Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plant Mol Biol ; 108(4-5): 469-480, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34994920

RESUMO

KEY MESSAGE: Association analysis resulted in the identification of specific StGWD alleles causing either an increase or decrease in starch phosphate content which was verified in diploid and tetraploid potato mapping populations. Potatoes are grown for various purposes like French fries, table potatoes, crisps and for their starch. One of the most important aspects of potato starch is that it contains a high amount of phosphate ester groups which are considered to be important for providing improved functionalization after derivatization processes. Little is known about the variation in phosphate content as such in different potato varieties and thus we studied the genetic diversity for this trait. From other studies it was clear that the phosphate content is controlled by a quantitative trait locus (QTL) underlying the candidate gene α-Glucan Water Dikinase (StGWD) on chromosome 5. We performed direct amplicon sequencing of this gene by Sanger sequencing. Sequences of two StGWD amplicons from a global collection of 398 commercial cultivars and progenitor lines were used to identify 16 different haplotypes. By assigning tag SNPs to these haplotypes, each of the four alleles present in a cultivar could be deduced and linked to a phosphate content. A high value for intra-individual heterozygosity was observed (Ho = 0.765). The average number of different haplotypes per individual (Ai) was 3.1. Pedigree analysis confirmed that the haplotypes are identical-by-descent (IBD) and offered insight in the breeding history of elite potato germplasm. Haplotypes originating from introgression of wild potato accessions carrying resistance genes could be traced. Furthermore, association analysis resulted in the identification of specific StGWD alleles causing either an increase or decrease in starch phosphate content varying from 12 nmol PO4/mg starch to 38 nmol PO4/mg starch. These allele effects were verified in diploid and tetraploid mapping populations and offer possibilities to breed and select for this trait.


Assuntos
Fosfatos/metabolismo , Fosfotransferases (Aceptores Pareados)/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Amido/metabolismo , Tetraploidia , Alelos , Variação Genética , Haplótipos , Linhagem , Fosfotransferases (Aceptores Pareados)/metabolismo , Polimorfismo de Nucleotídeo Único
2.
Int J Mol Sci ; 22(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34281256

RESUMO

Plants are often challenged by an array of unfavorable environmental conditions. During cold exposure, many changes occur that include, for example, the stabilization of cell membranes, alterations in gene expression and enzyme activities, as well as the accumulation of metabolites. In the presented study, the carbohydrate metabolism was analyzed in the very early response of plants to a low temperature (2 °C) in the leaves of 5-week-old potato plants of the Russet Burbank cultivar during the first 12 h of cold treatment (2 h dark and 10 h light). First, some plant stress indicators were examined and it was shown that short-term cold exposure did not significantly affect the relative water content and chlorophyll content (only after 12 h), but caused an increase in malondialdehyde concentration and a decrease in the expression of NDA1, a homolog of the NADH dehydrogenase gene. In addition, it was shown that the content of transitory starch increased transiently in the very early phase of the plant response (3-6 h) to cold treatment, and then its decrease was observed after 12 h. In contrast, soluble sugars such as glucose and fructose were significantly increased only at the end of the light period, where a decrease in sucrose content was observed. The availability of the monosaccharides at constitutively high levels, regardless of the temperature, may delay the response to cold, involving amylolytic starch degradation in chloroplasts. The decrease in starch content, observed in leaves after 12 h of cold exposure, was preceded by a dramatic increase in the transcript levels of the key enzymes of starch degradation initiation, the α-glucan, water dikinase (GWD-EC 2.7.9.4) and the phosphoglucan, water dikinase (PWD-EC 2.7.9.5). The gene expression of both dikinases peaked at 9 h of cold exposure, as analyzed by real-time PCR. Moreover, enhanced activities of the acid invertase as well as of both glucan phosphorylases during exposure to a chilling temperature were observed. However, it was also noticed that during the light phase, there was a general increase in glucan phosphorylase activities for both control and cold-stressed plants irrespective of the temperature. In conclusion, a short-term cold treatment alters the carbohydrate metabolism in the leaves of potato, which leads to an increase in the content of soluble sugars.


Assuntos
Metabolismo dos Carboidratos , Resposta ao Choque Frio/fisiologia , Solanum tuberosum/metabolismo , Amilases/metabolismo , Metabolismo dos Carboidratos/genética , Clorofila/metabolismo , Temperatura Baixa/efeitos adversos , Resposta ao Choque Frio/genética , Complexo I de Transporte de Elétrons/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Malondialdeído/metabolismo , Fosforilases/metabolismo , Fosfotransferases (Aceptores Pareados)/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Amido/metabolismo , Água/metabolismo , beta-Frutofuranosidase/metabolismo
3.
Sci Rep ; 7(1): 3339, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28611462

RESUMO

Starch phosphorylation occurs naturally during starch metabolism in the plant and is catalysed by glucan water dikinases (GWD1) and phosphoglucan water dikinase/glucan water dikinase 3 (PWD/GWD3). We generated six stable individual transgenic lines by over-expressing the potato GWD1 in rice. Transgenic rice grain starch had 9-fold higher 6-phospho (6-P) monoesters and double amounts of 3-phospho (3-P) monoesters, respectively, compared to control grain. The shape and topography of the transgenic starch granules were moderately altered including surface pores and less well defined edges. The gelatinization temperatures of both rice flour and extracted starch were significantly lower than those of the control and hence negatively correlated with the starch phosphate content. The 6-P content was positively correlated with amylose content and relatively long amylopectin chains with DP25-36, and the 3-P content was positively correlated with short chains of DP6-12. The starch pasting temperature, peak viscosity and the breakdown were lower but the setback was higher for transgenic rice flour. The 6-P content was negatively correlated with texture adhesiveness but positively correlated with the cohesiveness of rice flour gels. Our data demonstrate a way forward to employ a starch bioengineering approach for clean modification of starch, opening up completely new applications for rice starch.


Assuntos
Amilopectina/metabolismo , Amilose/metabolismo , Oryza/genética , Fosfotransferases (Aceptores Pareados)/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Amilopectina/genética , Amilose/genética , Grão Comestível/genética , Fosforilação , Fosfotransferases (Aceptores Pareados)/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética
4.
New Phytol ; 203(2): 495-507, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24697163

RESUMO

Glucan, water dikinase (GWD) is a key enzyme of starch metabolism but the physico-chemical properties of starches isolated from GWD-deficient plants and their implications for starch metabolism have so far not been described. Transgenic Arabidopsis thaliana plants with reduced or no GWD activity were used to investigate the properties of starch granules. In addition, using various in vitro assays, the action of recombinant GWD, ß-amylase, isoamylase and starch synthase 1 on the surface of native starch granules was analysed. The internal structure of granules isolated from GWD mutant plants is unaffected, as thermal stability, allomorph, chain length distribution and density of starch granules were similar to wild-type. However, short glucan chain residues located at the granule surface dominate in starches of transgenic plants and impede GWD activity. A similarly reduced rate of phosphorylation by GWD was also observed in potato tuber starch fractions that differ in the proportion of accessible glucan chain residues at the granule surface. A model is proposed to explain the characteristic morphology of starch granules observed in GWD transgenic plants. The model postulates that the occupancy rate of single glucan chains at the granule surface limits accessibility to starch-related enzymes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fosfotransferases (Aceptores Pareados)/metabolismo , Amido/química , Amido/metabolismo , Proteínas de Arabidopsis/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Isoamilase/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação , Fosforilação , Fosfotransferases (Aceptores Pareados)/genética , Plantas Geneticamente Modificadas , Solanum tuberosum , Amido/genética , Amido/ultraestrutura , Propriedades de Superfície , beta-Amilase/metabolismo
5.
FEBS J ; 279(11): 1953-66, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22429449

RESUMO

The plant genome encodes at least two distinct and evolutionary conserved plastidial starch-related dikinases that phosphorylate a low percentage of glucosyl residues at the starch granule surface. Esterification of starch favours the transition of highly ordered α-glucans to a less ordered state and thereby facilitates the cleavage of interglucose bonds by hydrolases. Metabolically most important is the phosphorylation at position C6, which is catalysed by the glucan, water dikinase (GWD). The reactions mediated by recombinant wild-type GWD from Arabidopsis thaliana (AtGWD) and from Solanum tuberosum (StGWD) were studied. Two mutated proteins lacking the conserved histidine residue that is indispensible for glucan phosphorylation were also included. The wild-type GWDs consume approximately 20% more ATP than is required for glucan phosphorylation. Similarly, although incapable of phosphorylating α-glucans, the two mutated dikinase proteins are capable of degrading ATP. Thus, consumption of ATP and phosphorylation of α-glucans are not strictly coupled processes but, to some extent, occur as independent phosphotransfer reactions. As revealed by incubation of the GWDs with [γ-(33) P]ATP, the consumption of ATP includes the transfer of the γ-phosphate group to the GWD protein but this autophosphorylation does not require the conserved histidine residue. Thus, the GWD proteins possess two vicinal phosphorylation sites, both of which are transiently phosphorylated. Following autophosphorylation at both sites, native dikinases flexibly use various terminal phosphate acceptors, such as water, α-glucans, AMP and ADP. A model is presented describing the complex phosphotransfer reactions of GWDs as affected by the availability of the various acceptors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glucanos/metabolismo , Fosfotransferases (Aceptores Pareados)/metabolismo , Plastídeos/enzimologia , Solanum tuberosum/enzimologia , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/genética , Biocatálise , Histidina/metabolismo , Cinética , Fosforilação , Fosfotransferases (Aceptores Pareados)/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Água/metabolismo
6.
Plant J ; 57(1): 1-13, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18764922

RESUMO

Starches extracted from most plant species are phosphorylated. alpha-Glucan water dikinase (GWD) is a key enzyme that controls the phosphate content of starch. In the absence of its activity starch degradation is impaired, leading to a starch excess phenotype in Arabidopsis and in potato leaves, and to reduced cold sweetening in potato tubers. Here, we characterized a transposon insertion (legwd::Ds) in the tomato GWD (LeGWD) gene that caused male gametophytic lethality. The mutant pollen had a starch excess phenotype that was associated with a reduction in pollen germination. SEM and TEM analyses indicated mild shrinking of the pollen grains and the accumulation of large starch granules inside the plastids. The level of soluble sugars was reduced by 1.8-fold in mutant pollen grains. Overall, the transmission of the mutant allele was only 0.4% in the male, whereas it was normal in the female. Additional mutant alleles, obtained through transposon excision, showed the same phenotypes as legwd::Ds. Moreover, pollen germination could be restored, and the starch excess phenotype could be abolished in lines expressing the potato GWD homolog (StGWD) under a pollen-specific promoter. In these lines, where fertility was restored, homozygous plants for legwd::Ds were isolated, and showed the starch excess phenotype in the leaves. Overall, our results demonstrate the importance of starch phosphorylation and breakdown for pollen germination, and open up the prospect for analyzing the role of starch metabolism in leaves and fruits.


Assuntos
Germinação , Fosfotransferases (Aceptores Pareados)/metabolismo , Pólen/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Amido/metabolismo , Alelos , Elementos de DNA Transponíveis , Fertilidade , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Mutagênese Insercional , Fenótipo , Fosforilação , Fosfotransferases (Aceptores Pareados)/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Pólen/genética
7.
Biochemistry ; 45(14): 4674-82, 2006 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-16584202

RESUMO

The phosphorylation of the amylopectin fraction of starch catalyzed by the alpha-glucan, water dikinase (GWD, EC 2.7.9.4) plays a pivotal role in starch metabolism. Limited proteolysis of the potato tuber (Solanum tuberosum) GWD (StGWD, 155 kDa) by trypsin primarily produced stable fragments of 33 and 122 kDa, termed the SBD fragment and N11, respectively, as generated by trypsin cleavage at Arg-286. SBD and N11 were generated using recombinant DNA technology and purified to near homogeneity. Tandem repeat sequences, SBD-1 and SBD-2, of a region that is significantly similar in sequence to N-terminal regions of plastidial alpha-amylases are located in the N-terminus of StGWD. The SBD-1 motif is located within the sequence of the SBD fragment, and our results demonstrate that the fragment composes a new and novel carbohydrate-binding module (CBM), apparently specific for plastidial alpha-glucan degradation. By mutational analyses of conserved Trp residues located within the SBD-1 motif, W62 and W117, we show that these aromatic residues are vital for carbohydrate binding. N11 still possessed starch phosphorylating activity, but with a 2-fold higher specific activity compared to that of wild type (WT) StGWD using potato starch as the glucan substrate, whereas it had double the K(m) value for the same substrate. Furthermore, investigation of the chains phosphorylated by WT StGWD and N11 shows that N11 exhibits a higher preference for phosphorylating shorter chains of the amylopectin molecule as compared to WT. From analyses of the glucan substrate specificity, we found up to 5-fold higher specific activity for N11 using amylose as the substrate.


Assuntos
Fosfotransferases (Aceptores Pareados)/química , Plastídeos/metabolismo , Amido/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfotransferases (Aceptores Pareados)/genética , Ligação Proteica , Engenharia de Proteínas , Solanum tuberosum/enzimologia
8.
Biochem J ; 385(Pt 2): 355-61, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15361065

RESUMO

The potato tuber (Solanum tuberosum) GWD (alpha-glucan, water dikinase) catalyses the phosphorylation of starch by a dikinase-type reaction mechanism in which the beta-phosphate of ATP is transferred to the glucosyl residue of amylopectin. GWD shows sequence similarity to bacterial pyruvate, water dikinase and PPDK (pyruvate, phosphate dikinase). In the present study, we examine the structure-function relationship of GWD. Analysis of proteolytic fragments of GWD, in conjunction with peptide microsequencing and the generation of deletion mutants, indicates that GWD is comprised of five discrete domains of 37, 24, 21, 36 and 38 kDa. The catalytic histidine, which mediates the phosphoryl group transfer from ATP to starch, is located on the 36 kDa fragment, whereas the 38 kDa C-terminal fragment contains the ATP-binding site. Binding of the glucan molecule appears to be confined to regions containing the three N-terminal domains. Deletion mutants were generated to investigate the functional interdependency of the putative ATP- and glucan-binding domains. A truncated form of GWD expressing the 36 and 38 kDa C-terminal domains was found to catalyse the E+ATP-->E-P+AMP+P(i) (where P(i) stands for orthophosphate) partial reaction, but not the E-P+glucan-->E+glucan-P partial reaction. CD experiments provided evidence for large structural changes on autophosphorylation of GWD, indicating that GWD employs a swivelling-domain mechanism for enzymic phosphotransfer similar to that seen for PPDK.


Assuntos
Fosfotransferases (Aceptores Pareados)/química , Fosfotransferases (Aceptores Pareados)/fisiologia , Processamento Alternativo/genética , Sítios de Ligação/fisiologia , Domínio Catalítico/genética , Domínio Catalítico/fisiologia , Dicroísmo Circular/métodos , Endopeptidase K/metabolismo , Hidrólise , Mutação/genética , Mutação/fisiologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/fisiologia , Mapeamento de Peptídeos/métodos , Fosfotransferases (Aceptores Pareados)/genética , Fosfotransferases (Aceptores Pareados)/metabolismo , Estrutura Terciária de Proteína , Proteínas/metabolismo , Solanum tuberosum/enzimologia
9.
Microbiology (Reading) ; 150(Pt 11): 3571-3590, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15528647

RESUMO

In the plant-pathogenic enterobacterium Erwinia chrysanthemi, almost all known genes involved in pectin catabolism are controlled by the transcriptional regulator KdgR. In this study, the comparative genomics approach was used to analyse the KdgR regulon in completely sequenced genomes of eight enterobacteria, including Erw. chrysanthemi, and two Vibrio species. Application of a signal recognition procedure complemented by operon structure and protein sequence analysis allowed identification of new candidate genes of the KdgR regulon. Most of these genes were found to be controlled by the cAMP-receptor protein, a global regulator of catabolic genes. At the next step, regulation of these genes in Erw. chrysanthemi was experimentally verified using in vivo transcriptional fusions and an attempt was made to clarify the functional role of the predicted genes in pectin catabolism. Interestingly, it was found that the KdgR protein, previously known as a repressor, positively regulates expression of two new members of the regulon, phosphoenolpyruvate synthase gene ppsA and an adjacent gene, ydiA, of unknown function. Other predicted regulon members, namely chmX, dhfX, gntB, pykF, spiX, sotA, tpfX, yeeO and yjgK, were found to be subject to classical negative regulation by KdgR. Possible roles of newly identified members of the Erw. chrysanthemi KdgR regulon, chmX, dhfX, gntDBMNAC, spiX, tpfX, ydiA, yeeO, ygjV and yjgK, in pectin catabolism are discussed. Finally, complete reconstruction of the KdgR regulons in various gamma-proteobacteria yielded a metabolic map reflecting a globally conserved pathway for the catabolism of pectin and its derivatives with variability in transport and enzymic capabilities among species. In particular, possible non-orthologous substitutes of isomerase KduI and a new oligogalacturonide transporter in the Vibrio species were detected.


Assuntos
Proteínas de Bactérias/fisiologia , Dickeya chrysanthemi/genética , Enterobacteriaceae/genética , Regulação Bacteriana da Expressão Gênica , Regulon , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Vibrio/genética , Fusão Gênica Artificial , Proteínas de Bactérias/genética , Proteína Receptora de AMP Cíclico/metabolismo , Escherichia coli/genética , Genes Reporter/fisiologia , Proteínas de Transporte de Monossacarídeos/genética , Óperon , Pectinas/metabolismo , Pectobacterium carotovorum/genética , Fosfotransferases (Aceptores Pareados)/genética , Filogenia , Salmonella typhimurium/genética , Homologia de Sequência de Aminoácidos , Transcrição Gênica , Vibrio parahaemolyticus/genética , Vibrio vulnificus/genética , Yersinia enterocolitica/genética , Yersinia pestis/genética
10.
Proc Natl Acad Sci U S A ; 99(10): 7166-71, 2002 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-12011472

RESUMO

To determine the enzymatic function of the starch-related R1 protein it was heterologously expressed in Escherichia coli and purified to apparent homogeneity. Incubation of the purified protein with various phosphate donor and acceptor molecules showed that R1 is capable of phosphorylating glucosyl residues of alpha-glucans at both the C-6 and the C-3 positions in a ratio similar to that occurring naturally in starch. Phosphorylation occurs in a dikinase-type reaction in which three substrates, an alpha-polyglucan, ATP, and H(2)O, are converted into three products, an alpha-polyglucan-P, AMP, and orthophosphate. The use of ATP radioactively labeled at either the gamma or beta positions showed that solely the beta phosphate is transferred to the alpha-glucan. The apparent K(m) of the R1 protein for ATP was calculated to be 0.23 microM and for amylopectin 1.7 mg x ml(-1). The velocity of in vitro phosphorylation strongly depends on the type of the glucan. Glycogen was an extremely poor substrate; however, the efficiency of phosphorylation strongly increased if the glucan chains of glycogen were elongated by phosphorylase. Mg(2+) ions proved to be essential for activity. Incubation of R1 with radioactively labeled ATP in the absence of an alpha-glucan showed that the protein phosphorylates itself with the beta, but not with the gamma phosphate. Autophosphorylation precedes the phosphate transfer to the glucan indicating a ping-pong reaction mechanism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Glucanos/metabolismo , Proteínas de Transporte de Monossacarídeos , Fosfotransferases (Aceptores Pareados)/metabolismo , Solanum tuberosum/enzimologia , Trifosfato de Adenosina , Amilopectina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Catálise , Cinética , Fosfatos/metabolismo , Fosforilação , Fosfotransferases (Aceptores Pareados)/genética , Fosfotransferases (Aceptores Pareados)/isolamento & purificação , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA