Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Res Notes ; 12(1): 768, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31771637

RESUMO

OBJECTIVE: Dietary intervention is a practical prevention strategy for age-related hearing loss (AHL). Omega-3 (n-3) polyunsaturated fatty acids (PUFAs) may be effective in prevention of AHL due to their anti-inflammatory and tissue-protective functions. Age-related changes in the hearing function of wild-type and Fat-1 transgenic mice derived from the C57BL/6N strain, which can convert omega-6 PUFAs to n-3 PUFAs and consequently produce enriched endogenous n-3 PUFAs, were investigated to test the efficacy of n-3 PUFAs for AHL prevention. RESULTS: At 2 months, the baseline auditory brainstem response (ABR) thresholds were the same in Fat-1 and wild-type mice at 8-16 kHz but were significantly higher in Fat-1 mice at 4 and 32 kHz. In contrast, the ABR thresholds of Fat-1 mice were significantly lower at 10 months. Moreover, the ABR thresholds of Fat-1 mice at low-middle frequencies were significantly lower at 13 months (12 kHz). Body weights were significantly reduced in Fat-1 mice at 13 months, but not at 2, 10, and 16-17 months. In conclusion, enriched endogenous n-3 PUFAs produced due to the expression of the Fat-1 transgene partially alleviated AHL in male C57BL/6N mice.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Ácidos Graxos Ômega-3 , Presbiacusia/metabolismo , Envelhecimento/patologia , Animais , Peso Corporal/genética , Peso Corporal/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cóclea/patologia , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/citologia , Neurônios/patologia , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/patologia
2.
Sci Rep ; 8(1): 7446, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748613

RESUMO

This study investigated micro-patterned, high-density complementary metal-oxide-semiconductor (CMOS) electrode array to be used as biologically permissive environment for organization, guidance and electrical stimulation of spiral ganglion neurons (SGN). SGNs extracted and isolated from cochleae of P5-P7 rat pups and adult guinea pigs were cultured 1, 4 and 7 days in vitro on glass coverslips (control) and CMOS electrode array. The cultures were analyzed visually and immunohistochemically for SGN presence, outgrowth, neurite alignment, neurite length, neurite asymmetry as well as the contact of a neuronal soma and neurites with the micro-electrodes. Our findings indicate that topographical environment of CMOS chip with micro-patterned pillars enhanced growth, survival, morphology, neural orientation and alignment of SGNs in vitro compared to control. Smaller spacing (0.8-1.6 µm) between protruding pillars on CMOS led SGNs to develop structured and guided neurites oriented along three topographical axes separated by 60°. We found morphological basis for positioning of the micro-electrodes on the chip that was appropriate for direct contact of SGNs with them. This configuration allowed CMOS electrode array to electrically stimulate the SGN whose responses were observed with live Fluo 4 calcium imaging.


Assuntos
Técnicas de Cultura de Células/instrumentação , Estimulação Elétrica/instrumentação , Dispositivos Lab-On-A-Chip , Neurônios/citologia , Semicondutores , Gânglio Espiral da Cóclea/citologia , Animais , Orientação de Axônios , Células Cultivadas , Eletrodos , Desenho de Equipamento , Cobaias , Metais/química , Neuritos/metabolismo , Neuritos/ultraestrutura , Neurogênese , Neurônios/metabolismo , Neurônios/ultraestrutura , Óxidos/química , Ratos , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/ultraestrutura
3.
Elife ; 72018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29328020

RESUMO

We studied the role of the synaptic ribbon for sound encoding at the synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in mice lacking RIBEYE (RBEKO/KO). Electron and immunofluorescence microscopy revealed a lack of synaptic ribbons and an assembly of several small active zones (AZs) at each synaptic contact. Spontaneous and sound-evoked firing rates of SGNs and their compound action potential were reduced, indicating impaired transmission at ribbonless IHC-SGN synapses. The temporal precision of sound encoding was impaired and the recovery of SGN-firing from adaptation indicated slowed synaptic vesicle (SV) replenishment. Activation of Ca2+-channels was shifted to more depolarized potentials and exocytosis was reduced for weak depolarizations. Presynaptic Ca2+-signals showed a broader spread, compatible with the altered Ca2+-channel clustering observed by super-resolution immunofluorescence microscopy. We postulate that RIBEYE disruption is partially compensated by multi-AZ organization. The remaining synaptic deficit indicates ribbon function in SV-replenishment and Ca2+-channel regulation.


Assuntos
Proteínas de Ligação a DNA/deficiência , Células Ciliadas Auditivas Internas/fisiologia , Audição , Fosfoproteínas/deficiência , Gânglio Espiral da Cóclea/citologia , Sinapses/fisiologia , Estimulação Acústica , Oxirredutases do Álcool , Animais , Proteínas Correpressoras , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Microscopia de Fluorescência , Sinapses/ultraestrutura
4.
PLoS One ; 12(5): e0178182, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542481

RESUMO

Hyperbaric oxygen therapy (HBOT) is a noninvasive widely applied treatment that increases the oxygen pressure in tissues. In cochlear implant (CI) research, intracochlear application of neurotrophic factors (NTFs) is able to improve survival of spiral ganglion neurons (SGN) after deafness. Cell-based delivery of NTFs such as brain-derived neurotrophic factor (BDNF) may be realized by cell-coating of the surface of the CI electrode. Human mesenchymal stem cells (MSC) secrete a variety of different neurotrophic factors and may be used for the development of a biohybrid electrode in order to release endogenously-derived neuroprotective factors for the protection of residual SGN and for a guided outgrowth of dendrites in the direction of the CI electrode. HBOT could be used to influence cell behaviour after transplantation to the inner ear. The aim of this study was to investigate the effect of HBOT on the proliferation, BDNF-release and secretion of neuroprotective factors. Thus, model cells (an immortalized fibroblast cell line (NIH3T3)-native and genetically modified) and MSCs were repeatedly (3 x - 10 x) exposed to 100% oxygen at different pressures. The effects of HBO on cell proliferation were investigated in relation to normoxic and normobaric conditions (NOR). Moreover, the neuroprotective and neuroregenerative effects of HBO-treated cells were analysed by cultivation of SGN in conditioned medium. Both, the genetically modified NIH3T3/BDNF and native NIH3T3 fibroblasts, showed a highly significant increased proliferation after five days of HBOT in comparison to normoxic controls. By contrast, the number of MSCs was decreased in MSCs treated with 2.0 bar of HBO. Treating SGN cultures with supernatants of fibroblasts and MSCs significantly increased the survival rate of SGN. HBO treatment did not influence (increase / reduce) this effect. Secretome analysis showed that HBO treatment altered the protein expression pattern in MSCs.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Oxigenoterapia Hiperbárica , Neuroproteção/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Terapia Baseada em Transplante de Células e Tecidos , Meios de Cultivo Condicionados , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células NIH 3T3/metabolismo , Células NIH 3T3/transplante , Regeneração Nervosa/fisiologia , Crescimento Neuronal/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/fisiologia , Adulto Jovem
5.
Stem Cell Res Ther ; 7(1): 148, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27717379

RESUMO

BACKGROUND: The success of cochlear implantation may be further improved by minimizing implantation trauma. The physical trauma of implantation and subsequent immunological sequelae can affect residual hearing and the viability of the spiral ganglion. An ideal electrode should therefore decrease post-implantation trauma and provide support to the residual spiral ganglion population. Combining a flexible electrode with cells producing and releasing protective factors could present a potential means to achieve this. Mononuclear cells obtained from bone marrow (BM-MNC) consist of mesenchymal and hematopoietic progenitor cells. They possess the innate capacity to induce repair of traumatized tissue and to modulate immunological reactions. METHODS: Human bone marrow was obtained from the patients that received treatment with biohybrid electrodes. Autologous mononuclear cells were isolated from bone marrow (BM-MNC) by centrifugation using the Regenlab™ THT-centrifugation tubes. Isolated BM-MNC were characterised using flow cytometry. In addition, the release of cytokines was analysed and their biological effect tested on spiral ganglion neurons isolated from neonatal rats. Fibrin adhesive (Tisseal™) was used for the coating of silicone-based cochlear implant electrode arrays for human use in order to generate biohybrid electrodes. Toxicity of the fibrin adhesive and influence on insertion, as well on the cell coating, was investigated. Furthermore, biohybrid electrodes were implanted in three patients. RESULTS: Human BM-MNC release cytokines, chemokines, and growth factors that exert anti-inflammatory and neuroprotective effects. Using fibrin adhesive as a carrier for BM-MNC, a simple and effective cell coating procedure for cochlear implant electrodes was developed that can be utilised on-site in the operating room for the generation of biohybrid electrodes for intracochlear cell-based drug delivery. A safety study demonstrated the feasibility of autologous progenitor cell transplantation in humans as an adjuvant to cochlear implantation for neurosensory restoration. CONCLUSION: This is the first report of the use of autologous cell transplantation to the human inner ear. Due to the simplicity of this procedure, we hope to initiate its widespread utilization in various fields.


Assuntos
Cóclea/citologia , Sistemas Neurossecretores/citologia , Ferimentos e Lesões/terapia , Adulto , Animais , Medula Óssea/fisiologia , Células da Medula Óssea/citologia , Células Cultivadas , Implante Coclear/métodos , Implantes Cocleares , Eletrodos Implantados , Feminino , Humanos , Leucócitos Mononucleares/citologia , Masculino , Ratos , Ratos Sprague-Dawley , Gânglio Espiral da Cóclea/citologia , Transplante Autólogo/métodos , Adulto Jovem
6.
Neurotox Res ; 29(4): 594-604, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26913517

RESUMO

Mild maternal iron deficiency anemia (IDA) adversely affects the development of cochlear hair cells of the young offspring, but the mechanisms underlying the association are incompletely understood. The aim of this study was to evaluate whether mild maternal IDA in guinea pigs could interrupt inner hair cell (IHC) ribbon synapse density and outer hair cell motility of the offspring. Here, we established a dietary restriction model that allows us to study quantitative changes in the number of IHC ribbon synapses and hearing impairment in response to mild maternal IDA in young guinea pig. The offspring were weaned on postnatal day (PND) 9 and then were given the iron-sufficient diet. On PND 24, pups were examined the hearing function by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) measurements. Then, the cochleae were harvested for assessment of the number of IHC ribbon synapses by immunofluorescence, the morphology of cochlear hair cells, and spiral ganglion cells (SGCs) by scanning electron microscope and hematoxylin-eosin staining, the location, and expression of vesicular glutamate transporter (VGLUT) 3, myosin VIIa, and prestin by immunofluorescence and blotting. Here, we show that mild maternal IDA in guinea pigs induced elevated ABR threshold shifts, declined DPOAE level shifts, and reduced the number of ribbon synapses, impaired the morphology of cochlear hair cells and SGCs in offsprings. In addition, downregulation of VGLUT3 and myosin VIIa, and upregulation of prestin were observed in the cochlea of offsprings from mild maternal IDA in guinea pigs. These data indicate that mild maternal IDA in guinea pigs induced hearing impairment in offsprings, and this deficit may be attributed to the reduction of ribbon synapse density and dysregulation of VGLUT3, myosin VIIa, and prestin.


Assuntos
Anemia Ferropriva/complicações , Perda Auditiva/etiologia , Perda Auditiva/patologia , Miosinas/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Sinapses/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Estimulação Acústica , Fatores Etários , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Cobaias , Células Ciliadas Auditivas Internas/citologia , Masculino , Miosina VIIa , Emissões Otoacústicas Espontâneas , Gravidez , Psicoacústica , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/ultraestrutura , Sinapses/ultraestrutura , Regulação para Cima/fisiologia
7.
J Neural Eng ; 13(1): 016011, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26656212

RESUMO

OBJECTIVE: Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption. In both cases, the anatomical gap between the electrode array and the spiral ganglion neurons (SGNs) is believed to be an important limiting factor. The final goal of the study is to characterize response profiles of SGNs growing in intimate contact with an electrode array, in view of designing novel CI devices and stimulation protocols, featuring a gapless interface with auditory neurons. APPROACH: We have characterized SGN responses to extracellular stimulation using multi-electrode arrays (MEAs). This setup allows, in our view, to optimize in vitro many of the limiting interface aspects between CIs and SGNs. MAIN RESULTS: Early postnatal mouse SGN explants were analyzed after 6-18 days in culture. Different stimulation protocols were compared with the aim to lower the stimulation threshold and the energy needed to elicit a response. In the best case, a four-fold reduction of the energy was obtained by lengthening the biphasic stimulus from 40 µs to 160 µs. Similarly, quasi monophasic pulses were more effective than biphasic pulses and the insertion of an interphase gap moderately improved efficiency. Finally, the stimulation with an external electrode mounted on a micromanipulator showed that the energy needed to elicit a response could be reduced by a factor of five with decreasing its distance from 40 µm to 0 µm from the auditory neurons. SIGNIFICANCE: This study is the first to show electrical activity of SGNs on MEAs. Our findings may help to improve stimulation by and to reduce energy consumption of CIs and thereby contribute to the development of fully implantable devices with better auditory resolution in the future.


Assuntos
Potenciais de Ação/fisiologia , Implantes Cocleares , Análise em Microsséries/instrumentação , Microeletrodos , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/fisiologia , Animais , Terapia por Estimulação Elétrica/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Trends Hear ; 192015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26721928

RESUMO

Improving the electrode-neuron interface to reduce current spread between individual electrodes has been identified as one of the main objectives in the search for future improvements in cochlear-implant performance. Here, we address this problem by presenting a novel stimulation strategy that takes account of the biophysical properties of the auditory neurons (spiral ganglion neurons, SGNs) stimulated in electrical hearing. This new strategy employs a ramped pulse shape, where the maximum amplitude is achieved through a linear slope in the injected current. We present the theoretical framework that supports this new strategy and that suggests it will improve the modulation of SGNs' activity by exploiting their sensitivity to the rising slope of current pulses. The theoretical consequence of this sensitivity to the slope is a reduction in the spread of excitation within the cochlea and, consequently, an increase in the neural dynamic range. To explore the impact of the novel stimulation method on neural activity, we performed in vitro recordings of SGNs in culture. We show that the stimulus efficacy required to evoke action potentials in SGNs falls as the stimulus slope decreases. This work lays the foundation for a novel, and more biomimetic, stimulation strategy with considerable potential for implementation in cochlear-implant technology.


Assuntos
Implantes Cocleares , Nervo Coclear/metabolismo , Estimulação Elétrica/métodos , Canais de Potássio/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Estimulação Acústica/métodos , Potenciais de Ação , Animais , Células Cultivadas , Nervo Coclear/citologia , Eletrofisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Gânglio Espiral da Cóclea/citologia , Reino Unido , Nervo Vestibulococlear/citologia , Nervo Vestibulococlear/fisiologia
9.
Neuroscience ; 259: 184-93, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24316061

RESUMO

Age-related hearing loss - presbycusis - is the number one communication disorder and most prevalent neurodegenerative condition of our aged population. Although speech understanding in background noise is quite difficult for those with presbycusis, there are currently no biomedical treatments to prevent, delay or reverse this condition. A better understanding of the cochlear mechanisms underlying presbycusis will help lead to future treatments. Objectives of the present study were to investigate GABAA receptor subunit α1, nicotinic acetylcholine (nACh) receptor subunit ß2, and N-methyl-d-aspartate (NMDA) receptor subunit NR1 mRNA and protein expression changes in spiral ganglion neurons (SGN) of the CBA/CaJ mouse cochlea, that occur in age-related hearing loss, utilizing quantitative immunohistochemistry and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) techniques. We found that auditory brainstem response (ABR) thresholds shifted over 40dB from 3 to 48kHz in old mice compared to young adults. DPOAE thresholds also shifted over 40dB from 6 to 49kHz in old mice, and their amplitudes were significantly decreased or absent in the same frequency range. SGN density decreased with age in basal, middle and apical turns, and SGN density of the basal turn declined the most. A positive correlation was observed between SGN density and ABR wave 1amplitude. mRNA and protein expression of GABAAR α1 and AChR ß2 decreased with age in SGNs in the old mouse cochlea. mRNA and protein expression of NMDAR NR1 increased with age in SGNs of the old mice. These findings demonstrate that there are functionally-relevant age-related changes of GABAAR, nAChR, NMDAR expression in CBA mouse SGNs reflecting their degeneration, which may be related to functional changes in cochlear synaptic transmission with age, suggesting biological mechanisms for peripheral age-related hearing loss.


Assuntos
Envelhecimento/fisiologia , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Nicotínicos/metabolismo , Gânglio Espiral da Cóclea/citologia , Estimulação Acústica , Análise de Variância , Animais , Cóclea/anatomia & histologia , Cóclea/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Camundongos , Camundongos Endogâmicos CBA , RNA Mensageiro/metabolismo , Receptores de GABA-A/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores Nicotínicos/genética
10.
J Neurosci ; 33(34): 13686-94, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23966690

RESUMO

Aging listeners experience greater difficulty understanding speech in adverse listening conditions and exhibit degraded temporal resolution, even when audiometric thresholds are normal. When threshold evidence for peripheral involvement is lacking, central and cognitive factors are often cited as underlying performance declines. However, previous work has uncovered widespread loss of cochlear afferent synapses and progressive cochlear nerve degeneration in noise-exposed ears with recovered thresholds and no hair cell loss (Kujawa and Liberman 2009). Here, we characterize age-related cochlear synaptic and neural degeneration in CBA/CaJ mice never exposed to high-level noise. Cochlear hair cell and neuronal function was assessed via distortion product otoacoustic emissions and auditory brainstem responses, respectively. Immunostained cochlear whole mounts and plastic-embedded sections were studied by confocal and conventional light microscopy to quantify hair cells, cochlear neurons, and synaptic structures, i.e., presynaptic ribbons and postsynaptic glutamate receptors. Cochlear synaptic loss progresses from youth (4 weeks) to old age (144 weeks) and is seen throughout the cochlea long before age-related changes in thresholds or hair cell counts. Cochlear nerve loss parallels the synaptic loss, after a delay of several months. Key functional clues to the synaptopathy are available in the neural response; these can be accessed noninvasively, enhancing the possibilities for translation to human clinical characterization.


Assuntos
Envelhecimento , Doenças Cocleares/patologia , Doenças Cocleares/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Emissões Otoacústicas Espontâneas/fisiologia , Sinapses/patologia , Estimulação Acústica , Fatores Etários , Animais , Limiar Auditivo/fisiologia , Células Ciliadas Auditivas/patologia , Células Ciliadas Auditivas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos CBA , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Psicoacústica , Gânglio Espiral da Cóclea/citologia , Sinapses/fisiologia
11.
J Neurosci ; 33(26): 10661-6, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23804089

RESUMO

Hearing over a wide range of sound intensities is thought to require complementary coding by functionally diverse spiral ganglion neurons (SGNs), each changing activity only over a subrange. The foundations of SGN diversity are not well understood but likely include differences among their inputs: the presynaptic active zones (AZs) of inner hair cells (IHCs). Here we studied one candidate mechanism for causing SGN diversity-heterogeneity of Ca(2+) influx among the AZs of IHCs-during postnatal development of the mouse cochlea. Ca(2+) imaging revealed a change from regenerative to graded synaptic Ca(2+) signaling after the onset of hearing, when in vivo SGN spike timing changed from patterned to Poissonian. Furthermore, we detected the concurrent emergence of stronger synaptic Ca(2+) signals in IHCs and higher spontaneous spike rates in SGNs. The strengthening of Ca(2+) signaling at a subset of AZs primarily reflected a gain of Ca(2+) channels. We hypothesize that the number of Ca(2+) channels at each IHC AZ critically determines the firing properties of its corresponding SGN and propose that AZ heterogeneity enables IHCs to decompose auditory information into functionally diverse SGNs.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Nervo Coclear/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Audição/fisiologia , Animais , Canais de Cálcio/fisiologia , Cóclea/crescimento & desenvolvimento , Cóclea/inervação , Nervo Coclear/crescimento & desenvolvimento , Núcleo Coclear/citologia , Núcleo Coclear/fisiologia , Simulação por Computador , Fenômenos Eletrofisiológicos , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Modelos Neurológicos , Mutação/fisiologia , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Receptores Pré-Sinápticos/fisiologia , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/crescimento & desenvolvimento , Gânglio Espiral da Cóclea/fisiologia , Frações Subcelulares/fisiologia
12.
J Assoc Res Otolaryngol ; 14(2): 187-211, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23392612

RESUMO

Both neurotrophic support and neural activity are required for normal postnatal development and survival of cochlear spiral ganglion (SG) neurons. Previous studies in neonatally deafened cats demonstrated that electrical stimulation (ES) from a cochlear implant can promote improved SG survival but does not completely prevent progressive neural degeneration. Neurotrophic agents combined with an implant may further improve neural survival. Short-term studies in rodents have shown that brain-derived neurotrophic factor (BDNF) promotes SG survival after deafness and may be additive to trophic effects of stimulation. Our recent study in neonatally deafened cats provided the first evidence of BDNF neurotrophic effects in the developing auditory system over a prolonged duration Leake et al. (J Comp Neurol 519:1526-1545, 2011). Ten weeks of intracochlear BDNF infusion starting at 4 weeks of age elicited significant improvement in SG survival and larger soma size compared to contralateral. In the present study, the same deafening and BDNF infusion procedures were combined with several months of ES from an implant. After combined BDNF + ES, a highly significant increase in SG numerical density (>50 % improvement re: contralateral) was observed, which was significantly greater than the neurotrophic effect seen with ES-only over comparable durations. Combined BDNF + ES also resulted in a higher density of myelinated radial nerve fibers within the osseous spiral lamina. However, substantial ectopic and disorganized sprouting of these fibers into the scala tympani also occurred, which may be deleterious to implant function. EABR thresholds improved (re: initial thresholds at time of implantation) on the chronically stimulated channels of the implant. Terminal electrophysiological studies recording in the inferior colliculus (IC) revealed that the basic cochleotopic organization was intact in the midbrain in all studied groups. In deafened controls or after ES-only, lower IC thresholds were correlated with more selective activation widths as expected, but no such correlation was seen after BDNF + ES due to much greater variability in both measures.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Cóclea/inervação , Surdez/fisiopatologia , Surdez/terapia , Terapia por Estimulação Elétrica , Neurônios/fisiologia , Gânglio Espiral da Cóclea/fisiologia , Animais , Limiar Auditivo/efeitos dos fármacos , Limiar Auditivo/fisiologia , Gatos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cóclea/crescimento & desenvolvimento , Cóclea/fisiopatologia , Implantes Cocleares , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/efeitos dos fármacos
13.
Hear Res ; 269(1-2): 162-8, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20603206

RESUMO

This study assessed the effects of speech misidentification and cognitive processing errors in normal-hearing adults listening to degraded auditory input signals simulating cochlear implants in reverberation conditions. Three variables were controlled: number of vocoder channels (six and twelve), instantaneous frequency change rate (none, 50, 400 Hz), and enclosures (different reverberation conditions). The analyses were made on the basis of: (a) nonsense word recognition scores for eight young normal-hearing listeners, (b) 'ease of listening' based on the time of response, and (c) the subjective measure of difficulty. The maximum score of speech intelligibility in cochlear implant simulation was 70% for non-reverberant conditions with a 12-channel vocoder and changes of instantaneous frequency limited to 400 Hz. In the presence of reflections, word misidentification was about 10-20 percentage points higher. There was little difference between the 50 and 400 Hz frequency modulation cut-off for the 12-channel vocoder; however, in the case of six channels this difference was more significant. The results of the experiment suggest that the information other than F0, that is carried by FM, can be sufficient to improve speech intelligibility in the real-world conditions.


Assuntos
Percepção Auditiva/fisiologia , Implantes Cocleares , Surdez/fisiopatologia , Percepção da Fala/fisiologia , Animais , Limiar Auditivo/fisiologia , Surdez/terapia , Terapia por Estimulação Elétrica , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Cobaias , Modelos Animais , Tempo de Reação/fisiologia , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/fisiologia
14.
Nat Neurosci ; 10(10): 1238-40, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17828255

RESUMO

We report a robust regulation of surface AMPA receptors in mouse auditory neurons, both with application of glutamate receptor agonists in cultured neurons and in response to acoustic stimulation in vivo. The reversible reduction of surface AMPA receptors following acoustic stimulation correlated with changes in acoustic sensitivity. Thus we show that AMPA receptor cycling is important for optimizing synaptic transfer at one of the most exacting synapses in the body.


Assuntos
Limiar Auditivo/fisiologia , Regulação da Expressão Gênica/fisiologia , Neurônios Aferentes/metabolismo , Receptores de AMPA/metabolismo , Estimulação Acústica/métodos , Animais , Animais Recém-Nascidos , Limiar Auditivo/efeitos dos fármacos , Relação Dose-Resposta à Radiação , Potenciais Evocados Auditivos/efeitos dos fármacos , Potenciais Evocados Auditivos/efeitos da radiação , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Neurônios Aferentes/efeitos dos fármacos , Gânglio Espiral da Cóclea/citologia , Fatores de Tempo
15.
J Neurophysiol ; 98(4): 2215-22, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17715200

RESUMO

Previous studies of spiral ganglion neuron electrophysiology have shown that specific parameters differ according to cochlear location, with apical neurons being distinctly different from basal neurons. To align these features more precisely along the tonotopic axis of the cochlea, we developed a novel spiral ganglion culture system in which positional information is retained. Patch-clamp recordings made from neurons of known gangliotopic location revealed two basic firing pattern distributions. Membrane characteristics related to spike timing, such as accommodation, latency and onset tau, were distinctly heterogeneous, yet when averaged, they were distributed in a graded manner along the length of the cochlea. Action potential threshold levels also displayed a wide range, the averages of which were distributed nonmonotonically such that neurons with the greatest sensitivity were localized to the mid-regions of the ganglion. These studies shed new light on the complexity and sophistication of the intrinsic firing features of spiral ganglion neurons. Because timing-related elements are organized in an overall tonotopic manner, it is hypothesized that they contribute to aspects of frequency-dependent acoustic processing. On the other hand, the different distribution of threshold levels, with the greatest sensitivity in the middle region of the tonotopic map, suggests that this neuronal parameter is regulated differently and thus may contribute a distinct realm of auditory sensory processing.


Assuntos
Limiar Auditivo/fisiologia , Neurônios/fisiologia , Tempo de Reação/fisiologia , Gânglio Espiral da Cóclea/fisiologia , Estimulação Acústica , Animais , Células Cultivadas , Cóclea/inervação , Cóclea/fisiologia , Eletrodos Implantados , Eletrofisiologia , Imunofluorescência , Células Ciliadas Auditivas/fisiologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos CBA , Técnicas de Patch-Clamp , Detecção de Sinal Psicológico/fisiologia , Gânglio Espiral da Cóclea/citologia
16.
J Neurophysiol ; 98(4): 1898-908, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17686914

RESUMO

Spontaneous neural activity has been recorded in the auditory nerve of cats as early as 2 days postnatal (P2), yet individual auditory neurons do not respond to ambient sound levels <90-100 dB SPL until about P10. Significant refinement of the central projections from the spiral ganglion to the cochlear nucleus occurs during this neonatal period. This refinement may be dependent on peripheral spontaneous discharge activity. We recorded from single spiral ganglion cells in kittens aged P3-P9. The spiral ganglion was accessed through the round window through the spiral lamina. A total of 112 ganglion cells were isolated for study in nine animals. Spike rates in neonates were very low, ranging from 0.06 to 56 spikes/s, with a mean of 3.09 +/- 8.24 spikes/s. Ganglion cells in neonatal kittens exhibited remarkable repetitive spontaneous bursting discharge patterns. The unusual patterns were evident in the large mean interval CV (CV(i) = 2.9 +/- 1.6) and burst index of 5.2 +/- 3.5 across ganglion cells. Spontaneous bursting patterns in these neonatal mammals were similar to those reported for cochlear ganglion cells of the embryonic chicken, suggesting this may be a general phenomenon that is common across animal classes. Rhythmic spontaneous discharge of retinal ganglion cells has been shown to be important in the development of central retinotopic projections and normal binocular vision. Bursting rhythms in cochlear ganglion cells may play a similar role in the auditory system during prehearing periods.


Assuntos
Audição/fisiologia , Neurônios/fisiologia , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/fisiologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Gatos , Interpretação Estatística de Dados , Eletrocardiografia , Eletrofisiologia , Modelos Neurológicos , Distribuição de Poisson , Terminologia como Assunto
17.
Acta Otolaryngol ; 127(1): 8-12, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17364322

RESUMO

CONCLUSION: The results show that alpha1D, alpha1E, alpha2/delta, beta1, and beta3 subunits are expressed in spiral ganglion cells (SGCs), and the coexpression of alpha1D and alpha1E suggests the presence of L-type and R-type calcium channels in mammalian SGCs. OBJECTIVE: To investigate the types of subunits of voltage-gated calcium channels in SGCs of the mouse. MATERIALS AND METHODS: SGCs were isolated from cochleae of neonatal mice and cultured for 24 h. Total RNA was extracted from cultured cells. After reverse transcription, the resulting cDNA was amplified by PCR with primers targeted to nucleotide sequences corresponding to seven different calcium channel subunits. The types of calcium channel subunits were identified by PCR analysis and nucleotide sequencing. RESULTS: RT-PCR showed the strong and consistent amplification of alpha1D, alpha1E, alpha2/delta, beta1, and beta3 subunits from the mRNA of SGCs, and nucleotide sequencing confirmed the identity of mouse cochlear subunit cDNAs.


Assuntos
Canais de Cálcio Tipo R/genética , Canais de Cálcio Tipo R/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/metabolismo , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Cóclea/citologia , Cóclea/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Camundongos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
18.
J Neurosci Res ; 83(6): 1066-76, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16493680

RESUMO

The inner ear of humans and experimental animals demonstrate an abundance of glucocorticoid receptors (GR). Glucocorticoids (GC) are widely used to treat different hearing disorders; yet the mechanisms of GC action on the inner ear are unknown. We demonstrate how GR can directly modulate hearing sensitivity in response to a moderate acoustic trauma that results in a hearing loss (10-30 dB). The GC agonist (dexamethasone) and the drugs (metyrapone + RU 486) showed opposing effects on hearing threshold shifts. GC agonist (dexamethasone) decreased the hearing threshold whereas pre-treatment with a GC synthesis inhibitor (metyrapone) in combination with a GR antagonist (RU 486) exacerbated auditory threshold shifts (25-60 dB) after acoustic trauma with statistically significant increase in GR mRNA and GR protein compared with the vehicle and acoustic trauma group. Acoustic trauma caused a significant increase in the nuclear transport of NF-kappaB, whereas pre-treatment with the drugs (metyrapone and RU 486) blocked NF-kappaB nuclear transport into spiral ganglion nuclei. An NF-kappaB inhibitor, pyrrolidine dithiocarbamate ammonium blocked the trauma-induced translocation of NF-kappaB and resulted in a hearing loss (45-60) dB. These results indicate that several factors define the responsiveness of the inner ear to GC, including the availability of ligand or receptor, and the nuclear translocation of GR and NF-kappaB. These findings will further our understanding of individual GC responsiveness to steroid treatment, and will help improve the development of pharmaceuticals to selectively target GR in the inner ear for individuals with increased sensitivity to acoustic trauma.


Assuntos
Orelha Interna/efeitos dos fármacos , Glucocorticoides/uso terapêutico , Perda Auditiva Provocada por Ruído/tratamento farmacológico , NF-kappa B/metabolismo , Estimulação Acústica/métodos , Análise de Variância , Animais , Limiar Auditivo/efeitos dos fármacos , Northern Blotting/métodos , Modelos Animais de Doenças , Interações Medicamentosas , Orelha Interna/patologia , Inibidores Enzimáticos/farmacologia , Glucocorticoides/antagonistas & inibidores , Perda Auditiva Provocada por Ruído/enzimologia , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Masculino , Metirapona/farmacologia , Camundongos , Camundongos Endogâmicos CBA , Mifepristona/farmacologia , NF-kappa B/genética , Neurônios/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Gânglio Espiral da Cóclea/citologia , Fatores de Tempo
19.
J Comp Neurol ; 472(3): 358-70, 2004 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-15065130

RESUMO

Genetic progressive sensorineural hearing loss in mice of the C57BL/6J (B6) inbred strain begins at high frequencies during young adulthood and is severe by 12 months (middle age). Nightly treatment with an augmented acoustic environment (AAE)--12-hour periods of exposure to repetitive noise bursts of moderate intensity, begun at age 25 days--resulted in less severe hearing loss compared with control mice. Cochlear histopathological correlates of AAE treatment, assessed at 12-14 months of age, included lessened severity of progressive loss of outer hair cells in both sexes as well as small savings of spiral ganglion cells in females and inner hair cells in males. AAE effects on the number of surviving neurons (age 12-14 months) in the anterior ventral cochlear nucleus (AVCN) depended on sex. Compared with controls, the loss of AVCN neurons that typically accompanies the initial period of hearing loss (between 2 and 7 months of age) was not significantly affected by AAE treatment in females. In contrast, males treated with the AAE exhibited more severe loss of neurons in the dorsal and ventral extremes of the AVCN than male controls of the same age. AAE treatment begun at age 3-5 months resulted in significant but less severe loss of AVCN neurons in 1-year-old male mice.


Assuntos
Estimulação Acústica , Limiar Auditivo/fisiologia , Núcleo Coclear/patologia , Células Ciliadas Auditivas/efeitos da radiação , Caracteres Sexuais , Envelhecimento/fisiologia , Análise de Variância , Animais , Contagem de Células , Sobrevivência Celular/efeitos da radiação , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Feminino , Perda Auditiva Neurossensorial/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Inibição Neural/efeitos da radiação , Especificidade da Espécie , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/efeitos da radiação , Fatores de Tempo
20.
J Comp Neurol ; 454(3): 350-60, 2002 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-12442325

RESUMO

As with other cranial nerves and many CNS neurons, primary auditory neurons degenerate as a consequence of loss of input from their target cells, the inner hair cells (IHCs). Electrical stimulation (ES) of spiral ganglion cells (SGCs) has been shown to enhance their survival. Glial cell line-derived neurotrophic factor (GDNF) has also been shown to increase survival of SGCs following IHC loss. In this study, the combined effects of the GDNF transgene delivered by adenoviral vectors (Ad-GDNF) and ES were tested on SGCs after first eliminating the IHCs. Animal groups received Ad-GDNF or ES or both. Ad-GDNF was inoculated into the cochlea of guinea pigs after deafening, to overexpress human GDNF. ES-treated animals were implanted with a cochlear implant electrode and chronically stimulated. A third group of animals received both Ad-GDNF and ES (GDNF/ES). Electrically evoked auditory brainstem responses were recorded from ES-treated animals at the start and end of the stimulation period. Animals were sacrificed 43 days after deafening and their ears prepared for evaluation of IHC survival and SGC counts. Treated ears exhibited significantly greater SGC survival than nontreated ears. The GDNF/ES combination provided significantly better preservation of SGC density than either treatment alone. Insofar as ES parameters were optimized for maximal protection (saturated effect), the further augmentation of the protection by GDNF suggests that the mechanisms of GDNF- and ES-mediated SGC protection are, at least in part, independent. We suggest that GDNF/ES combined treatment in cochlear implant recipients will improve auditory perception. These findings may have implications for the prevention and treatment of other neurodegenerative processes. .


Assuntos
Terapia por Estimulação Elétrica/métodos , Degeneração Neural/metabolismo , Degeneração Neural/prevenção & controle , Fatores de Crescimento Neural/biossíntese , Gânglio Espiral da Cóclea/metabolismo , Nervo Vestibulococlear/metabolismo , Animais , Linhagem Celular , Denervação , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Cobaias , Degeneração Neural/patologia , Fatores de Crescimento Neural/uso terapêutico , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/patologia , Nervo Vestibulococlear/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA