbiologia , Regulação Bacteriana da Expressão Gênica , Espaço Intracelular/microbiologia , Klebsiella pneumoniae/metabolismo , Leucina/química , Fagocitose , Fosfotransferases/genética , Domínios Proteicos , Proteínas de Protozoários/genética
20.
Sci Rep ; 9(1): 18437, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804596

RESUMO

Deregulation of Cyclin-dependent kinase 5 (CDK5) by binding to the activated calpain product p25, is associated with the onset of neurodegenerative diseases, such as Alzheimer's disease (AD). Conjugated Linoleic Acid (CLA), a calpain inhibitor, is a metabolite of Punicic Acid (PA), the main component of Pomegranate seed oil (PSO). We have shown recently that long-term administration of Nano-PSO, a nanodroplet formulation of PSO, delays mitochondrial damage and disease advance in a mouse model of genetic Creutzfeldt Jacob disease (CJD). In this project, we first demonstrated that treatment of mice with Nano-PSO, but not with natural PSO, results in the accumulation of CLA in their brains. Next, we tested the cognitive, biochemical and pathological effects of long-term administration of Nano-PSO to 5XFAD mice, modeling for Alzheimer's disease. We show that Nano-PSO treatment prevented age-related cognitive deterioration and mitochondrial oxidative damage in 5XFAD mice. Also, brains of the Nano-PSO treated mice presented reduced accumulation of Aß and of p25, a calpain product, and increased expression of COX IV-1, a key mitochondrial enzyme. We conclude that administration of Nano-PSO results in the brain targeting of CLA, and suggest that this treatment may prevent/delay the onset of neurodegenerative diseases, such as AD and CJD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cognição/efeitos dos fármacos , Glicoproteínas/administração & dosagem , Ácidos Linoleicos Conjugados/administração & dosagem , Memória/efeitos dos fármacos , Óleos de Plantas/administração & dosagem , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosfotransferases/metabolismo , Óleos de Plantas/química , Presenilina-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA