Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.190
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 2): 131286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583851

RESUMO

Polymer-based nanomotors are attracting increasing interest in the biomedical field due to their microscopic size and kinematic properties which support overcoming biological barriers, completing cellular uptake and targeted blasting in limited spaces. However, their applications are limited by the complex viscous physiological environment and lack of sufficient biocompatibility. This manuscript firstly reports a natural melanin nano-missile of MNP@HA-EDA@Urease@AIE PS (MHUA) based on photothermally accelerated urease-driven to achieve chemodrug-free phototherapy. Compared to conventional nano-missiles that only provide driving force, this photothermally accelerated urease-driven nanomotor is independent of chemodrug to maximise biocompatibility, and achieve ideal therapeutic effect through targeted PTT/PDT. In particular, the thermal effect can not only boost the catalytic activity of urease but also achieve ideally anti-tumor effect. In addition, guided by and AIE PS, the nanomotor can generate 1O2 to achieve PDT and be traced in real time serving as an effective fluorescent bio-radar for intracellular self-reporting during cancer treatment. Finally, the targeting ability of MUHA is provided by hyaluronan. Taken together, this MHUA platform provides a simple and effective strategy for target/fluorescence radar detective-guided PTT/PDT combination, and achieves good therapeutic results without chemodrug under thermal accelerated strategy, providing a new idea for the construction of chemodrug-free nanomotor-therapy system.


Assuntos
Ácido Hialurônico , Melaninas , Urease , Humanos , Linhagem Celular Tumoral , Decapodiformes , Ácido Hialurônico/química , Melaninas/química , Nanopartículas/química , Fototerapia/métodos , Urease/química , Urease/metabolismo , Animais
2.
J Nanobiotechnology ; 22(1): 180, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622591

RESUMO

To address the limitations of traditional photothermal therapy (PTT)/ photodynamic therapy (PDT) and real-time cancer metastasis detection, a pH-responsive nanoplatform (NP) with dual-modality imaging capability was rationally designed. Herein, 1 H,1 H-undecafluorohexylamine (PFC), served as both an oxygen carrier and a 19F magnetic resonance imaging (MRI) probe, and photosensitizer indocyanine green (ICG) were grafted onto the pH-responsive peptide hexahistidine (H6) to form H6-PFC-ICG (HPI). Subsequently, the heat shock protein 90 inhibitor, gambogic acid (GA), was incorporated into hyaluronic acid (HA) modified HPI (HHPI), yielding the ultimate HHPI@GA NPs. Upon self-assembly, HHPI@GA NPs passively accumulated in tumor tissues, facilitating oxygen release and HA-mediated cell uptake. Once phagocytosed by lysosomes, protonation of H6 was triggered due to the low pH, resulting in the release of GA. With near-infrared laser irradiation, GA-mediated decreased HSP90 expression and PFC-mediated increased ROS generation amplified the PTT/PDT effect of HHPI@GA, leading to excellent in vitro and in vivo anticancer efficacies. Additionally, the fluorescence and 19F MRI dual-imaging capabilities of HHPI@GA NPs enabled effective real-time primary cancer and lung metastasis monitoring. This work offers a novel approach for enhanced cancer phototherapy, as well as precise cancer diagnosis.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Humanos , Fototerapia/métodos , Verde de Indocianina , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/terapia , Oxigênio , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
4.
Trials ; 25(1): 246, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594725

RESUMO

BACKGROUND: Insomnia and eveningness are common and often comorbid conditions in youths. While cognitive behavioural therapy for insomnia (CBT-I) has been suggested as a promising intervention, it remains unclear whether it is sufficient to also address circadian issues in youths. In addition, despite that light has been shown to be effective in phase-shifting one's circadian rhythm, there has been limited data on the effects of bright light therapy and its combination with CBT-I on sleep and circadian outcomes in youths. The current protocol outlines a randomised controlled trial that examines the efficacy of CBT-I and CBT-I plus bright light therapy (BLT) in reducing insomnia severity, improving mood symptoms and daytime functioning (e.g. sleepiness, fatigue, cognitive function), and improving subjective and objective sleep and circadian measures compared to a waitlist control group. METHODS: We will carry out a randomised controlled trial (RCT) with 150 youths aged 12-24 who meet the criteria of insomnia and eveningness. Participants will be randomised into one of three groups: CBT-I with bright light therapy, CBT-I with placebo light, and waitlist control. Six sessions of CBT-I will be delivered in a group format, while participants will be currently asked to use a portable light device for 30 min daily immediately after awakening throughout the intervention period for bright light therapy. The CBT-I with light therapy group will receive bright constant green light (506 lx) while the CBT-I with placebo light group will receive the modified light device with the LEDs emitting less than 10 lx. All participants will be assessed at baseline and post-treatment, while the two active treatment groups will be additionally followed up at 1 month and 6 months post-intervention. The primary outcome will be insomnia severity, as measured by the Insomnia Severity Index. Secondary outcomes include self-reported mood, circadian, daytime functioning, and quality of life measures, as well as sleep parameters derived from actigraphy and sleep diary and neurocognitive assessments. Objective measures of the circadian phase using dim-light melatonin onset assessment and sleep parameters using polysomnography will also be included as the secondary outcomes. DISCUSSION: This study will be the first RCT to directly compare the effects of CBT-I and BLT in youths with insomnia and eveningness. Findings from the study will provide evidence to inform the clinical management of insomnia problems and eveningness in youths. TRIAL REGISTRATION: ClinicalTrials.gov NCT04256915. Registered on 5 February 2020.


Assuntos
Terapia Cognitivo-Comportamental , Transtornos do Sono do Ritmo Circadiano , Distúrbios do Início e da Manutenção do Sono , Humanos , Adolescente , Distúrbios do Início e da Manutenção do Sono/diagnóstico , Distúrbios do Início e da Manutenção do Sono/terapia , Sono , Transtornos do Sono do Ritmo Circadiano/terapia , Fototerapia/métodos , Terapia Cognitivo-Comportamental/métodos , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Biomed Pharmacother ; 174: 116586, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626516

RESUMO

Cancer treatment is presently a significant challenge in the medical domain, wherein the primary modalities of intervention include chemotherapy, radiation therapy and surgery. However, these therapeutic modalities carry side effects. Photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as promising modalities for the treatment of tumors in recent years. Phototherapy is a therapeutic approach that involves the exposure of materials to specific wavelengths of light, which can subsequently be converted into either heat or Reactive Oxygen Species (ROS) to effectively eradicate cancer cells. Due to the hydrophobicity and lack of targeting of many photoresponsive materials, the use of nano-carriers for their transportation has been extensively explored. Among these nanocarriers, liposomes have been identified as an effective drug delivery system due to their controllability and availability in the biomedical field. By binding photoresponsive materials to liposomes, it is possible to reduce the cytotoxicity of the material and regulate drug release and accumulation at the tumor site. This article provides a comprehensive review of the progress made in cancer therapy using photoresponsive materials loaded onto liposomes. Additionally, the article discusses the potential synergistic treatment through the combination of phototherapy with chemo/immuno/gene therapy using liposomes.


Assuntos
Lipossomos , Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Animais , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Fototerapia/métodos , Terapia Fototérmica/métodos
6.
Nitric Oxide ; 146: 31-36, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574950

RESUMO

Carbon monoxide (CO) poisoning is a leading cause of poison-related morbidity and mortality worldwide. By binding to hemoglobin and other heme-containing proteins, CO reduces oxygen delivery and produces tissue damage. Prompt treatment of CO-poisoned patients is necessary to prevent acute and long-term complications. Oxygen therapy is the only available treatment. Visible light has been shown to selectively dissociate CO from hemoglobin with high efficiency without affecting oxygen affinity. Pulmonary phototherapy has been shown to accelerate the rate of CO elimination in CO poisoned mice and rats when applied directly to the lungs or via intra-esophageal or intra-pleural optical fibers. The extracorporeal removal of CO using a membrane oxygenator with optimal characteristic for blood exposure to light has been shown to accelerate the rate of CO illumination in rats with or without lung injury and in pigs. The development of non-invasive techniques to apply pulmonary phototherapy and the development of a compact, highly efficient membrane oxygenator for the extracorporeal removal of CO in humans may provide a significant advance in the treatment of CO poisoning.


Assuntos
Intoxicação por Monóxido de Carbono , Fototerapia , Intoxicação por Monóxido de Carbono/terapia , Animais , Humanos , Fototerapia/métodos , Monóxido de Carbono
7.
J Nanobiotechnology ; 22(1): 202, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658952

RESUMO

Multi-modal combination therapy is regarded as a promising approach to cancer treatment. Combining chemotherapy and phototherapy is an essential multi-modal combination therapy endeavor. Ivermectin (IVM) is a potent antiparasitic agent identified as having potential antitumor properties. However, the fact that it induces protective autophagy while killing tumor cells poses a challenge to its further application. IR780 iodide (IR780) is a near-infrared (NIR) dye with outstanding photothermal therapy (PTT) and photodynamic therapy (PDT) effects. However, the hydrophobicity, instability, and low tumor uptake of IR780 limit its clinical applications. Here, we have structurally modified IR780 with hydroxychloroquine, an autophagy inhibitor, to synthesize a novel compound H780. H780 and IVM can form H780-IVM nanoparticles (H-I NPs) via self-assembly. Using hyaluronic acid (HA) to modify the H-I NPs, a novel nano-delivery system HA/H780-IVM nanoparticles (HA/H-I NPs) was synthesized for chemotherapy-phototherapy of colorectal cancer (CRC). Under NIR laser irradiation, HA/H-I NPs effectively overcame the limitations of IR780 and IVM and exhibited potent cytotoxicity. In vitro and in vivo experiment results showed that HA/H-I NPs exhibited excellent anti-CRC effects. Therefore, our study provides a novel strategy for CRC treatment that could enhance chemo-phototherapy by modulating autophagy.


Assuntos
Autofagia , Neoplasias Colorretais , Reposicionamento de Medicamentos , Ivermectina , Nanopartículas , Autofagia/efeitos dos fármacos , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/terapia , Humanos , Camundongos , Nanopartículas/química , Ivermectina/farmacologia , Ivermectina/química , Linhagem Celular Tumoral , Indóis/química , Indóis/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Fotoquimioterapia/métodos , Antineoplásicos/farmacologia , Antineoplásicos/química , Fototerapia/métodos , Ácido Hialurônico/química , Hidroxicloroquina/farmacologia , Hidroxicloroquina/química , Terapia Fototérmica/métodos
8.
Nanotechnology ; 35(29)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38593752

RESUMO

Melanoma is one of the most aggressive and lethal types of cancer owing to its metastatic propensity and chemoresistance property. An alternative therapeutic option is photodynamic and photothermal therapies (PDT/PTT), which employ near-infrared (NIR) light to generate heat and reactive oxygen species (ROS). As per previous reports, Melanin (Mel), and its synthetic analogs (i.e. polydopamine nanoparticles) can induce NIR light-mediated heat energy, thereby selectively targeting and ameliorating cancer cells. Similarly, chlorin e6 (Ce6) also has high ROS generation ability and antitumor activity against various types of cancer. Based on this tenet, In the current study, we have encapsulated Mel-Ce6 in a polydopamine (PDA) nanocarrier (MCP NPs) synthesized by the oxidation polymerization method. The hydrodynamic diameter of the synthesized spherical MCP NPs was 139 ± 10 nm. The MCP NPs, upon irradiation with NIR 690 nm laser for 6 min, showed photothermal efficacy of more than 50 °C. Moreover, the red fluorescence in the MCP NPs due to Ce6 can be leveraged for diagnostic purposes. Further, the MCP NPs exhibited considerable biocompatibility with the L929 cell line and exerted nearly 70% ROS-mediated cytotoxicity on the B16 melanoma cell line after the laser irradiation. Thus, the prepared MCP NPs could be a promising theranostic agent for treating the B16 melanoma cancer.


Assuntos
Clorofilídeos , Indóis , Melaninas , Melanoma Experimental , Nanopartículas , Polímeros , Porfirinas , Indóis/química , Indóis/farmacologia , Polímeros/química , Polímeros/farmacologia , Nanopartículas/química , Animais , Camundongos , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Linhagem Celular Tumoral , Porfirinas/química , Porfirinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fototerapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Terapia Fototérmica
9.
J Mater Chem B ; 12(17): 4097-4117, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587869

RESUMO

Single phototherapy and immunotherapy have individually made great achievements in tumor treatment. However, monotherapy has difficulty in balancing accuracy and efficiency. Combining phototherapy with immunotherapy can realize the growth inhibition of distal metastatic tumors and enable the remote monitoring of tumor treatment. The development of nanomaterials with photo-responsiveness and anti-tumor immunity activation ability is crucial for achieving photo-immunotherapy. As immune adjuvants, photosensitizers and photothermal agents, manganese-based nanoparticles (Mn-based NPs) have become a research hotspot owing to their multiple ways of anti-tumor immunity regulation, photothermal conversion and multimodal imaging. However, systematic studies on the synergistic photo-immunotherapy applications of Mn-based NPs are still limited; especially, the green synthesis and mechanism of Mn-based NPs applied in immunotherapy are rarely comprehensively discussed. In this review, the synthesis strategies and function of Mn-based NPs in immunotherapy are first introduced. Next, the different mechanisms and leading applications of Mn-based NPs in immunotherapy are reviewed. In addition, the advantages of Mn-based NPs in synergistic photo-immunotherapy are highlighted. Finally, the challenges and research focus of Mn-based NPs in combination therapy are discussed, which might provide guidance for future personalized cancer therapy.


Assuntos
Imunoterapia , Manganês , Humanos , Manganês/química , Manganês/farmacologia , Imunoterapia/métodos , Fototerapia/métodos , Química Verde , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Animais , Nanoestruturas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Tamanho da Partícula
10.
J Mater Chem B ; 12(17): 4197-4207, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38595311

RESUMO

Second near-infrared (NIR-II) fluorescence imaging shows huge application prospects in clinical disease diagnosis and surgical navigation, while it is still a big challenge to exploit high performance NIR-II dyes with long-wavelength absorption and high fluorescence quantum yield. Herein, based on planar π-conjugated donor-acceptor-donor systems, three NIR-II dyes (TP-DBBT, TP-TQ1, and TP-TQ2) were synthesized with bulk steric hindrance, and the influence of acceptor engineering on absorption/emission wavelengths, fluorescence efficiency and photothermal properties was systematically investigated. Compared with TP-DBBT and TP-TQ2, the TP-TQ1 based on 6,7-diphenyl-[1,2,5]thiadiazoloquinoxaline can well balance absorption/emission wavelengths, NIR-II fluorescence brightness and photothermal effects. And the TP-TQ1 nanoparticles (NPs) possess high absorption ability at a peak absorption of 877 nm, with a high relative quantum yield of 0.69% for large steric hindrance hampering the close π-π stacking interactions. Furthermore, the TP-TQ1 NPs show a desirable photothermal conversion efficiency of 48% and good compatibility. In vivo experiments demonstrate that the TP-TQ1 NPs can serve as a versatile theranostic agent for NIR-II fluorescence/photoacoustic imaging-guided tumor phototherapy. The molecular planarization strategy provides an approach for designing efficient NIR-II fluorophores with extending absorption/emission wavelength, high fluorescence brightness, and outstanding phototheranostic performance.


Assuntos
Corantes Fluorescentes , Raios Infravermelhos , Quinoxalinas , Tiadiazóis , Quinoxalinas/química , Quinoxalinas/síntese química , Quinoxalinas/farmacologia , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Animais , Camundongos , Humanos , Tiadiazóis/química , Nanomedicina Teranóstica , Estrutura Molecular , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Imagem Óptica , Camundongos Endogâmicos BALB C , Feminino , Fototerapia/métodos , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas/química , Tamanho da Partícula
11.
J Nanobiotechnology ; 22(1): 110, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481281

RESUMO

BACKGROUND: Breast cancer ranks first among malignant tumors, of which triple-negative breast cancer (TNBC) is characterized by its highly invasive behavior and the worst prognosis. Timely diagnosis and precise treatment of TNBC are substantially challenging. Abnormal tumor vessels play a crucial role in TNBC progression and treatment. Nitric oxide (NO) regulates angiogenesis and maintains vascular homeostasis, while effective NO delivery can normalize the tumor vasculature. Accordingly, we have proposed here a tumor vascular microenvironment remodeling strategy based on NO-induced vessel normalization and extracellular matrix collagen degradation with multimodality imaging-guided nanoparticles against TNBC called DNMF/PLGA. RESULTS: Nanoparticles were synthesized using a chemotherapeutic agent doxorubicin (DOX), a NO donor L-arginine (L-Arg), ultrasmall spinel ferrites (MnFe2O4), and a poly (lactic-co-glycolic acid) (PLGA) shell. Nanoparticle distribution in the tumor was accurately monitored in real-time through highly enhanced magnetic resonance imaging and photoacoustic imaging. Near-infrared irradiation of tumor cells revealed that MnFe2O4 catalyzes the production of a large amount of reactive oxygen species (ROS) from H2O2, resulting in a cascade catalysis of L-Arg to trigger NO production in the presence of ROS. In addition, DOX activates niacinamide adenine dinucleotide phosphate oxidase to generate and supply H2O2. The generated NO improves the vascular endothelial cell integrity and pericellular contractility to promote vessel normalization and induces the activation of endogenous matrix metalloproteinases (mainly MMP-1 and MMP-2) so as to promote extravascular collagen degradation, thereby providing an auxiliary mechanism for efficient nanoparticle delivery and DOX penetration. Moreover, the chemotherapeutic effect of DOX and the photothermal effect of MnFe2O4 served as a chemo-hyperthermia synergistic therapy against TNBC. CONCLUSION: The two therapeutic mechanisms, along with an auxiliary mechanism, were perfectly combined to enhance the therapeutic effects. Briefly, multimodality image-guided nanoparticles provide a reliable strategy for the potential application in the fight against TNBC.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Óxido Nítrico , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Doxorrubicina/farmacologia , Fototerapia/métodos , Colágeno , Linhagem Celular Tumoral , Microambiente Tumoral
12.
Nanoscale ; 16(12): 6095-6108, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38444228

RESUMO

In photothermal therapy (PTT), the photothermal conversion of the second near-infrared (NIR-II) window allows deeper penetration and higher laser irradiance and is considered a promising therapeutic strategy for deep tissues. Since cancer remains a leading cause of deaths worldwide, despite the numerous treatment options, we aimed to develop an improved bionic nanotheranostic for combined imaging and photothermal cancer therapy. We combined a gold nanobipyramid (Au NBP) as a photothermal agent and MnO2 as a magnetic resonance enhancer to produce core/shell structures (Au@MnO2; AM) and modified their surfaces with homologous cancer cell plasma membranes (PM) to enable tumour targeting. The performance of the resulting Au@MnO2@PM (AMP) nanotheranostic was evaluated in vitro and in vivo. AMP exhibits photothermal properties under NIR-II laser irradiation and has multimodal in vitro imaging functions. AMP enables the computed tomography (CT), photothermal imaging (PTI), and magnetic resonance imaging (MRI) of tumours. In particular, AMP exhibited a remarkable PTT effect on cancer cells in vitro and inhibited tumour cell growth under 1064 nm laser irradiation in vivo, with no significant systemic toxicity. This study achieved tumour therapy guided by multimodal imaging, thereby demonstrating a novel strategy for the use of bionic gold nanoparticles for tumour PTT under NIR-II laser irradiation.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Terapia Fototérmica , Nanomedicina Teranóstica/métodos , Ouro/farmacologia , Compostos de Manganês/farmacologia , Compostos de Manganês/química , Biônica , Nanopartículas Metálicas/uso terapêutico , Óxidos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imagem Multimodal/métodos , Linhagem Celular Tumoral
13.
Nanomedicine (Lond) ; 19(10): 841-854, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436253

RESUMO

Aims: Preparation and evaluation of nanoparticles for tumor chemotherapy and immunotherapy mild photothermal therapy and oxaliplatin. Methods: The double emulsion method was used for nanoparticle preparations. Polydopamine was deposited on the surface, which was further modified with folic acid. Cytotoxicity assays were carried out by cell counting kit-8. In vivo antitumor assays were carried out on 4T1 tumor-bearing mice. Results: The nanoparticles exhibited a 190 nm-diameter pomegranate-like sphere, which could increase temperature to 43-46°C. In vivo distribution showed enhanced accumulation. The nanoparticles generated stronger immunogenic cell death effects. By stimulating the maturation of dendritic cells, mild photothermal therapy combined with oxaliplatin significantly increased the antitumor effect by a direct killing effect and activation of immunotherapy. Conclusion: This study provided a promising strategy of combination therapy for tumors.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Camundongos , Oxaliplatina/uso terapêutico , Terapia Fototérmica , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Imunoterapia , Linhagem Celular Tumoral
14.
Nano Lett ; 24(11): 3386-3394, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452250

RESUMO

Utilizing one molecule to realize combinational photodynamic and photothermal therapy upon single-wavelength laser excitation, which relies on a multifunctional phototherapy agent, is one of the most cutting-edge research directions in tumor therapy owing to the high efficacy achieved over a short course of treatment. Herein, a simple strategy of "suitable isolation side chains" is proposed to collectively improve the fluorescence intensity, reactive oxygen species production, photothermal conversion efficiency, and biodegradation capacity. Both in vitro and in vivo results reveal the practical value and huge potential of the designed biodegradable conjugated polymer PTD-C16 with suitable isolation side chains in fluorescence image-guided combinational photodynamic and photothermal therapy. These improvements are achieved through manipulation of aggregated states by only side chain modification without changing any conjugated structure, providing new insight into the design of biodegradable high-performance phototherapy agents.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Polímeros/química , Fototerapia/métodos , Nanopartículas/uso terapêutico , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Fotoquimioterapia/métodos , Linhagem Celular Tumoral
15.
ACS Nano ; 18(11): 8051-8061, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445976

RESUMO

The intracellular clustering of anisotropic nanoparticles is crucial to the improvement of the localized surface plasmon resonance (LSPR) for phototherapy applications. Herein, we programmed the intracellular clustering process of spiky nanoparticles (SNPs) by encapsulating them into an anionic liposome via a frame-guided self-assembly approach. The liposome-encapsulated SNPs (lipo-SNPs) exhibited distinct and enhanced lysosome-triggered aggregation behavior while maintaining excellent monodispersity, even in acidic or protein-rich environments. We explored the enhancement of the photothermal therapy performance for SNPs as a proof of concept. The photothermal conversion efficiency of lipo-SNPs clusters significantly increased 15 times compared to that of single lipo-SNPs. Upon accumulation in lysosomes with a 2.4-fold increase in clustering, lipo-SNPs resulted in an increase in cell-killing efficiency to 45% from 12% at 24 µg/mL. These findings indicated that liposome encapsulation provides a promising approach to programing nanoparticle clustering at the target site, which facilitates advances in the development of smart nanomedicine with programmable enhancement in LSPR.


Assuntos
Lipossomos , Nanopartículas , Fototerapia/métodos , Ressonância de Plasmônio de Superfície , Nanomedicina
16.
J Mater Chem B ; 12(15): 3569-3593, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494982

RESUMO

In recent years, inorganic nanoparticles (NPs) have attracted increasing attention as potential theranostic agents in the field of oncology. Photothermal therapy (PTT) is a minimally invasive technique that uses nanoparticles to produce heat from light to kill cancer cells. PTT requires two essential elements: a photothermal agent (PTA) and near-infrared (NIR) radiation. The role of PTAs is to absorb NIR, which subsequently triggers hyperthermia within cancer cells. By raising the temperature in the tumor microenvironment (TME), PTT causes damage to the cancer cells. Nanoparticles (NPs) are instrumental in PTT given that they facilitate the passive and active targeting of the PTA to the TME, making them crucial for the effectiveness of the treatment. In addition, specific targeting can be achieved through their enhanced permeation and retention effect. Thus, owing to their significant advantages, such as altering the morphology and surface characteristics of nanocarriers comprised of PTA, NPs have been exploited to facilitate tumor regression significantly. This review highlights the properties of PTAs, the mechanism of PTT, and the results obtained from the improved curative efficacy of PTT by utilizing NPs platforms.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Hipertermia Induzida/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
17.
Bull Exp Biol Med ; 176(4): 501-504, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491259

RESUMO

High X-ray absorption combined with photothermal properties make bismuth nanoparticles (Bi NP) a promising agent for multimodal cancer theranostics. However, the synthesis of Bi NP by the "classical" chemical methods has numerous limitations, including potential toxicity of the produced nanomaterials. Here we studied in vitro toxicity of laser-synthesized Bi NP coated with Pluronic F-127 on mouse fibroblast cell line L929. The survival of L929 cells decreased linearly with increasing the concentration of Bi NP in a concentration range of 3-500 µg/ml; the LC50 value was 57 µg/ml. The unique combination of functional properties and moderate toxicity of the laser-synthesized Bi NP makes them a new promising platform for sensitization of multimodal cancer theranostics.


Assuntos
Nanopartículas Metálicas , Animais , Camundongos , Bismuto/toxicidade , Bismuto/química , Linhagem Celular Tumoral , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Nanopartículas/toxicidade , Nanopartículas/química , Nanoestruturas , Neoplasias/metabolismo , Fototerapia/métodos
18.
Anal Chem ; 96(13): 5315-5322, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38511619

RESUMO

Photoacoustic imaging (PAI) in the second near-infrared region (NIR-II), due to deeper tissue penetration and a lower background interference, has attracted widespread concern. However, the development of NIR-II nanoprobes with a large molar extinction coefficient and a high photothermal conversion efficiency (PCE) for PAI and photothermal therapy (PTT) is still a big challenge. In this work, the NIR-II CuTe nanorods (NRs) with large molar extinction coefficients ((1.31 ± 0.01) × 108 cm-1·M-1 at 808 nm, (7.00 ± 0.38) × 107 cm-1·M-1 at 1064 nm) and high PCEs (70% at 808 nm, 48% at 1064 nm) were synthesized by living Staphylococcus aureus (S. aureus) cells as biosynthesis factories. Due to the strong light-absorbing and high photothermal conversion ability, the in vitro PA signals of CuTe NRs were about 6 times that of indocyanine green (ICG) in both NIR-I and NIR-II. In addition, CuTe NRs could effectively inhibit tumor growth through PTT. This work provides a new strategy for developing NIR-II probes with large molar extinction coefficients and high PCEs for NIR-II PAI and PTT.


Assuntos
Nanopartículas , Nanotubos , Técnicas Fotoacústicas , Fototerapia/métodos , Técnicas Fotoacústicas/métodos , Staphylococcus aureus , Nanomedicina Teranóstica/métodos
19.
Nanoscale Horiz ; 9(5): 731-741, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38505973

RESUMO

Phototherapy shows great potential for pinpoint tumour treatment. Heptamethine cyanine dyes like IR783 have high potential as agents for antitumour phototherapy due to their inherent tumour targeting ability, though their effectiveness in vivo is unsatisfactory for clinical translation. To overcome this limitation, we present an innovative strategy involving IR783-based polymeric nanoassemblies that improve the dye's performance as an antitumoural photosensitizer. In the formulation, IR783 is modified with cysteamine and used to initiate the ring-opening polymerization (ROP) of the N-carboxyanhydride of benzyl-L-aspartate (BLA), resulting in IR783-installed poly(BLA). Compared to free IR783, the IR783 dye in the polymer adopts a twisted molecular conformation and tuned electron orbital distribution, remarkably enhancing its optical properties. In aqueous environments, the polymers spontaneously assemble into nanostructures with 60 nm diameter, showcasing surface-exposed IR783 dyes that function as ligands for cancer cell and mitochondria targeting. Moreover, the nanoassemblies stabilized the dyes and enhanced the generation of reactive oxygen species (ROS) upon laser irradiation. Thus, in murine tumor models, a single injection of the nanoassemblies with laser irradiation significantly inhibits tumour growth with no detectable off-target toxicity. These findings highlight the potential for improving the performance of heptamethine cyanine dyes in antitumor phototherapy through nano-enabled strategies.


Assuntos
Carbocianinas , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Humanos , Animais , Camundongos , Carbocianinas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia/métodos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/efeitos da radiação , Antineoplásicos/uso terapêutico , Polímeros/química , Nanoestruturas/química , Nanoestruturas/uso terapêutico
20.
EBioMedicine ; 102: 105050, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490105

RESUMO

BACKGROUND: Noninvasive in vivo cell tracking is valuable in understanding the mechanisms that enhance anti-cancer immunity. We have recently developed a new method called phototruncation-assisted cell tracking (PACT), that uses photoconvertible cell tracking technology to detect in vivo cell migration. This method has the advantages of not requiring genetic engineering of cells and employing tissue-penetrant near-infrared light. METHODS: We applied PACT to monitor the migration of immune cells between a tumour and its tumour-draining lymph node (TDLN) after near-infrared photoimmunotherapy (NIR-PIT). FINDINGS: PACT showed a significant increase in the migration of dendritic cells (DCs) and macrophages from the tumour to the TDLN immediately after NIR-PIT. This migration by NIR-PIT was abrogated by inhibiting the sphingosine-1-phosphate pathway or Gαi signaling. These results were corroborated by intranodal immune cell profiles at two days post-treatment; NIR-PIT significantly induced DC maturation and increased and activated the CD8+ T cell population in the TDLN. Furthermore, PACT revealed that NIR-PIT significantly enhanced the migration of CD8+ T cells from the TDLN to the tumour four days post-treatment, which was consistent with the immunohistochemical assessment of tumour-infiltrating lymphocytes and tumour regression. INTERPRETATION: Immune cells dramatically migrated between the tumour and TDLN following NIR-PIT, indicating its potential as an immune-stimulating therapy. Also, PACT is potentially applicable to a wide range of immunological research. FUNDING: This work was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Centre for Cancer Research (grant number: ZIA BC011513 and ZIA BC011506).


Assuntos
Linfócitos T CD8-Positivos , Carbocianinas , Rastreamento de Células , Humanos , Linhagem Celular Tumoral , Fototerapia/métodos , Imunoterapia/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA