Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Death Dis ; 13(5): 474, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589679

RESUMO

Psoriasis, an immune-mediated inflammatory disease, is associated with poor pregnancy outcomes. Emerging evidence indicates that these defects are likely attributed to compromised oocyte competence. Nevertheless, little is known about the underlying associated mechanisms between psoriasis and poor oocyte quality. In this study, we construct an imiquimod-induced chronic psoriasis-like mouse model to review the effects of psoriasis on oocyte quality. We discover that oocytes from psoriasis-like mice display spindle/chromosome disorganization, kinetochore-microtubule mis-attachment, and aneuploidy. Importantly, our results show that melatonin supplement in vitro and in vivo not only increases the rate of matured oocytes but also significantly attenuates oxidative stress and meiotic defects by restoring mitochondrial function in oocytes from psoriasis-like mice. Altogether, our data uncover the adverse effects of psoriasis symptoms on oocytes, and melatonin supplement ameliorates oxidative stress and meiotic defects of oocytes from psoriatic mice.


Assuntos
Melatonina , Psoríase , Animais , Feminino , Meiose , Melatonina/farmacologia , Camundongos , Mitocôndrias/metabolismo , Oócitos/metabolismo , Estresse Oxidativo , Gravidez , Psoríase/tratamento farmacológico , Psoríase/genética , Psoríase/metabolismo , Fuso Acromático/metabolismo
2.
J Biochem ; 170(5): 611-622, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34264310

RESUMO

Mitotic kinesin Eg5 remains a validated target in antimitotic therapy because of its essential role in the formation and maintenance of bipolar mitotic spindles. Although numerous Eg5 inhibitors of synthetic origin are known, only a few inhibitors derived from natural products have been reported. In our study, we focused on identifying novel Eg5 inhibitors from medicinal plants, particularly Garcinia species. Herein, we report the inhibitory effect of kolaflavanone (KLF), a Garcinia biflavonoid, on the ATPase and microtubule-gliding activities of mitotic kinesin Eg5. Additionally, we showed the interaction mechanism between Eg5 and KLF via in vitro and in silico analyses. The results revealed that KLF inhibited both the basal and microtubule-activated ATPase activities of Eg5. The inhibitory mechanism is allosteric, without a direct competition with adenosine-5'-diphosphate for the nucleotide-binding site. KLF also suppressed the microtubule gliding of Eg5 in vitro. The Eg5-KLF model obtained from molecular docking showed that the biflavonoid exists within the α2/α3/L5 (α2: Lys111-Glu116 and Ile135-Asp149, α3: Asn206-Thr226; L5: Gly117-Gly134) pocket, with a binding pose comparable to known Eg5 inhibitors. Overall, our data suggest that KLF is a novel allosteric inhibitor of mitotic kinesin Eg5.


Assuntos
Biflavonoides , Inibidores Enzimáticos , Garcinia , Cinesinas , Plantas Medicinais , Fuso Acromático , Animais , Camundongos , Adenosina Trifosfatases/antagonistas & inibidores , Biflavonoides/química , Biflavonoides/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Garcinia/química , Cinesinas/antagonistas & inibidores , Cinesinas/química , Cinesinas/metabolismo , Mitose/efeitos dos fármacos , Simulação de Acoplamento Molecular/métodos , Plantas Medicinais/química , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo
3.
Cell Rep ; 32(5): 107987, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32755581

RESUMO

Advanced maternal age is highly associated with a decline in oocyte quality, but effective approaches to improve it have still not been fully determined. Here, we report that in vivo supplementation of nicotinamide mononucleotide (NMN) efficaciously improves the quality of oocytes from naturally aged mice by recovering nicotinamide adenine dinucleotide (NAD+) levels. NMN supplementation not only increases ovulation of aged oocytes but also enhances their meiotic competency and fertilization ability by maintaining the normal spindle/chromosome structure and the dynamics of the cortical granule component ovastacin. Moreover, single-cell transcriptome analysis shows that the beneficial effect of NMN on aged oocytes is mediated by restoration of mitochondrial function, eliminating the accumulated ROS to suppress apoptosis. Collectively, our data reveal that NMN supplementation is a feasible approach to protect oocytes from advanced maternal age-related deterioration, contributing to the improvement of reproductive outcome of aged women and assisted reproductive technology.


Assuntos
Envelhecimento/fisiologia , Senescência Celular , Mononucleotídeo de Nicotinamida/farmacologia , Oócitos/citologia , Animais , Apoptose/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Cromossomos de Mamíferos/metabolismo , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Dano ao DNA , Suplementos Nutricionais , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Feminino , Fertilização/efeitos dos fármacos , Cinetocoros/efeitos dos fármacos , Cinetocoros/metabolismo , Masculino , Meiose/efeitos dos fármacos , Metaloproteases/metabolismo , Camundongos Endogâmicos ICR , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NAD/metabolismo , Oócitos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Transcriptoma/genética
4.
J Med Chem ; 63(15): 8025-8042, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32338514

RESUMO

Inhibition of monopolar spindle 1 (MPS1) kinase represents a novel approach to cancer treatment: instead of arresting the cell cycle in tumor cells, cells are driven into mitosis irrespective of DNA damage and unattached/misattached chromosomes, resulting in aneuploidy and cell death. Starting points for our optimization efforts with the goal to identify MPS1 inhibitors were two HTS hits from the distinct chemical series "triazolopyridines" and "imidazopyrazines". The major initial issue of the triazolopyridine series was the moderate potency of the HTS hits. The imidazopyrazine series displayed more than 10-fold higher potencies; however, in the early project phase, this series suffered from poor metabolic stability. Here, we outline the evolution of the two hit series to clinical candidates BAY 1161909 and BAY 1217389 and reveal how both clinical candidates bind to the ATP site of MPS1 kinase, while addressing different pockets utilizing different binding interactions, along with their synthesis and preclinical characterization in selected in vivo efficacy models.


Assuntos
Antineoplásicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Descoberta de Drogas/métodos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fuso Acromático/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Cães , Feminino , Células HT29 , Células HeLa , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/antagonistas & inibidores , Ratos , Ratos Wistar , Fuso Acromático/metabolismo , Resultado do Tratamento
5.
Curr Drug Res Rev ; 12(2): 175-182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32077837

RESUMO

BACKGROUND: Despite many successes in the discovery of numerous cancer chemotherapeutic agents from natural sources, some of the moieties were dropped because of its inefficiency or serious toxicity. Mitosis is an ordered series of fundamentally mechanical events in which identical copies of the genome are moved to two discrete locations within the dividing cell. The crucial role of the mitotic spindle in cell division has identified, which is an important target in cancer chemotherapy. In the present study, we are reporting molecular docking studies and in silico pharmacokinetic profiles of selected phytoconstituents obtained from Amyris pinnata. METHODS: Molecular docking studies of selected phytoconstituents were performed using iGEMDOCK. The crystal structure of the protein was exported from the protein data bank (PDB id: 4C4H). In silico pharmacokinetic profile of selected phytoconstituents was performed using the SWISSADME server. RESULTS: Compound AMNP6 showed higher binding affinity as compared to the standard ligand. All the selected phytoconstituents have passed the Lipinski rule of five and shown no violations. CONCLUSION: Good binding affinity and drug likeliness of the AMNP6 suggest that it can be further investigated and explored as mitotic spindle kinase inhibitor in cancer disease.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Extratos Vegetais/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Rutaceae/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacocinética , Simulação por Computador , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacocinética , Inibidores de Proteínas Quinases/isolamento & purificação , Inibidores de Proteínas Quinases/farmacocinética , Fuso Acromático/metabolismo
6.
New Phytol ; 223(3): 1340-1352, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31038752

RESUMO

B chromosomes (Bs) are supernumerary chromosomes, which are often preferentially inherited. When transmission rates of chromosomes are higher than 0.5, not obeying the Mendelian law of equal segregation, the resulting transmission advantage is collectively referred to as 'chromosome drive'. Here we analysed the drive mechanism of Aegilops speltoides Bs. The repeat AesTR-183 of A. speltoides Bs, which also can be detected on the Bs of Aegilops mutica and rye, was used to track Bs during pollen development. Nondisjunction of CENH3-positive, tubulin interacting B sister chromatids and an asymmetric spindle during first pollen grain mitosis are key for the accumulation process. A quantitative flow cytometric approach revealed that, independent of the number of Bs present in the mother plant, Bs accumulate in the generative nuclei to > 93%. Nine out of 11 tested (peri)centromeric repeats were shared by A and B chromosomes. Our findings provide new insights into the process of chromosome drive. Quantitative flow cytometry is a useful and reliable method to study the drive frequency of Bs. Nondisjunction and unequal spindle organization accompany during first pollen mitosis the drive of A. speltoides Bs. The prerequisites for the drive process seems to be common in Poaceae.


Assuntos
Aegilops/genética , Cromossomos de Plantas/genética , Não Disjunção Genética , Sequência de Bases , Núcleo Celular/genética , Centrômero/metabolismo , Sequência Conservada/genética , Mitose/genética , Pólen/genética , Sequências Repetitivas de Ácido Nucleico/genética , Secale/genética , Fuso Acromático/metabolismo
7.
Biomed Pharmacother ; 105: 506-517, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29883946

RESUMO

Indirubin, a bis-indole alkaloid used in traditional Chinese medicine has shown remarkable anticancer activity against chronic myelocytic leukemia. The present work was aimed to decipher the underlying molecular mechanisms responsible for its anticancer attributes. Our findings suggest that indirubin inhibited the proliferation of HeLa cells with an IC50 of 40 µM and induced a mitotic block. At concentrations higher than its IC50, indirubin exerted a moderate depolymerizing effect on the interphase microtubular network and spindle microtubules in HeLa cells. Studies with goat brain tubulin indicated that indirubin bound to tubulin at a single site with a dissociation constant of 26 ±â€¯3 µM and inhibited the in vitro polymerization of tubulin into microtubules in the presence of glutamate as well as microtubule-associated proteins. Molecular docking analysis and molecular dynamics simulation studies indicate that indirubin stably binds to tubulin at the interface of the α-ß tubulin heterodimer. Further, indirubin stabilized the binding of colchicine on tubulin and promoted the cysteine residue modification by 5,5'-dithiobis-2-nitrobenzoic acid, indicating towards alteration of tubulin conformation upon binding. In addition, we found that indirubin synergistically enhanced the anti-mitotic and anti-proliferative activity of vinblastine, a known microtubule-targeted agent. Collectively our studies indicate that perturbation of microtubule polymerization dynamics could be one of the possible mechanisms behind the anti-cancer activities of indirubin.


Assuntos
Alcaloides/metabolismo , Antimitóticos/farmacologia , Tubulina (Proteína)/metabolismo , Vimblastina/farmacologia , Animais , Sítios de Ligação , Encéfalo/metabolismo , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colchicina/metabolismo , Sinergismo Farmacológico , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Cabras , Células HeLa , Humanos , Indóis/metabolismo , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Polimerização , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Triptofano/metabolismo , Tubulina (Proteína)/química , Cicatrização/efeitos dos fármacos
8.
Sci Rep ; 7(1): 10084, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855673

RESUMO

Successful execution of mitotic cell division requires the tight synchronisation of numerous biochemical pathways. The underlying mechanisms that govern chromosome segregation have been thoroughly investigated. However, the mechanisms that regulate transcription factors in coordination with mitotic progression remain poorly understood. In this report, we identify the transcription factor YY1 as a novel mitotic substrate for the Aurora A kinase, a key regulator of critical mitotic events, like centrosome maturation and spindle formation. Using in vitro kinase assays, we show that Aurora A directly phosphorylates YY1 at serine 365 in the DNA-binding domain. Using a new phospho-specific antibody, we show that YY1 phosphorylation at serine 365 occurs during mitosis, and that this phosphorylation is significantly reduced upon inhibition of Aurora A. Furthermore, we show, using electrophoretic mobility shift and chromatin immunoprecipitation assays, that phosphorylation of YY1 at this site abolishes its DNA binding activity in vitro and in vivo. In conformity with this loss of binding activity, phosphorylated YY1 also loses its transctivation ability as demonstrated by a luciferase reporter assay. These results uncover a novel mechanism that implicates Aurora A in the mitotic inactivation of transcription factors.


Assuntos
Aurora Quinase A/genética , DNA/química , Mitose , Transcrição Gênica , Fator de Transcrição YY1/química , Sequência de Aminoácidos , Aurora Quinase A/metabolismo , Sítios de Ligação , Segregação de Cromossomos , DNA/genética , DNA/metabolismo , Genes Reporter , Células HEK293 , Células HeLa , Humanos , Luciferases/genética , Luciferases/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
9.
Cancer Lett ; 383(2): 295-308, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-27713084

RESUMO

5-fluorouracil (5-FU)-based chemotherapy is the main chemotherapeutic approach for colorectal cancer (CRC) treatment. Because chemoresistance occurs frequently and significantly limits CRC therapies, a novel agent is needed. Pseudolaric acid B (PAB), a small molecule derived from the Chinese medicinal herb ''Tujinpi'', exhibits strong cytotoxic effects on a variety of cancers. However, the detailed mechanisms by which PAB inhibits CRC cell growth and its potential role in overcoming 5-FU resistance have not been well studied. In this study, we showed that PAB significantly inhibited the viability of various CRC cell lines but induced minor cytotoxicity in normal cells. Both the in vitro and in vivo results showed that PAB induced proliferation inhibition, mitotic arrest and subsequently caspase-dependent apoptosis in both 5-FU-sensitive and -resistant CRC cells. Moreover, PAB was shown to interfere with CRC cell mitotic spindle apparatus and activate the spindle assembly checkpoint. Finally, CDK1 activity was involved in PAB-induced mitotic arrest and apoptosis in CRC cells. Taken together, these data reveal that PAB induces CRC cell mitotic arrest followed by apoptosis and overcomes 5-FU resistance in vitro and in vivo, suggesting that PAB may be a potential agent for CRC treatment, particularly for 5-FU-resistant CRC.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Diterpenos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Mitose/efeitos dos fármacos , Animais , Proteína Quinase CDC2 , Caspases/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Quinases Ciclina-Dependentes/metabolismo , Relação Dose-Resposta a Droga , Células HCT116 , Células HT29 , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Fuso Acromático/patologia , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Artigo em Inglês | MEDLINE | ID: mdl-26737877

RESUMO

Effects of electric fields on biological cells have been extensively studied but primarily in the low and high frequency regimes. Low frequency AC fields have been investigated for applications to nerve and muscle stimulation or to examine possible environmental effects of 60 Hz excitation. High frequency fields have been studied to understand tissue heating and tumor ablation. Biological effects at intermediate frequencies (in the 100-500 kHz regime) have only recently been discovered and are now being used clinically to disrupt cell division, primarily for the treatment of recurrent glioblastoma multiforme. In this study, we develop a computational framework to investigate the mechanisms of action of these Tumor Treating Fields (TTFields) and to understand in vitro findings observed in cell culture. Using Finite Element Method models of isolated cells we show that the intermediate frequency range is unique because it constitutes a transition region in which the intracellular electric field, shielded at low frequencies, increases significantly. We also show that the threshold at which this increase occurs depends on the dielectric properties of the cell membrane. Furthermore, our models of different stages of the cell cycle and of the morphological changes associated with cytokinesis show that peak dielectrophoretic forces develop within dividing cells exposed to TTFields. These findings are in agreement with in vitro observations, and enhance our understanding of how TTFields disrupt cellular function.


Assuntos
Terapia por Estimulação Elétrica/métodos , Metáfase , Modelos Teóricos , Neoplasias/patologia , Neoplasias/terapia , Telófase , Linhagem Celular Tumoral , Eletricidade , Humanos , Fuso Acromático/metabolismo
11.
PLoS One ; 9(6): e99423, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24911314

RESUMO

We have previously reported that androstenedione induces abnormalities of follicle development and oocyte maturation in the mouse ovary. In granulosa cells of the ovarian follicle, androstenedione is aromatized to 17ß-estradiol (E2). To determine whether the androgen or estrogen acts directly on the follicle to induce the above-mentioned abnormalities, we compared the effects of a non-aromatizable androgen, 5α-dihydrotestosterone (DHT), with those of E2 on murine follicular development and oocyte maturation in a single follicle culture system. The high dose (10(-6) M) of DHT prompted normal follicular development, and there was no effect on oocyte meiotic maturation after stimulation with human chorionic gonadotropin (hCG) and epidermal growth factor (EGF). In contrast, culture with the high dose (10(-6) M) of E2 delayed follicular growth and also suppressed proliferation of granulosa cells and antrum formation. Furthermore, culture with E2 delayed or inhibited oocyte meiotic maturation, such as chromosome alignment on the metaphase plate and extrusion of the first polar body, after addition of hCG and EGF. In conclusion, these findings demonstrate that E2, but not DHT, induces abnormalities of follicular development, which leads to delay or inhibition of oocyte meiotic maturation.


Assuntos
Di-Hidrotestosterona/farmacologia , Estradiol/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Gonadotropina Coriônica/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Feminino , Humanos , Camundongos , Oogênese/efeitos dos fármacos , Fuso Acromático/metabolismo
12.
Cell Biol Int ; 38(4): 472-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24390765

RESUMO

The bipolar spindle is a major cytoskeletal structure, which ensures an equal chromosome distribution between the daughter nuclei. The spindle formation in animal cells depends on centrosomes activity. In flowering plant cells the centrosomes have not been identified as definite structures. The absence of these structures suggests that plants assemble their spindle via novel mechanisms. Nonetheless, the cellular and molecular mechanisms controlling the cytoskeleton remodeling during the spindle development in plants are still insufficiently clear. This article describes the results of a comparative analysis of the microtubular cytoskeleton dynamics during assembly of the second division spindle in tobacco microsporocytes with the normal and deformed nuclei. According to our observations, the bipolar spindle fibres are formed from short arrays of the disintegrated perinuclear cytoskeleton system, the perinuclear microtubular band. The microsporocytes of polyploid tobacco plants with deformed nuclei entirely lack this cytoskeleton structure. In such type of cells the overall prometaphase events are blocked, and the assembly of second division spindles is completely arrested.


Assuntos
Núcleo Celular/metabolismo , Meiose , Nicotiana/citologia , Nicotiana/metabolismo , Fuso Acromático/metabolismo , Núcleo Celular/ultraestrutura , Citoesqueleto/química , Citoesqueleto/metabolismo , Células Vegetais/química , Células Vegetais/metabolismo , Pólen/química , Pólen/metabolismo , Poliploidia , Fuso Acromático/química
13.
J Biol Chem ; 289(3): 1852-65, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297176

RESUMO

Withaferin A (WA), a C5,C6-epoxy steroidal lactone derived from a medicinal plant (Withania somnifera), inhibits growth of human breast cancer cells in vitro and in vivo and prevents mammary cancer development in a transgenic mouse model. However, the mechanisms underlying the anticancer effect of WA are not fully understood. Herein, we report that tubulin is a novel target of WA-mediated growth arrest in human breast cancer cells. The G2 and mitotic arrest resulting from WA exposure in MCF-7, SUM159, and SK-BR-3 cells was associated with a marked decrease in protein levels of ß-tubulin. These effects were not observed with the naturally occurring C6,C7-epoxy analogs of WA (withanone and withanolide A). A non-tumorigenic normal mammary epithelial cell line (MCF-10A) was markedly more resistant to mitotic arrest by WA compared with breast cancer cells. Vehicle-treated control cells exhibited a normal bipolar spindle with chromosomes aligned along the metaphase plate. In contrast, WA treatment led to a severe disruption of normal spindle morphology. NMR analyses revealed that the A-ring enone in WA, but not in withanone or withanolide A, was highly reactive with cysteamine and rapidly succumbed to irreversible nucleophilic addition. Mass spectrometry demonstrated direct covalent binding of WA to Cys(303) of ß-tubulin in MCF-7 cells. Molecular docking indicated that the WA-binding pocket is located on the surface of ß-tubulin and characterized by a hydrophobic floor, a hydrophobic wall, and a charge-balanced hydrophilic entrance. These results provide novel insights into the mechanism of growth arrest by WA in breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Regulação para Baixo/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Vitanolídeos/farmacologia , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Regulação para Baixo/genética , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo , Fuso Acromático/patologia , Tubulina (Proteína)/genética , Vitanolídeos/farmacocinética
14.
Genet Mol Res ; 11(4): 3824-34, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23143934

RESUMO

Because of its specific electrochemical properties, copper is an essential heavy metal for living organisms. As with other heavy metals, high levels can provoke damage. We examined gene expression under copper stress in wild-type fission yeast (Schizosaccharomyces pombe) through differential display. After the EC(50) concentration of CuSO(4) was determined as 50 µM, total RNA was isolated from cells treated or not with copper. The expression level of SPCC1682.13, ppk1, SPBC2F12.05c, and adg2 genes increased significantly under copper stress. Considering the functions of these genes are related to the cell cycle, cell division and chromosome dynamics, we hypothesize that retardation of the cell cycle under copper stress is relevant to the events that depend on the functions of these genes.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Cobre/toxicidade , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Sequência de Bases , Pontos de Checagem do Ciclo Celular/genética , Sulfato de Cobre/toxicidade , DNA Complementar/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Schizosaccharomyces/citologia , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Análise de Sequência de DNA , Estresse Fisiológico/genética
15.
Protoplasma ; 249(1): 43-51, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21274580

RESUMO

According to our data, the arrest of univalents in bouquet arrangement is a widespread meiotic feature in cereal haploids and allohaploids (wide hybrids F(1)). We have analyzed 83 different genotypes of cereal haploids and allohaploids with visualization of the cytoskeleton and found a bouquet arrest in 45 of them (in 30% to 100% pollen mother cells (PMCs)). The meiotic plant cell division in 26 various genotypes with a zygotene bouquet arrest was analyzed in detail. In three of them in PMCs, a very specific monopolar conic-shaped figure at early prometaphase is formed. This monopolar figure consists of mono-oriented univalents and their kinetochore fibers converging in pointed pole. Such figures are never observed at wild-type prometaphase or in asynaptic meiosis in the variants without a bouquet arrest. Later at prometaphase, the bipolar central spindle fibers join in this monopolar figure, and a bipolar spindle with all univalents connected to one pole is formed. As a result of monopolar chromosome segregation at anaphase and normal cytokinesis at telophase, a dyad with one member carrying a restitution nucleus and the other enucleated is formed. However, such phenotype has only three genotypes among 26 analyzed with a bouquet arrest. In the remaining 23 haploids and allohaploids, the course of prometaphase was altered after the conic monopolar figure formation. In these variants, the completely formed conic monopolar figure was disintegrated into a chaotic network of spindle fibers and univalents acquired a random orientation. This arrangement looks like a mid-prometaphase in the wild-type meiosis. At late prometaphase, a bipolar spindle is formed with the univalents distributed more or less equally between two poles, similar to the phenotypes without a bouquet arrest. The product of cell division is a dyad with aneuploid members. Thus, the spindle abnormality-monopolar chromosome orientation-is corrected. In some cells the correction of the prometaphase monopolus occurs by means of its splitting into two half-spindles and their rotation along the future division axis.


Assuntos
Pontos de Checagem do Ciclo Celular , Segregação de Cromossomos , Cromossomos de Plantas/genética , Grão Comestível/genética , Fuso Acromático/metabolismo , Anáfase , Cromossomos de Plantas/metabolismo , Citocinese , Citoesqueleto , Grão Comestível/metabolismo , Genótipo , Haploidia , Cinetocoros/metabolismo , Meiose , Pólen/citologia , Prometáfase , Fuso Acromático/genética
16.
Plant Cell ; 23(7): 2606-18, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21750235

RESUMO

In higher plant cells, microtubules (MTs) are nucleated and organized in a centrosome-independent manner. It is unclear whether augmin-dependent mechanisms underlie spindle MT organization in plant cells as they do in animal cells. When AUGMIN subunit3 (AUG3), which encodes a homolog of animal dim γ-tubulin 3/human augmin-like complex, subunit 3, was disrupted in Arabidopsis thaliana, gametogenesis frequently failed due to defects in cell division. Compared with the control microspores, which formed bipolar spindles at the cell periphery, the mutant cells often formed peripheral half spindles that only attached to condensed chromosomes or formed elongated spindles with unfocused interior poles. In addition, defective cells exhibited disorganized phragmoplast MT arrays, which caused aborted cytokinesis. The resulting pollen grains were either shrunken or contained two nuclei in an undivided cytoplasm. AUG3 was localized along MTs in the spindle and phragmoplast, and its signal was pronounced in anaphase spindle poles. An AUG3-green fluorescent protein fusion exhibited a dynamic distribution pattern, similar to that of the γ-tubulin complex protein2. When AUG3 was enriched from seedlings by affinity chromatography, AUG1 was detected by immunoblotting, suggesting an augmin-like complex was present in vivo. We conclude that augmin plays a critical role in MT organization during plant cell division.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Teste de Complementação Genética , Humanos , Meristema/citologia , Meristema/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Mitose/fisiologia , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Óvulo Vegetal/citologia , Óvulo Vegetal/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Pólen/citologia , Pólen/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fuso Acromático/patologia , Fuso Acromático/ultraestrutura , Tubulina (Proteína)/metabolismo
17.
Plant Physiol ; 155(3): 1403-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21257792

RESUMO

In plants, whole-genome doubling (polyploidization) is a widely occurring process largely contributing to plant evolution and diversification. The generation and fusion of diploid gametes is now considered the major route of plant polyploidization. The parallel arrangement or fusion of meiosis II MII spindles (ps) is one of the most frequently reported mechanisms generating triploid offspring. Through a forward genetics screen of an Arabidopsis (Arabidopsis thaliana) ethyl methanesulfonate population, we identified Arabidopsis thaliana Parallel Spindles1 (AtPS1), which was recently reported as a major gene implicated in the control of the ps meiotic defect. In addition, we describe the isolation and characterization of a novel allele of JASON, involved in male gametophytic ploidy regulation in plants. Similar to atps1 mutants, jason produces more than 25% 2n pollen grains and spontaneously forms triploid offspring. By combining both cytological and genetic approaches, we demonstrate that loss of JASON causes the formation of parallel arranged and fused spindles in male MII, resulting in the production of unreduced first division restitution 2n spores. Although JASON encodes a protein of unknown function, we additionally show that the meiotic ps defect in jason is caused by a reduction in AtPS1 transcript levels, indicating that JASON positively regulates AtPS1 expression, allowing the proper organization and orientation of metaphase II spindle plates in MII.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Meiose , Mutação/genética , Pólen/citologia , Fuso Acromático/metabolismo , Transativadores/metabolismo , Alelos , Proteínas de Arabidopsis/genética , Cromossomos de Plantas/genética , Diploide , Metanossulfonato de Etila , Regulação da Expressão Gênica de Plantas , Genótipo , Heterozigoto , Tamanho do Órgão , Pólen/anatomia & histologia , Pólen/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esporos/metabolismo , Transativadores/genética , Triploidia
18.
Theriogenology ; 74(6): 968-78, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20570324

RESUMO

Deoxynivalenol (DON, vomitoxin) is a secondary metabolite and mycotoxin produced by Fusarium species that occurs with a high prevalence in cereals and grains intended for human and animal consumption. Pigs are considered to be the most sensitive animal species and exposure to DON results in reduced feed intake, reduced performance and cause alterations in the expression of markers of inflammation and cell cycle regulation. The objective of this study was to determine how DON possibly affects the oocyte developmental potential in vitro at concentrations which correspond to those observed in practice. To evaluate DON toxicity during specific stages of oocyte meiosis, cumulus-oocyte complexes were exposed to 0.02, 0.2, or 2 microM DON. Exposure to the highest DON concentration inhibited cumulus expansion and induced cumulus cell death. After exposure for 42 h, DON at all concentrations reduced Metaphase II formation and led to malformations of the meiotic spindle. Despite spindle malformations, exposure to different concentrations of DON did not lead to increased percentages of blastomeres with abnormal ploidy in embryos. Spindle malformation occurred by DON exposure during formation of meiotic spindles at Metaphase I and II, but embryo development was also reduced when oocytes were exposed to DON during Prophase I. Together, these results indicate that exposure to DON via contaminated food or feed can affect oocyte developmental competence by interfering directly with microtubule dynamics during meiosis, and by disturbing oocyte cytoplasmic maturation through other as yet undetermined mechanisms.


Assuntos
Oócitos/efeitos dos fármacos , Fuso Acromático/metabolismo , Suínos , Tricotecenos/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Fertilização/efeitos dos fármacos , Fertilização in vitro/veterinária , Masculino , Meiose/efeitos dos fármacos , Meiose/genética , Micotoxinas/toxicidade , Oócitos/metabolismo , Oócitos/fisiologia , Fuso Acromático/efeitos dos fármacos , Suínos/genética , Suínos/metabolismo
19.
J Assist Reprod Genet ; 27(4): 169-82, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20174967

RESUMO

PURPOSE: To ask whether distinct kinase signaling pathways mediate cytoplasmic or nuclear maturation of mouse oocytes and if in vitro maturation influences the distribution and timing of these phosphorylation events. METHODS: Mouse cumulus oocyte complexes (COCs) were matured under conditions known to influence oocyte quality (basal or supplemented media) and assayed with epitope specific antibodies that would distinguish between Cdk1 or tyrosine kinase targets at 0, 2, 4, 8, and 16 hrs. Semi-quantitative image analysis was used to assess the topographical patterns of protein phosphorylation during in vitro maturation. In vitro fertilization and embryo culture were used to examine the effects of culture conditions on developmental potential. RESULTS: Protein tyrosine phosphorylation increased during meiotic progression from methaphase-I to metaphase-II. Levels were significantly higher in the oocyte cortex. Levels of cortical staining are enhanced in oocytes matured in supplemented media that displayed higher developmental competence. In contrast, bulk substrates for Cdk1 kinase localize to the meiotic spindle while cytoplasmic levels of kinase activity increase throughout meiotic progression; culture media had no measurable effect. Ablation of the tyrosine kinase Fyn significantly reduced cortical levels of tyrosine phosphorylation. CONCLUSIONS: The findings indicate that distinct signaling pathways mediate nuclear and cytoplasmic maturation during in vitro maturation in a fashion consistent with a role for tyrosine kinases in cortical maturation and oocyte quality.


Assuntos
Células do Cúmulo/fisiologia , Meiose/fisiologia , Oócitos/citologia , Oócitos/fisiologia , Fosfoproteínas/metabolismo , Tirosina/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Meios de Cultura , Citoplasma/metabolismo , Técnicas de Cultura Embrionária , Feminino , Fertilização in vitro , Metáfase , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-fyn/fisiologia , Transdução de Sinais , Fuso Acromático/metabolismo
20.
Mol Cancer Ther ; 8(3): 592-601, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19258425

RESUMO

HMN-176 is a potential new cancer therapeutic known to retard the proliferation of tumor cell lines. Here, we show that this compound inhibits meiotic spindle assembly in surf clam oocytes and delays satisfaction of the spindle assembly checkpoint in human somatic cells by inducing the formation of short and/or multipolar spindles. HMN-176 does not affect centrosome assembly, nuclear envelope breakdown, or other aspects of meiotic or mitotic progression, nor does it affect the kinetics of Spisula or mammalian microtubule (MT) assembly in vitro. Notably, HMN-176 inhibits the formation of centrosome-nucleated MTs (i.e., asters) in Spisula oocytes and oocyte extracts, as well as from isolated Spisula or mammalian centrosomes in vitro. Together, these results reveal that HMN-176 is a first-in-class anticentrosome drug that inhibits proliferation, at least in part, by disrupting centrosome-mediated MT assembly during mitosis.


Assuntos
Compostos de Benzilideno/farmacologia , Microtúbulos/efeitos dos fármacos , Piridinas/farmacologia , Fuso Acromático/efeitos dos fármacos , Animais , Bovinos , Centrossomo/efeitos dos fármacos , Centrossomo/metabolismo , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Humanos , Microtúbulos/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Multimerização Proteica/efeitos dos fármacos , Fuso Acromático/metabolismo , Spisula , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA