Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.049
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9374, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653777

RESUMO

Colletotrichum is an important plant pathogenic fungi that causes anthracnose/-twister disease in onion. This disease was prevalent in the monsoon season from August to November months and the symptoms were observed in most of the fields. This study aimed to investigate the pathogenicity and cumulative effect, if any of Colletotrichum gloeosporioides and Fusarium acutatum. The pot experiment was laid out to identify the cause responsible for inciting anthracnose-twister disease, whether the Colletotrichum or Fusarium or both, or the interaction of pathogens and GA3. The results of the pathogenicity test confirmed that C. gloeosporioides and F. acutatum are both pathogenic. C. gloeosporioides caused twisting symptoms independently, while F.acutatum independently caused only neck elongation. The independent application of GA3 did not produce any symptoms, however, increased the plant height. The combined treatment of C. gloeosporioides and F. acutatum caused twisting, which enhanced upon interaction with GA3 application giving synergistic effect. The acervuli were found in lesions infected with C. gloeosporioides after 8 days of inoculation on the neck and leaf blades. Symptoms were not observed in untreated control plants. Koch's postulates were confirmed by reisolating the same pathogens from the infected plants.


Assuntos
Colletotrichum , Fusarium , Cebolas , Doenças das Plantas , Colletotrichum/patogenicidade , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Cebolas/microbiologia
2.
J Am Chem Soc ; 146(18): 12645-12655, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38651821

RESUMO

The increased production of plastics is leading to the accumulation of plastic waste and depletion of limited fossil fuel resources. In this context, we report a strategy to create polymers that can undergo controlled depolymerization by linking renewable feedstocks with siloxane bonds. α,ω-Diesters and α,ω-diols containing siloxane bonds were synthesized from an alkenoic ester derived from castor oil and then polymerized with varied monomers, including related biobased monomers. In addition, cyclic monomers derived from this alkenoic ester and hydrosiloxanes were prepared and cyclized to form a 26-membered macrolactone containing a siloxane unit. Sequential ring-opening polymerization of this macrolactone and lactide afforded an ABA triblock copolymer. This set of polymers containing siloxanes underwent programmed depolymerization into monomers in protic solvents or with hexamethyldisiloxane and an acid catalyst. Monomers afforded by the depolymerization of polyesters containing siloxane linkages were repolymerized to demonstrate circularity in select polymers. Evaluation of the environmental stability of these polymers toward enzymatic degradation showed that they undergo enzymatic hydrolysis by a fungal cutinase from Fusarium solani. Evaluation of soil microbial metabolism of monomers selectively labeled with 13C revealed differential metabolism of the main chain and side chain organic groups by soil microbes.


Assuntos
Fusarium , Polimerização , Siloxanas , Siloxanas/química , Óleos de Plantas/química , Polímeros/química , Estrutura Molecular , Hidrolases de Éster Carboxílico
3.
Curr Genet ; 70(1): 4, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555312

RESUMO

Panax notoginseng (Burkill) F.H. Chen, a valuable traditional Chinese medicine, faces significant yield and quality challenges stemming from root rot primarily caused by Fusarium solani. Burkholderia arboris PN-1, isolated from the rhizosphere soil of P. notoginseng, demonstrated a remarkable ability to inhibit the growth of F. solani. This study integrates phenotypic, phylogenetic, and genomic analyses to enhance our understanding of the biocontrol mechanisms employed by B. arboris PN-1. Phenotype analysis reveals that B. arboris PN-1 effectively suppresses P. notoginseng root rot both in vitro and in vivo. The genome of B. arboris PN-1 comprises three circular chromosomes (contig 1: 3,651,544 bp, contig 2: 1,355,460 bp, and contig 3: 3,471,056 bp), with a 66.81% GC content, housing 7,550 protein-coding genes. Notably, no plasmids were detected. Phylogenetic analysis places PN-1 in close relation to B. arboris AU14372, B. arboris LMG24066, and B. arboris MEC_B345. Average nucleotide identity (ANI) values confirm the PN-1 classification as B. arboris. Comparative analysis with seven other B. arboris strains identified 4,628 core genes in B. arboris PN-1. The pan-genome of B. arboris appears open but may approach closure. Whole-genome sequencing revealed 265 carbohydrate-active enzymes and identified 9 gene clusters encoding secondary metabolites. This comprehensive investigation enhances our understanding of B. arboris genomes, paving the way for their potential as effective biocontrol agents against fungal plant pathogens in the future.


Assuntos
Burkholderia , Fusarium , Panax notoginseng , Panax notoginseng/genética , Panax notoginseng/metabolismo , Panax notoginseng/microbiologia , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Fusarium/genética , Genômica
4.
J Agric Food Chem ; 72(15): 8550-8568, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38546976

RESUMO

Pathogenic fungi pose a significant threat to crop yields and human healthy, and the subsequent fungicide resistance has greatly aggravated these agricultural and medical challenges. Hence, the development of new fungicides with higher efficiency and greater environmental friendliness is urgently required. In this study, luvangetin, isolated and identified from the root of Zanthoxylum avicennae, exhibited wide-spectrum antifungal activity in vivo and in vitro. Integrated omics and in vitro and in vivo transcriptional analyses revealed that luvangetin inhibited GAL4-like Zn(II)2Cys6 transcriptional factor-mediated transcription, particularly the FvFUM21-mediated FUM cluster gene expression, and decreased the biosynthesis of fumonisins inFusarium verticillioides. Moreover, luvangetin binds to the double-stranded DNA helix in vitro in the groove mode. We isolated and identified luvangetin, a natural metabolite from a traditional Chinese edible medicinal plant and uncovered its multipathogen resistance mechanism. This study is the first to reveal the mechanism underlying the antifungal activity of luvangetin and provides a promising direction for the future use of plant-derived natural products to prevent and control plant and animal pathogenic fungi.


Assuntos
Fumonisinas , Fungicidas Industriais , Fusarium , Zanthoxylum , Animais , Humanos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Zanthoxylum/metabolismo , Fumonisinas/metabolismo
5.
Antonie Van Leeuwenhoek ; 117(1): 33, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334837

RESUMO

Plant probiotics are live microbial cells or cultures that support plant growth and control plant pathogens through different mechanisms. They have various effects on plants, including plant growth promotion through the production of indole acetic acid (IAA), biological control activity (BCA), and production of cellulase enzymes, thus inducing systemic resistance and increasing the availability of mineral elements. The present work aimed to study the potential of Achromobacter marplatensis and Bacillus velezensis as plant probiotics for the field cultivation of potatoes. In vitro studies have demonstrated the ability of selected probiotics to produce IAA and cellulase, as well as antimicrobial activity against two plant pathogens that infect Solanum tuberosum as Fusarium oxysporum and Ralstonia solanacearum under different conditions at a broad range of different temperatures and pH values. In vivo study of the effects of the probiotics A. marplatensis and B. velezensis on S. tuberosum plants grown in sandy clay loamy soil was detected after cultivation for 90 days. Probiotic isolates A. marplatensis and B. velezensis were able to tolerate ultraviolet radiation (UV) exposure for up to two hours, the dose response curve exhibited that the D10 values of A. marplatensis and B. velezensis were 28 and 16 respectively. In the case of loading both probiotics with broth, the shoot dry weight was increased significantly from 28 in the control to 50 g, shoot length increased from 24 to 45.7 cm, branches numbers increased from 40 to 70 branch, leaves number increased from 99 to 130 leaf, root dry weight increased from 9.3 to 12.9 g, root length increased from 24 to 35.7 cm, tuber weight increased from 15 to 37.0 g and tubers number increased from 9 to 24.4 tuber, the rot percentage was reduced to 0%. The addition of both probiotic isolates, either broth or wheat grains load separately has enhanced all the growth parameters; however, better results and increased production were in favor of adding probiotics with broth more than wheat. On the other hand, both probiotics showed a remarkable protective effect against potato pathogens separately and reduced the negative impact of the infection using them together.


Assuntos
Celulases , Fusarium , Ralstonia solanacearum , Solanum tuberosum , Raios Ultravioleta , Plantas , Celulases/farmacologia , Doenças das Plantas/prevenção & controle
6.
J Agric Food Chem ; 72(7): 3664-3672, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38320984

RESUMO

Gas chromatography ion-mobility spectrometry (GC-IMS) technology is drawing increasing attention due to its high sensitivity, low drift, and capability for the identification of compounds. The noninvasive detection of plant pests and pathogens is an application area well suited to this technology. In this work, we employed GC-IMS technology for early detection of Fusarium basal rot in brown onion, red onion, and shallot bulbs and for tracking disease progression during storage. The volatile profiles of the infected and healthy control bulbs were characterized using GC-IMS and gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). GC-IMS data combined with principal component analysis and supervised methods provided discrimination between infected and healthy control bulbs as early as 1 day after incubation with the pathogen, classification regarding the proportion of infected to healthy bulbs in a sample, and prediction of the infection's duration with an average R2 = 0.92. Furthermore, GC-TOF-MS revealed several compounds, mostly sulfides and disulfides, that could be uniquely related to Fusarium basal rot infection.


Assuntos
Fusarium , Cebolinha Branca , Compostos Orgânicos Voláteis , Cebolas , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos
7.
Lasers Med Sci ; 39(1): 72, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38379056

RESUMO

The purpose is to assess the efficacy of rose bengal photodynamic antimicrobial therapy (PDAT) using different irradiation energy levels and photosensitizer concentrations for the inhibition of fungal keratitis isolates. Seven different fungi (Aspergillus fumigatus, Candida albicans, Curvularia lunata, Fusarium keratoplasticum, Fusarium solani, Paecilomyces variotii, and Pseudallescheria boydii) were isolated from patients with confirmed infectious keratitis. Experiments were performed in triplicate with suspensions of each fungus exposed to different PDAT parameters including a control, green light exposure of 5.4 J/cm2, 2.7 J/cm2 (continuous and pulsed), and 1.8 J/cm2 and rose bengal concentrations of 0.1%, 0.05%, and 0.01%. Plates were photographed 72 h after experimentation, and analysis was performed to assess fungal growth inhibition. PDAT using 5.4 J/cm2 of irradiation and 0.1% rose bengal completely inhibited growth of five of the seven fungal species. Candida albicans and Fusarium keratoplasticum were the most susceptible organisms, with growth inhibited with the lowest fluence and minimum rose bengal concentration. Fusarium solani, Pseudallescheria boydii, and Paecilomyces variotii were inhibited by lower light exposures and photosensitizer concentrations. Aspergillus fumigatus and Curvularia lunata were not inhibited by any PDAT parameters tested. Continuous and pulsed irradiation using 2.7 J/cm2 produced similar results. Rose bengal PDAT successfully inhibits the in vitro growth of five fungi known to cause infectious keratitis. Differences in growth inhibition of the various fungi to multiple PDAT parameters suggest that susceptibilities to PDAT are unique among fungal species. These findings support modifying PDAT parameters based on the infectious etiology.


Assuntos
Anti-Infecciosos , Byssochlamys , Curvularia , Fusarium , Ceratite , Scedosporium , Humanos , Rosa Bengala/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Ceratite/tratamento farmacológico , Ceratite/radioterapia , Ceratite/microbiologia
8.
Arch Virol ; 169(3): 53, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381240

RESUMO

A novel mitovirus, tentatively designated as "Fusarium oxysporum mitovirus 2" (FoMV2), was isolated from the pathogenic Fusarium oxysporum f. sp. ginseng strain 0414 infecting Panax ginseng. The complete genome of FoMV2 is 2388 nt in length with a GC content of 30.57%. It contains a large open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) of 713 amino acids with a molecular weight of 83.05 kDa. The sequence identity between FoMV2 and Botrytis cinerea mitovirus 8 and Fusarium verticillioides mitovirus 1 was 87.94% and 77.85%, respectively. Phylogenetic analysis showed that FoMV2 belongs to the genus Unuamitovirus in the family Mitoviridae. To the best of our knowledge, this is the first report of an unuamitovirus isolated from F. oxysporum f. sp. ginseng causing ginseng root rot.


Assuntos
Aminoácidos , Fusarium , Panax , Filogenia , Peso Molecular
9.
Antonie Van Leeuwenhoek ; 117(1): 7, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170394

RESUMO

Edible oil is used in humans' daily lives, and the degradation of edible oil is a key process in sewage water treatment and in compost production from food wastes. In this study, a mixed microbial strain EN00, which showed high edible plant oil (EPO)-consumption activity, was obtained from soil via enrichment cultivation. A fungal strain EN01 was isolated from EN00 and relegated to Fusarium keratoplasticum, based on the nucleotide sequences of the TEF1-α gene. Strain EN01 eliminated more than 90% of hydrophobic compounds from the medium containing 1.0% (w/v) EPO within 10 days at 30 °C. The rate of consumption of EPO by EN01 was comparable with that of EN00, suggesting that EN01 was the main microorganism involved in the EPO-consumption ability of EN00. Strain EN01 efficiently utilized EPO as a sole carbon source. The EPO-consumption rate of EN01 was highest among six tested strains of Fusarium solani species complex (FSSC), while two FSSC strains of F. mori and F. cuneirostrum, whose phylogenetic relationships were relatively distant from EN01, had little EPO-eliminating activity. This data implies that the potent EPO-eliminating activity is not general in FSSC strains but is restricted to selected members of this complex. EN01 showed good growth at 25-30 °C, in media with an initial pH of 4-10, and in the presence of 0-3% (w/v) sodium chloride. Although the safety including pathogenicity must be strictly evaluated, some FSSC strains including EN01 have potentials for use in the degradation and elimination of edible oil.


Assuntos
Fusarium , Humanos , Plantas Comestíveis , Filogenia , Alimentos
10.
Huan Jing Ke Xue ; 45(1): 543-554, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216503

RESUMO

This study aimed to clarify the effect of long-term continuous cropping of pepper on soil fungal community structure, reveal the mechanism of continuous cropping obstacles, and provide a theoretical basis for the ecological safety and sustainable development of pepper industry. We took the pepper continuous cropping soil in the vegetable greenhouse planting base of Tongren City as the research object. The diversity and community structure of fungi in farmland soil were analyzed using Illumina MiSeq high-throughput sequencing, the responses of soil physio-chemical properties and fungal community characteristics to long-term continuous pepper cropping were discussed, and the relationships between the characteristics of fungal community structure and environmental factors were determined using CCA and correlation network analysis. The results showed that with the extension of pepper continuous cropping years, the soil pH value and organic matter (OM) content decreased, total phosphorus (TP) and available phosphorus (AP) contents increased, hydrolyzed nitrogen (AN) and available potassium (AK) contents decreased first and then increased, and total nitrogen (TN) and total potassium (TK) contents did not change significantly. Long-term continuous cropping decreased the Chao1 index and observed species index and decreased the Shannon index and Simpson index. The change in continuous cropping years had a significant effect on the relative abundance of soil fungal dominant flora. At the phylum level, the relative abundance of Mortierellomycota decreased with the extension of pepper continuous cropping years, the relative abundance of Ascomycota increased first and then decreased, and the relative abundance of Basidiomycota decreased first and then increased. At the genus level, with the increasing of pepper continuous cropping years, the relative abundance of Fusarium increased, and the relative abundance of Mortierella and Penicillium decreased. In addition, long-term continuous cropping simplified the soil fungal symbiosis network. CCA analysis indicated that pH, OM, TN, AN, AP, and AK were the driving factors of soil fungal community structure, and correlation network analysis showed that pH, OM, TN, TP, TK, AN, AP, and AK were the driving factors of soil fungal community structure, including Fusarium, Lophotrichus, Penicillium, Mortierella, Botryotrichum, Staphylotrichum, Plectosphaerella, and Acremonium. In conclusion, continuous cropping changed the soil physical and chemical properties, affected the diversity and community structure of the soil fungal community, changed the interaction between microorganisms, and destroyed the microecological balance of the soil, which might explain obstacles associated with continuous cropped pepper.


Assuntos
Fusarium , Micobioma , Penicillium , Solo/química , Microbiologia do Solo , Produtos Agrícolas , Nitrogênio , Fósforo , Potássio
11.
BMC Microbiol ; 24(1): 38, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281024

RESUMO

BACKGROUND: Tea is one of the most widely consumed beverages in the world, with significant economic and cultural value. However, tea production faces many challenges due to various biotic and abiotic stresses, among which fungal diseases are particularly devastating. RESULTS: To understand the identity and pathogenicity of isolates recovered from tea plants with symptoms of wilt, phylogenetic analyses and pathogenicity assays were conducted. Isolates were characterized to the species level by sequencing the ITS, tef-1α, tub2 and rpb2 sequences and morphology. Four Fusarium species were identified: Fusarium fujikuroi, Fusarium solani, Fusarium oxysporum, and Fusarium concentricum. The pathogenicity of the Fusarium isolates was evaluated on 1-year-old tea plants, whereby F. fujikuroi OS3 and OS4 strains were found to be the most virulent on tea. CONCLUSIONS: To the best of our knowledge, this is the first report of tea rot caused by F. fujikuroi in the world. This provides the foundation for the identification and control of wilt disease in tea plants.


Assuntos
Camellia sinensis , Fusarium , Fusarium/genética , Filogenia , Virulência , China , Chá
12.
J Nanobiotechnology ; 22(1): 28, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216982

RESUMO

Incorporating green chemistry concepts into nanotechnology is an important focus area in nanoscience. The demand for green metal oxide nanoparticle production has grown in recent years. The beneficial effects of using nanoparticles in agriculture have already been established. Here, we highlight some potential antifungal properties of Zizyphus spina leaf extract-derived copper oxide nanoparticles (CuO-Zs-NPs), produced with a spherical shape and defined a 13-30 nm particle size. Three different dosages of CuO-Zs-NPs were utilized and showed promising antifungal efficacy in vitro and in vivo against the selected fungal strain of F. solani causes tomato root rot disease, which was molecularly identified with accession number (OP824846). In vivo  results indicated that, for all CuO-Zs-NPs concentrations, a significant reduction in Fusarium root rot disease occurred between 72.0 to 88.6% compared to 80.5% disease severity in the infected control. Although treatments with either the chemical fungicide (Kocide 2000) showed a better disease reduction and incidence with (18.33% and 6.67%) values, respectively, than CuO-Zs-NPs at conc. 50 mg/l, however CuO-Zs-NPs at 250 mg/l conc. showed the highest disease reduction (9.17 ± 2.89%) and lowest disease incidence (4.17 ± 3.80%). On the other hand, CuO-Zs-NPs at varied values elevated the beneficial effects of tomato seedling vigor at the initial stages and plant growth development compared to either treatment with the commercial fungicide or Trichoderma Biocide. Additionally, CuO-Zs-NPs treatments introduced beneficial results for tomato seedling development, with a significant increase in chlorophyll pigments and enzymatic activity for CuO-Zs-NPs treatments. Additionally, treatment with low concentrations of CuO-Zs-NPs led to a rise in the number of mature pollen grains compared to the immature ones.  however the data showed that CuO-Zs-NPs have a unique antifungal mechanism against F. solani, they  subsequently imply that CuO-Zs-NPs might be a useful environmentally friendly controlling agent for the Fusarium root rot disease that affects tomato plants.


Assuntos
Fungicidas Industriais , Fusarium , Nanopartículas Metálicas , Nanopartículas , Solanum lycopersicum , Ziziphus , Cobre/farmacologia , Cobre/química , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Nanopartículas Metálicas/química , Óxidos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
13.
Gene ; 905: 148212, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38281673

RESUMO

Fusarium oxysporum f.sp. cepae (FOC), as basal rot fungus, is the most detrimental pathogen causing a serious threat to onion productivity in the world. In this study, we first determined FOC tolerance in seven Iranian onion cultivars, two known international onions (Texas Early Grano and Sweet Yellow Spanish), and an Allium species related to the onion (Allium asarence) based on the infection severity. Then, a transcriptional screen was performed by comparing the transcript levels of some pathogen-responsive genes (ERF1, COI1, and TIR1) and their predicted miRNAs in the sensitive (Ghermeze Azarshahr Cv.) and the resistant (A. asarence) onions to determine key genes and their miRNAs involved in the defense responses of onions to FOC. From our results, a difference was found in the COI1 and ERF1 expression 48 h after inoculation with FOC as compared to the respective 24 and 72 h. It can be explained by either special mechanisms involved in raising energy consumption efficiency or the interactive effects of other genes in the jasmonic acid (JA) and ethylene (ET) signaling pathways. Moreover, expression analysis of the pathogen-responsive genes and their targeting miRNAs identified the miR-5629, which targets the COI1 gene as a likely key factor in conferring resistance in the FOC-resistant onion, i.e., A. asarence. However, exploring the function of the miRNA/target pair is highly recommended to deeply understand the effect of the miRNA/target pair-associated pathway in the control of A. asarense-FOC interaction.


Assuntos
Fusarium , MicroRNAs , Cebolas/genética , Fusarium/genética , MicroRNAs/genética , Irã (Geográfico) , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
14.
Nat Prod Res ; 38(4): 667-672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36855252

RESUMO

Tomato is one of the most produced and consumed fruits in the world. However, it is a crop that faces several phytosanitary problems, such as fusarium wilt, caused by Fusarium oxysporum. Thus, this study aimed to evaluate citronella and melaleuca essential oils in vitro potential in the fungus F. oxysporum management. The chemical identification of the components in the essential oils was performed by gas chromatography with flame ionization and mass spectrometer detectors. The IC50 and IC90 were determined by linear regression and the percentage of inhibition of the fungus by analysis of variance. The major compounds in citronella essential oil were citronellal, Geraniol, and citronellol; in melaleuca (tea tree) oil were terpinen-4-ol and α-terpinene. Both oils promoted more significant inhibition at concentrations of 1.5 and 2.5 µL/mL, besides not presenting significant differences with commercial fungicides, confirming the high potential for using this control method in agriculture.


Assuntos
Cymbopogon , Fungicidas Industriais , Fusarium , Lamiaceae , Óleos Voláteis , Solanum lycopersicum , Óleo de Melaleuca , Fungicidas Industriais/farmacologia , Árvores , Fungos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Chá , Doenças das Plantas/microbiologia
15.
Bioresour Technol ; 393: 130141, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040316

RESUMO

Fungi with multiple contaminant removal function have rarely been studied. Here, a novel fungal strain Fusarium keratoplasticum FSP1, which was isolated from halophilic granular sludge, is reported for first time to perform simultaneous nitrogen and phosphate removal. The strain showed wide adaptability under C/N ratios of 30-35, salinities of 0 %-3 % (m/v), and pH of 7.5-9.5. The maximum removal rates of ammonium, nitrate and nitrite were 4.43, 4.01 and 2.97 mg N/L/h. The nitrogen balance, enzyme activity and substrate conversion experiments demonstrated a single strain FSP1 can assimilate inorganic nitrogen and convert inorganic nitrogen to gaseous nitrogen through heterotrophic nitrification or aerobic denitrification. About 39 %-42 % of the degraded phosphorus was in the extracellular polymeric substances (EPS). Orthophosphate was the main phosphorus species in the cell, whereas phosphate monoester and diester were in the EPS. The novel strain FSP1 is a potential candidate for wastewater treatment.


Assuntos
Compostos de Amônio , Desnitrificação , Fusarium , Fosfatos , Nitrogênio/metabolismo , Águas Residuárias , Aerobiose , Nitrificação , Processos Heterotróficos , Nitritos/química , Fósforo , Compostos de Amônio/química
16.
Braz J Biol ; 83: e274368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909586

RESUMO

Fusarium oxysporum is the causal agent of Fusarium wilt in tomato plants. The most common form of control of this disease is through seed chemical treatment. However, the present work presents an alternative method, through the fumigation technique with essential oils. The pathogen F. oxysporum was inoculated on organic cherry tomato seeds through contact with sporulated Petri® plates. Thereafter, seeds were placed in stainless steel crucibles containing a 1.0 x 1.0 cm filter paper adhered to the lid and kept for 24 hours. This paper received 20 µL of each essential oil: tea tree, chia, citronella, lavender, anise basil, clove basil, and deionized water as control. This process was called "seed fumigation by essential oil". After this process, a germination test was carried out in germ boxes with Germitest® paper to verify the variables Germination Speed Index (GSI), Germination (G%), and Mean time to germination (MGT). Mycelial growth was verified in Petri® plates containing PDA medium. The plates containing mycelial growth were observed through scanning electron microscopy to verify possible morphological damage in the hyphae of the pathogen. Tea tree essential oil was the one that allowed the greatest suppression of the phytopathogen. Therefore, new tests were carried out with this specific oil. In germ boxes, tests of germination (G%), Abnormal seedlings count (ASC), and percentage of seedlings with mycelial growth were carried out. In addition, plant elicitation tests were performed in tomato seedlings through the analysis of chitinase, glucanase, and total proteins. All tests were carried out in completely randomized designs with four replications. All data were submitted to the Lilliefors normality test, followed by the analysis of variance, and Tukey's HSD (5% significance) for mean comparison. It was found that tea tree essential oil inhibited the mycelial growth of F. oxysporum without affecting the germination of cherry tomato seeds. Subsequent tests with this oil also demonstrated that there is a reduction in mycelia present in the seeds and a reduction in abnormal seedlings compared to the control. There was no significant difference between the variables tested for plant elicitation.


Assuntos
Fusarium , Óleos Voláteis , Solanum lycopersicum , Óleo de Melaleuca , Compostos Orgânicos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia , Sementes , Plântula , Chá
17.
Toxins (Basel) ; 15(11)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37999514

RESUMO

Lamium album is a medicinal flowering plant that is rich in bioactive compounds with various biological properties. Fusarium species, known for causing significant crop losses and mycotoxin contamination, pose threats to food safety and human health. While synthetic fungicides are commonly employed for fungal management, their environmental impact prompts the ongoing development of alternative methods. This study aimed to evaluate the efficacy of L. album flower extracts in inhibiting the in vitro growth and biosynthesis of mycotoxins by Fusarium culmorum and F. proliferatum strains. The extracts were obtained by supercritical fluid extraction using CO2 (SC-CO2). The effects of various concentrations (2.5, 5, 7.5, and 10%) were assessed on a potato dextrose agar (PDA) medium using the "poisoning" technique. L. album flower extracts reduced mycelium growth by 0 to 30.59% for F. culmorum and 27.71 to 42.97% for F. proliferatum. Ergosterol content was reduced by up to 88.87% for F. culmorum and 93.17% for F. proliferatum. Similarly, the amounts of synthesized mycotoxins produced by both strains were also lower compared to control cultures. These findings are a preliminary phase for further in vivo tests planned to determine the fungistatic effect of L. album flower extracts on cereal substrates as seedlings incubated in controlled environments and under field conditions. Their phytotoxicity and biological stability, as well as the possibility of formulating a bio-preparation to protect cereals against Fusarium infections, will be evaluated.


Assuntos
Fungicidas Industriais , Fusarium , Micotoxinas , Humanos , Dióxido de Carbono , Micotoxinas/análise , Grão Comestível/química , Fungicidas Industriais/farmacologia
18.
Pestic Biochem Physiol ; 196: 105623, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945232

RESUMO

Dendrobium officinale Kimura et Migo is a traditional Chinese herbal medicinal plant. However, the frequent occurrence of soft rot disease (SRD) is one of the most harmful diseases in D. officinale production in recent years, which can seriously affect its yield and quality. In this study, the major pathogenic fungus (SR-1) was isolated from D. officinale with typical symptoms of SRD, and was identified as Fusarium oxysporum through morphological and molecular identification. The biological activities of five natural products were determined against F. oxysporum using a mycelial growth inhibition assay. The results showed that osthole had the highest antifungal activity against F. oxysporum, with an EC50 value of 6.40 mg/L. Scanning electron microscopy (SEM) showed that osthole caused F. oxysporum mycelia to shrink and deform. Transmission electron microscopy (TEM) showed that the organelles were blurred and the cell wall was thickened in the presence of osthole. The sensitivity of F. oxysporum to calcofluor white (CFW) staining was significantly enhanced by osthole. Relative conductivity measurements and propidium iodide (PI) observation revealed that osthole had no significant effect on the cell membrane. Further experiments showed that the activity of chitinase and ß-1,3-glucanase were decreased, and expression levels of chitinase and ß-1,3-glucanase related genes were significantly down-regulated after treatment with osthole. In conclusion, osthole disrupted the cell wall integrity and dynamic balance of F. oxysporum, thereby inhibiting normal mycelial growth.


Assuntos
Produtos Biológicos , Quitinases , Fusarium , Produtos Biológicos/farmacologia , Parede Celular , Quitinases/metabolismo
19.
Fitoterapia ; 171: 105710, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866423

RESUMO

Six new sesquiterpenes, fusarchlamols A-F (1, 2, 4-7); one new natural product of sesquiterpenoid, methyltricinonoate (3); and ten known compounds were found from Fusarium sp. cultured in two different media by the one strain many compounds strategy. The compounds (1, 2, and 4-11) were isolated from Fusarium sp. in PDB medium, and compounds (3-5, 8, and 10-17) were discovered from Fusarium sp. in coffee medium. Additionally, the configuration of 8 was first reported in the research by Mosher's method. The structures were established by 1D, 2D NMR, mass spectrometry, calculated ECD spectra, and Mosher's method. Compounds 1, 2, 6/7, 12, and 16 indicated significant antifungal activities against the phytopathogen Alternaria alternata isolated from Coffea arabica with MICs of 1 µg/mL. The investigation on the anti-phytopathogen activity of metabolites can provide lead compounds for agrochemicals.


Assuntos
Antifúngicos , Fusarium , Fusarium/química , Zea mays , Estrutura Molecular , Espectrometria de Massas
20.
Toxins (Basel) ; 15(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37755972

RESUMO

Fusarium mycotoxins are inactivated by rumen flora; however, a certain amount can pass the rumen and reticulum or be converted into biological active metabolites. Limited scientific evidence is available on the impact and mitigation of Fusarium mycotoxins on dairy cows' performance and health, particularly when cows are exposed for an extended period (more than 2 months). The available information related to these mycotoxin effects on milk cheese-making parameters is also very poor. The objective of this study was to evaluate a commercially available mycotoxin mitigation product (MMP, i.e., TOXO® HP-R, Selko, Tilburg, The Netherlands) in lactating dairy cows fed a Fusarium mycotoxin-contaminated diet, and the repercussions on the dry matter intake, milk yield, milk quality, cheese-making traits and health status of cows. The MMP contains smectite clays, yeast cell walls and antioxidants. In the study, 36 lactating Holstein cows were grouped based on the number of days of producing milk, milk yield, body condition score and those randomly assigned to specific treatments. The study ran over 2 periods (March/May-May/July 2022). In each period, six animals/treatment were considered. The experimental periods consisted of 9 days of adaptation and 54 days of exposure. The physical activity, rumination time, daily milk production and milk quality were measured. The cows were fed once daily with the same total mixed ration (TMR) composition. The experimental groups consisted of a control (CTR) diet, with a TMR with low contamination, high moisture corn (HMC), and beet pulp; a mycotoxins (MTX) diet, with a TMR with highly contaminated HMC, and beet pulp; and an MTX diet supplemented with 100 g/cow/day of the mycotoxin mitigation product (MMP). The trial has shown that the use of MMP reduced the mycotoxin's negative effects on the milk yield and quality (protein, casein and lactose). The MTX diet had a lower milk yield and feed efficiency than the CTR and MMP HP-R diets. The MMP limited the negative effect of mycotoxin contamination on clotting parameters, mitigating the variations on some coagulation properties; however, the MMP inclusion tended to decrease the protein and apparent starch digestibility of the diet. These results provide a better understanding of mycotoxin risk on dairy cows' performances and milk quality. The inclusion of an MMP product mitigated some negative effects of the Fusarium mycotoxin contamination during this trial. The major effects were on the milk yield and quality in both the experimental periods. These results provide better insight on the effects of mycotoxins on the performance and quality of milk, as well as the cheese-making traits. Further analyses should be carried out to evaluate MMP's outcome on immune-metabolic responses and diet digestibility.


Assuntos
Fusarium , Micotoxinas , Animais , Bovinos , Feminino , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais , Lactação , Leite/química , Micotoxinas/análise , Rúmen/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA