RESUMO
Individual biological water treatment techniques often prove ineffective in removing accumulated high concentrations of nitrogen and phosphorus in the late stages of biofloc aquaculture. To address this issue, we integrated a previously developed autotrophic denitrification and nitrification integrated constructed wetland (ADNI-CW) with a microalgal membrane photobioreactor (MPBR). Under high nitrogen and phosphorus pollution loads in the influent, the standalone ADNI-CW system achieved removal rates of only 24.17 % ± 2.82 % for total nitrogen (TN) and 25.30 % ± 2.59 % for total phosphorus (TP). The optimal conditions for TN and TP degradation and microalgal biomass production in the Chlorella MPBR, determined using response surface methodology, were an inoculum OD680 of 0.394, light intensity of 161.583 µmol/m2/s, and photoperiod of 16.302 h light:7.698 h dark. Under the optimal operating conditions, the integrated ADNI-CW-MPBR system achieved remarkable TN and TP removal rates of 92.63 % ± 2.8 % and 77.46 % ± 8.41 %, respectively, and a substantial microalgal biomass yield of 54.58 ± 6.8 mg/L/day. This accomplishment signifies the successful achievement of efficient nitrogen and phosphorus removal from high-pollution-load marine aquaculture wastewater along with the acquisition of valuable microalgal biomass. A preliminary investigation of the microbial community composition and algal-bacterial interactions in different operational stages of the MPBR system revealed that unclassified_d__Bacteria, Chlorophyta, and Planctomycetes were predominant phyla. The collaborative relationships between bacteria and Chlorella surpassed competition, ensuring highly efficient nitrogen and phosphorus removal in the MPBR system. This study laid the foundation for the green and sustainable development of the aquaculture industry.
Assuntos
Doença de Alzheimer , Chlorella , Microalgas , Águas Residuárias , Chlorella/metabolismo , Microalgas/metabolismo , Fotobiorreatores/microbiologia , Áreas Alagadas , Nitrogênio/análise , Fósforo/metabolismo , Biomassa , AquiculturaRESUMO
Microalgae can add value to biological wastewater treatment processes by capturing carbon and nutrients and producing valuable biomass. Harvesting small cells from liquid media is a challenge easily addressed with biofilm cultivation. Three experimental photobioreactors were constructed from inexpensive materials (e.g. plexiglass, silicone) for hybrid liquid/biofilm cultivation of a microalgal-bacterial consortia in aquaculture effluent. Three light regimes (full-spectrum, blue-white, and red) were implemented to test light spectra as a process control. High-intensity full-spectrum light caused photoinhibition and low biomass yield, but produced the most polyhydroxybutyrate (PHB) (0.14 mg g-1); a renewable bioplastic polymer. Medium-intensity blue-white light was less effective for carbon capture, but removed up to 82 % of phosphorus. Low-intensity red light was the only net carbon-negative regime, but increased phosphorus (+4.98 mg/L) in the culture medium. Light spectra and intensity have potential as easily-implemented process controls for targeted wastewater treatment, biomass production, and PHB synthesis using photosynthetic consortia.
Assuntos
Microalgas , Polimetil Metacrilato , Biomassa , Carbono , Nutrientes , Fósforo , Fotobiorreatores/microbiologia , Silicones , Águas Residuárias/análiseRESUMO
A microalgal-bacterial membrane photobioreactor (MB-MPBR) was developed for simultaneous COD and nutrients (N and P) removals from synthetic municipal wastewater in a single stage for a long-term operation over 350 days. The effects of hydraulic retention time (HRT) and N/P ratio on the biological performance were systematically evaluated for the first time. The results showed that a lower N/P ratio (3.9:1) and shorter HRT (2 d) promoted more biomass production, as compared to a high HRT (3 d) and a high N/P ratio (9.7:1). The highest biomass concentration (2.55 ± 0.14 g L-1) and productivity (127.5 mg L-1·d-1) were achieved at N/P ratio of 3.9:1 and HRT of 2 d due to the highest nitrogen and phosphorus loadings under such conditions. A COD and ammonia-N removal efficiency of over 96% and 99%, respectively, were achieved regardless of HRTs and N/P ratios. In the absence of nitrogen or phosphorus deficiency, shorter HRT (2 d) yielded a higher nitrogen and phosphorus uptake but lower removal efficiency. In addition, the imbalance N/P ratio (9.7:1) would decrease nitrogen or phosphorus removal. Overall, the results suggested that it was feasible to simultaneously achieve complete or high removal of COD, nitrogen, and phosphorous in MB-MPBR under the appropriate conditions. This study demonstrated for the first time that MB-MPBR is a promising technology that could achieve a high-quality effluent meeting the discharge standards of COD and nutrients in one single step.
Assuntos
Nitrogênio/metabolismo , Fósforo/metabolismo , Fotobiorreatores , Eliminação de Resíduos Líquidos/instrumentação , Amônia/metabolismo , Análise da Demanda Biológica de Oxigênio , Biomassa , Chlorella vulgaris/metabolismo , Microalgas/metabolismo , Nitrogênio/análise , Fotobiorreatores/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/químicaRESUMO
The potential of a novel anaerobic/aerobic algal-bacterial photobioreactor for the treatment of synthetic textile wastewater (STWW) was here assessed. Algal-bacterial symbiosis supported total organic carbon, nitrogen and phosphorous removal efficiencies of 78⯱â¯2%, 47⯱â¯2% and 26⯱â¯2%, respectively, at a hydraulic retention time (HRT) of 8 days. A decrease in the HRT from 8 to 4 and 2 days resulted in a slight decrease in organic carbon and phosphate removal, but a sharp decrease in nitrogen removal. Moreover, an efficient decolorization of 99⯱â¯1% and 96⯱â¯3% for disperse orange-3 and of disperse blue-1, respectively, was recorded. The effective STWW treatment supported by the anaerobic/aerobic algal-bacterial photobioreactor was confirmed by the reduction in wastewater toxicity towards Raphanus sativus seed germination and growth. These results highlighted the potential of this innovative algal-bacterial photobioreactor configuration for the treatment of textile wastewater and water reuse.
Assuntos
Fotobiorreatores/microbiologia , Têxteis , Águas Residuárias/toxicidade , Purificação da Água/métodos , Bactérias/metabolismo , Carbono/isolamento & purificação , Clorófitas/metabolismo , Cor , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Purificação da Água/instrumentaçãoRESUMO
Graesiella emersonii was cultivated in an osmotic membrane photobioreactor (OMPBR) for nutrients removal from synthetic wastewater in continuous mode. At 1.5 days of hydraulic retention time and under continuous illumination, the microalgae removed nitrogen (N) completely at influent NH4+-N concentrations of 4-16 mg/L, with removal rates of 3.03-12.1 mg/L-day. Phosphorus (P) removal in the OMPBR was through biological assimilation as well as membrane rejection, but PO43--P assimilation by microalgae could be improved at higher NH4+-N concentrations. Microalgae biomass composition was affected by N/P ratio in wastewater, and a higher N/P ratio resulted in higher P accumulation in the biomass. The OMPBR accumulated about 0.35 g/L biomass after 12 days of operation under continuous illumination. However, OMPBR operation under 12 h light/12 h dark cycle lowered biomass productivity by 60%, which resulted in 20% decrease in NH4+-N removal and nearly threefold increase in PO43--P accumulation in the OMPBR. Prolonged dark phase also affected carbohydrate accumulation in biomass, although its effects on lipid and protein accumulation were negligible. The microalgae also exhibited high tendency to aggregate and settle, which could be attributed to reduction in cell surface charge and enrichment of soluble algal products in the OMPBR. Due to a relatively shorter operating period, membrane biofouling and salt accumulation did not influence the permeate flux significantly. These results improve the understanding of the effects of N/P ratio and light/dark cycle on biomass accumulation and nutrients removal in the OMPBR.
Assuntos
Microalgas/crescimento & desenvolvimento , Nutrientes/isolamento & purificação , Fotobiorreatores/microbiologia , Fotoperíodo , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/instrumentação , Incrustação Biológica , Biomassa , Metabolismo dos Carboidratos , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Membranas Artificiais , Microalgas/metabolismo , Nitrogênio/química , Nitrogênio/isolamento & purificação , Nitrogênio/metabolismo , Nutrientes/química , Nutrientes/metabolismo , Osmose , Fósforo/química , Fósforo/isolamento & purificação , Fósforo/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismoRESUMO
This study evaluated the performance of two open-photobioreactors operated with microalgae-bacteria (PBR-AB) and purple photosynthetic bacteria (PBR-PPB) consortia during the treatment of diluted (5%) piggery wastewater (PWW) at multiple hydraulic retention times (HRT). At a HRT of 10.6â¯days, PBR-AB provided the highest removal efficiencies of nitrogen, phosphorus and zinc (87⯱â¯2, 91⯱â¯3 and 98⯱â¯1%), while the highest organic carbon removals were achieved in PBR-PPB (87⯱â¯4%). The decrease in HRT from 10.6, to 7.6 and 4.1â¯day caused a gradual deterioration in organic carbon and nitrogen removal, but did not influence the removal of phosphorus and Zn in both photobioreactors. The decrease in HRT caused a severe wash-out of microalgae in PBR-AB and played a key role in the structure of bacterial population in both photobioreactors. In addition, batch biodegradation tests at multiple PWW dilutions (5, 10 and 15%) confirmed the slightly better performance of algal-bacterial systems regardless of PWW dilution.
Assuntos
Bactérias/metabolismo , Microalgas/metabolismo , Águas Residuárias/microbiologia , Biodegradação Ambiental , Nitrogênio/metabolismo , Fósforo/metabolismo , Fotobiorreatores/microbiologia , Zinco/metabolismoRESUMO
A native strain of the heterocytous cyanobacterium Trichormus variabilis VRUC 168 was mass cultivated in a low-cost photobioreactor for a combined production of Polyunsaturated Fatty Acids (PUFA) and Exopolymeric Substances (EPS) from the same cyanobacterial biomass. A sequential extraction protocol was optimized leading to high yields of Released EPS (REPS) and PUFA, useful for nutraceutical products and biomaterials. REPS were extracted and characterized by chemical staining, Reversed Phase-High-Performance Liquid Chromatography (RP-HPLC), Fourier Transform Infrared Spectroscopy (FT-IR) and other spectroscopic techniques. Due to their gelation property, REPS were used to produce a photo-polymerizable hybrid hydrogel (REPS-Hy) with addition of polyethylene glycol diacrylated (PEGDa). REPS-Hy was stable over time and resistant to dehydration and spontaneous hydrolysis. The rheological and functional properties of REPS-Hy were studied. The enzyme carrier ability of REPS-Hy was assessed using the detoxification enzyme thiosulfate:cyanide sulfur transferase (TST), suggesting the possibility to use REPS-Hy as an enzymatic hydrogel system. Finally, REPS-Hy was used as a scaffold for culturing human mesenchymal stem cells (hMSCs). The cell seeding onto the REPS-Hy and the cell embedding into 3D-REPS-Hy demonstrated a scaffolding property of REPS-Hy with non-cytotoxic effect, suggesting potential applications of cyanobacteria REPS for producing enzyme- and cell-carrier systems.
Assuntos
Materiais Biocompatíveis/metabolismo , Técnicas de Cultura de Células/métodos , Cianobactérias/metabolismo , Suplementos Nutricionais , Portadores de Fármacos/química , Biomassa , Linhagem Celular , Ácidos Graxos Insaturados/biossíntese , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais , Fotobiorreatores/microbiologia , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Alicerces Teciduais/químicaRESUMO
The aim of this study was to evaluate the effect of light intensity and temperature on nutrient removal and biomass productivity in a microalgae-bacteria culture and their effects on the microalgae-bacteria competition. Three experiments were carried out at constant temperature and various light intensities: 40, 85 and 125â µEâ m-2â s-1. Other two experiments were carried out at variable temperatures: 23 ± 2°C and 28 ± 2°C at light intensity of 85 and 125â µEâ m-2â s-1, respectively. The photobioreactor was fed by the effluent from an anaerobic membrane bioreactor. High nitrogen and phosphorus removal efficiencies (about 99%) were achieved under the following operating conditions: 85-125â µEâ m-2â s-1 and 22 ± 1°C. In the microalgae-bacteria culture studied, increasing light intensity favoured microalgae growth and limited the nitrification process. However, a non-graduated temperature increase (up to 32°C) under the light intensities studied caused the proliferation of nitrifying bacteria and the nitrite and nitrate accumulation. Hence, light intensity and temperature are key parameters in the control of the microalgae-bacteria competition. Biomass productivity significantly increased with light intensity, reaching 50.5 ± 9.6, 80.3 ± 6.5 and 94.3 ± 7.9â mgVSSâ L-1â d-1 for a light intensity of 40, 85 and 125â µEâ m-2â s-1, respectively.
Assuntos
Bactérias , Chlorella/fisiologia , Fotobiorreatores/microbiologia , Eliminação de Resíduos Líquidos/métodos , Microalgas/fisiologia , Nitrogênio/análise , Fósforo/análise , Temperatura , Águas Residuárias/microbiologiaRESUMO
The development and properties of algae-bacteria granular consortia, which cultivated with the algae (Chlorella and Scenedesmus) and aerobic granules, was investigated in this experiment. The results indicated that the granular consortia could be successfully developed by selection pressure control, and the algal biomass and extracellular polymeric substances (EPS) concentration in the consortia showed notable correlation with the operating parameters of reactor. The maximum specific removal rates of total nitrogen and phosphate were obtained from the granular consortia with the highest algal biomass, yet the correlation between the fatty acid methyl esters yield and the algal biomass in the consortia was not markedly observed. The seed algae maintained dominance in the phototroph community, whereas the cyanobacteria only occupied a small proportion (5.2-6.5%). Although the bacterial communities with different operational strategies showed significant difference, the dominated bacteria (Comamonadaceae, 18.79-36.25%) in the mature granular consortia were similar.
Assuntos
Técnicas de Cultura Celular por Lotes/instrumentação , Reatores Biológicos/microbiologia , Chlorella/metabolismo , Consórcios Microbianos , Fotobiorreatores/microbiologia , Scenedesmus/metabolismo , Esgotos/microbiologia , Biodiversidade , Biomassa , Clorofila/análise , Ésteres/análise , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificaçãoRESUMO
The role of bacteria/extracellular polymeric substances (EPS) coated carriers on attached microalgae growth in suspended-solid phase photobioreactor (sspBR) was assessed in this study. The results showed that pre-coating cotton with ambient bacteria and their EPS improved the attached microalgal growth by as much as 230% in terms of attached microalgae density. Additionally, the single cell dry weight, chemical composition and oxygen evolving activity of attached microalgae were significantly affected by the presence of bacteria/EPS coating on the cotton carriers. The protein content of microalgae cells cultivated in the ssPBRs with carriers coated by bacteria and sterilized bacteria were on average 26% and 15% more than uncoated carriers, respectively. Through absorbing and immobilizing nutrients from the bulk medium, the bacteria/EPS coating provided the attached microalgae with nitrogen/phosphorus for protein synthesis, especially during the late stages of batch cultivation.
Assuntos
Microalgas/crescimento & desenvolvimento , Fotobiorreatores/microbiologia , Scenedesmus/crescimento & desenvolvimento , Bactérias , Fibra de Algodão , Microalgas/metabolismo , Nitrogênio/metabolismo , Oxigênio/metabolismo , Fósforo/metabolismo , Scenedesmus/metabolismoRESUMO
The influence of the reactor wall attached biofilm on the nutrient removal performance was investigated in an open photobioreactor during long-term operation. Total nitrogen and phosphorus removal efficiencies were statistically similar between reactor with (reactor A) and without (reactor B) biofilm at the Hydraulic Retention Time (HRT) of 18, 13.5 and 9days. When the HRT reduced to 8days, total nitrogen and phosphorus removal efficiencies in the reactor A were 42.95±5.11% and 97.97±1.12%, respectively, while significant lower removal efficiencies (38.06±5.80% for total nitrogen and 83.14±8.16% for phosphorus) were obtained in the reactor B. The VSS concentrations throughout the test were statistically similar for the two reactors, with a mean value of 0.63±0.25g/l for reactor A and 0.69±0.20g/l for reactor B. This study indicated that the reactor wall attached biofilm supported high phosphorus and nitrogen removal, which may provide insight into the practical implementation of microalgae-based wastewater treatment.
Assuntos
Biofilmes/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Fotobiorreatores/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Nitrogênio , FósforoRESUMO
The potential of an inorganic fertilizer as an alternative nutrient source for the cultivation of Scenedesmus sp. IMMTCC-6 was investigated. With a preliminary study at a shake-flask scale, the microalgae cultivation was scaled up in a photobioreactor containing an inorganic fertilizer medium. Microalgae cultured in a shake flask containing 0.1 g L(-1) of urea and 1.0 g L(-1) of NPK (Nitrogen: Phosphorus: Potassium) fertilizers showed a promising result in biomass productivity. During the scale-up study in a photobioreactor the specific growth rate (µ d(-1)), biomass yield (g L(-1)), and total biomass productivity (mg L(-1) d(-1)), was found to be 0.265, 1.19 and 66.1, respectively. The lipid yield (%) as per dry cell weight (DCW) and lipid productivity (mg L(-1) d(-1)) was found to be a maximum of 28.55 and 18.87, respectively, in a stationary phase of the microalgae growth. The fatty acids methyl ester profile was proven to be desirable for biodiesel production.
Assuntos
Meios de Cultura/química , Fertilizantes , Metabolismo dos Lipídeos , Scenedesmus/crescimento & desenvolvimento , Biomassa , Lipídeos/análise , Nitrogênio/metabolismo , Fósforo/metabolismo , Fotobiorreatores/microbiologia , Potássio/metabolismo , Ureia/metabolismoRESUMO
An osmotic membrane photobioreactor (OMPBR) was designed and operated for 162days for nitrogen and phosphorus removal from wastewater using Chlorella vulgaris. The removal efficiency for NH4(+)-N, NO3(-)-N and PO4(3-)-P reached as high as 95%, 53% and 89%, whereas the maximum removal rates were 3.41 mg/L-day, 0.20 mg/L-day and 0.8 mg/L-day, respectively. The microalgae exhibited high tendency to aggregate and attached to the bioreactor and membrane surfaces, and total biomass accumulation in the OMPBR was over 5 g/L. Salt accumulation and biofouling had adverse effects on membrane filtration, but the performance could be recovered through periodic backwashing of the membranes. Extracellular polymeric substances characterization indicated higher fraction of polysaccharides as compared to proteins. The biomass in the OMPBR accumulated higher levels of carbohydrates and chlorophyll. These results indicate the suitability of OMPBR in wastewater treatment and in high-density microalgae cultivation.
Assuntos
Membranas Artificiais , Nitrogênio/isolamento & purificação , Osmose , Fósforo/isolamento & purificação , Fotobiorreatores , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Incrustação Biológica , Biomassa , Chlorella vulgaris/metabolismo , Filtração , Microalgas/metabolismo , Fotobiorreatores/microbiologia , Fatores de Tempo , Purificação da ÁguaRESUMO
The production of biofuels from microalgae is associated with high demands of nutrients (nitrogen and phosphorus) required for growth. Recycling nutrients from the residual biomass is essential to obtain a sustainable production. In this work, the aqueous phase obtained from flash hydrolysis of Scenedesmus sp. was used as cultivation medium for a microalga of the same genus, to assess the feasibility of this technique for nutrient recycling purposes. Batch and continuous cultivations were carried out, to determine growth performances in this substrate compared to standard media, and verify if a stable biomass production could be obtained. In continuous experiments, the effect of hydrolysate inlet concentration and of residence time were assessed to optimize nutrient supply in relation to productivity. Results obtained show that nutrient recycling is feasible by treating biomass with flash hydrolysis, and Scenedesmus is capable of recycling large amounts of recovered nutrients.
Assuntos
Biotecnologia/métodos , Nitrogênio/metabolismo , Fósforo/metabolismo , Reciclagem , Scenedesmus/crescimento & desenvolvimento , Técnicas de Cultura Celular por Lotes , Análise da Demanda Biológica de Oxigênio , Biomassa , Hidrólise , Microalgas/crescimento & desenvolvimento , Fotobiorreatores/microbiologia , Fatores de TempoRESUMO
One of the buffers namely Tris (Tris-(hydroxymethyl)-amino methane) was used to increase the growth of microalgae by stabilizing the pH value in microalgae cultures. The objective of this research is to determine the growth rate and biomass productivity of Chlorella sp. with and without Tris addition. Both conditions function at various N:P ratios cultured in photobioreactors (carbon dioxide of 5%(v/v), light intensity of 3.3 Klux). Daily variations in nutrient removal (nitrogen and phosphorus), cell concentration, DO, temperature and pH were measured for data analysis. The results show that the largest yield of biomass was achieved at the N:P ratio of 15:1 with and without Tris. After cultivation lasting 92 h, the algae concentration at this ratio was 1250 mg L(-1) and 3568 mg L(-1) with and without Tris, respectively. This indicates that adding Tris to the photobioreactor greatly reduces algae biomass due to bacterial competition.
Assuntos
Chlorella/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Fotobiorreatores , Trometamina/farmacologia , Biomassa , Dióxido de Carbono/metabolismo , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Técnicas de Cultura/instrumentação , Técnicas de Cultura/métodos , Concentração de Íons de Hidrogênio , Luz , Metano , Microalgas/efeitos dos fármacos , Interações Microbianas , Nitrogênio/metabolismo , Paramecium/fisiologia , Fósforo/metabolismo , Fotobiorreatores/microbiologiaRESUMO
Synchronized growth and neutral lipid accumulation with high lipid productivity under mixotrophic growth of the strain Chlorella sorokiniana FC6 IITG was achieved via manipulation of substrates feeding mode and supplementation of lipid elicitors in the growth medium. Screening and optimization of lipid elicitors resulted in lipid productivity of 110.59mgL(-1)day(-1) under the combined effect of lipid inducers sodium acetate and sodium chloride. Fed-batch cultivation of the strain in bioreactor with intermittent feeding of limiting nutrients and lipid inducer resulted in maximum biomass and lipid productivity of 2.08 and 0.97gL(-1)day(-1) respectively. Further, continuous production of biomass with concomitant lipid accumulation was demonstrated via continuous feeding of BG11 media supplemented with lipid inducers sodium acetate and sodium chloride. The improved biomass and lipid productivity in chemostat was found to be 2.81 and 1.27gL(-1)day(-1) respectively operated at a dilution rate of 0.54day(-1).
Assuntos
Biotecnologia/métodos , Chlorella/crescimento & desenvolvimento , Chlorella/metabolismo , Lipídeos/biossíntese , Análise de Variância , Técnicas de Cultura Celular por Lotes , Biocombustíveis , Biomassa , Chlorella/efeitos dos fármacos , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Fotobiorreatores/microbiologia , Acetato de Sódio/farmacologia , Cloreto de Sódio/farmacologiaRESUMO
This work investigated the effects of swine wastewater-derived biogas on microalgae biomass production and nutrient removal rates from piggery wastewater concomitantly with biogas filtration. Photobioreactors with dominant Scenedesmus spp. were prepared using non-sterile digestate and exposed to different photoperiods. In the presence of biogas and autotrophic conditions microalgae yield of 1.1±0.2 g L(-1) (growth rate of 141.8±3.5 mg L(-1) d(-1)) was obtained leading to faster N-NH3 and P-PO4(3-) assimilation rate of 21.2±1.2 and 3.5±2.5 mg L(-1) d(-1), respectively. H2S up to 3000 ppmv was not inhibitory and completely removed. Maximum CO2 assimilation of 219±4.8 mg L(-1) d(-1) was achieved. Biological consumption of CH4 up to 18% v/v was verified. O2 up to 22% v/v was controlled by adding acetate to exacerbate oxygen demand by microorganisms. Microalgae-based wastewater treatment coupled to biogas purification accelerates nutrient removal concomitantly producing valuable biomass and biomethane.
Assuntos
Biocombustíveis/análise , Microalgas/metabolismo , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Scenedesmus/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Amônia/isolamento & purificação , Animais , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Biomassa , Dióxido de Carbono/análise , Filtração , Sulfeto de Hidrogênio/análise , Metano/análise , Microalgas/crescimento & desenvolvimento , Fotobiorreatores/microbiologia , Fotoperíodo , Scenedesmus/crescimento & desenvolvimento , SuínosRESUMO
The effect of inhibiting nitrification on algal growth and nutrient uptake was studied in photobioreactors treating municipal wastewater. As previous studies have indicated that algae prefer certain nitrogen species to others, and because nitrifying bacteria are inhibited by microalgae, it is important to shed more light on these interactions. In this study allylthiourea (ATU) was used to inhibit nitrification in wastewater-treating photobioreactors. The nitrification-inhibited reactors were compared to control reactors with no ATU added. Microalgae had higher growth in the inhibited reactors, resulting in a higher chlorophyll a concentration. The species mix also differed, with Chlorella and Scenedesmus being the dominant genera in the control reactors and Cryptomonas and Chlorella dominating in the inhibited reactors. The nitrogen speciation in the reactors after 8 days incubation was also different in the two setups, with N existing mostly as NH4-N in the inhibited reactors and as NO3-N in the control reactors.
Assuntos
Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Nitrificação , Nitrogênio/metabolismo , Fotobiorreatores , Águas Residuárias , Chlorella/crescimento & desenvolvimento , Chlorella/metabolismo , Clorofila/análogos & derivados , Clorofila/metabolismo , Clorofila A , Cidades , Alimentos , Nitrogênio/análise , Fotobiorreatores/microbiologia , Scenedesmus/crescimento & desenvolvimento , Scenedesmus/metabolismo , Gerenciamento de Resíduos , Águas Residuárias/microbiologia , Purificação da Água/métodosRESUMO
An air-lift-type microbial carbon capture cell (ALMCC) was constructed for the first time by using an air-lift-type photobioreactor as the cathode chamber. The performance of ALMCC in fixing high concentration of CO2, producing energy (power and biodiesel), and removing COD together with nutrients was investigated and compared with the traditional microbial carbon capture cell (MCC) and air-lift-type photobioreactor (ALP). The ALMCC system produced a maximum power density of 972.5 mW·m(-3) and removed 86.69% of COD, 70.52% of ammonium nitrogen, and 69.24% of phosphorus, which indicate that ALMCC performed better than MCC in terms of power generation and wastewater treatment efficiency. Besides, ALMCC demonstrated 9.98- and 1.88-fold increases over ALP and MCC in the CO2 fixation rate, respectively. Similarly, the ALMCC significantly presented a higher lipid productivity compared to those control reactors. More importantly, the preliminary analysis of energy balance suggested that the net energy of the ALMCC system was significantly superior to other systems and could theoretically produce enough energy to cover its consumption. In this work, the established ALMCC system simultaneously achieved the high level of CO2 fixation, energy recycle, and municipal wastewater treatment effectively and efficiently.
Assuntos
Ar , Fontes de Energia Bioelétrica , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Eletricidade , Lipídeos/biossíntese , Microalgas/metabolismo , Fotobiorreatores/microbiologia , Análise da Demanda Biológica de Oxigênio , Eletrodos , Microalgas/crescimento & desenvolvimento , Microalgas/ultraestrutura , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Soluções , Eliminação de Resíduos LíquidosRESUMO
Photofermentative production of hydrogen is a promising and sustainable process; however, it should be coupled to dark fermentation to become cost effective. In order to integrate dark fermentation and photofermentation, the suitability of dark fermenter effluents for the photofermentative hydrogen production must be demonstrated. In this study, thermophilic dark fermenter effluent (DFE) of sugar beet thick juice was used as a substrate in photofermentation process to compare wild-type and uptake hydrogenase-deficient (hup (-)) mutant strains of Rhodobacter capsulatus by means of hydrogen production and biomass growth. The tests were conducted in small-scale (50 mL) batch and large-scale (4 L) continuous photobioreactors in indoor conditions under continuous illumination. In small scale batch conditions, maximum cell concentrations were 0.92 gdcw/L c and 1.50 gdcw/L c, hydrogen yields were 34 % and 31 %, hydrogen productivities were 0.49 mmol/(L c·h) and 0.26 mmol/(Lc·h), for hup (-) and wild-type cells, respectively. In large-scale continuous conditions, maximum cell concentrations were 1.44 gdcw/L c and 1.87 gdcw/L c, hydrogen yields were 48 and 46 %, and hydrogen productivities were 1.01 mmol/(L c·h) and 1.05 mmol/(L c·h), for hup (-) and wild-type cells, respectively. Our results showed that Rhodobacter capsulatus hup (-) cells reached to a lower maximum cell concentration but their hydrogen yield and productivity were in the same range or superior compared to the wild-type cells in both batch and continuous operating modes. The maximum biomass concentration, yield and productivity of hydrogen were higher in continuous mode compared to the batch mode with both bacterial strains.