Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 462
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Zoology (Jena) ; 162: 126147, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38277721

RESUMO

Birds living at high latitudes perceive the photoperiod through deep-brain photoreceptors (DBP) located in deep-brain neurons. During long photoperiods the information transmitted by these photoreceptors increases the activity of the hypothalamic-pituitary-gonadal (HPG) axis, leading to gonadal development. The presence of photopigments such as VA-Opsin, Opn4, Opn5 and Opn2 in brain areas implicated in reproductive behaviors has been firmly established in several avian species with seasonal breeding, whereas their existence in opportunistic breeding birds remains unconfirmed. The Eared Dove is an urban and peri-urban dove that breeds throughout the year. Males of this species do not exhibit the typical gonadal regression/recrudescence cycle, thus posing the question of what occurs upstream of the HPG axis. We addressed this issue by first studying the presence of diverse opsins located in DBP in the brains of Eared Dove males and whether these photopigments changed their expression throughout the year. We carried out an immunohistochemistry analysis on three different opsins: Opn2 (rhodopsin), Opn3 and Opn5. Our results demonstrate the discrete neuroanatomical distribution of these opsins in the brain of Eared Dove males and strongly indicate different seasonal expressions. In the anterior region of the hypothalamus, Opn2-positive cells were detected throughout the year. By contrast, Opn5 was found to be strongly and seasonally expressed during winter in the anterior and the hypothalamic region. Opn3 was also found to be significantly and seasonally expressed during winter in the hypothalamic region. We thus demonstrate for the first time that males of the Eared Dove, have three different deep-brain opsin-expressing photoreceptors with differential location/distribution in the anterior and hypothalamic region and differential seasonality. The persistence of Opn2 and the strong seasonal expression of nonvisual photopigments Opn3 and Opn5 in two areas of the avian brain, which are associated with reproduction, could be the primary distinction between seasonal and opportunistic breeders.


Assuntos
Columbidae , Opsinas , Masculino , Animais , Opsinas/genética , Opsinas/metabolismo , Hipotálamo/metabolismo , Encéfalo , Gônadas/metabolismo , Estações do Ano
2.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6051-6057, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114211

RESUMO

HSP90 is a widely distributed molecular chaperone that participates in a variety of cellular processes and plays an important role in the meiosis of germ cells. However, its role in the gonadal development of hermaphroditic Whitmania pigra is not yet clear. To explore the effect of HSP90 on the germ cell development of Wh. Pigra, this study cloned the wpHSP90 gene, performed bioinformatics analysis, and measured its expression levels. The results showed that the cloned wpHSP90 was 2 592 bp in length, with an open reading frame(ORF) of 2 373 bp, encoding 790 amino acids. Prediction analysis revealed 85 phosphorylation modification sites on serine, threonine, and tyrosine residues of the wpHSP90 protein. Structural domain prediction and multiple sequence alignment results showed that wpHSP90 contained two conserved domains of HSP90 and exhibited the highest homology with Helobdella robusta, with a sequence similarity of 80.72%. RT-qPCR results showed that the relative expression level of wpHSP90 in the gonads of 5-month-old Wh. pigra was positively correlated with temperature within the range of 12 ℃ to 28 ℃. The expression level in the female gonads was significantly higher than in the male gonads and correlated with the trend of germ cell development in the ovaries and testes. In conclusion, wpHSP90 may be involved in regulating the development of germ cells, particularly oocytes, in Wh. pigra. This study provides a reference for further research on the gonadal development mechanism in Wh. pigra.


Assuntos
Sanguessugas , Ovário , Animais , Feminino , Masculino , Temperatura , Gônadas , Testículo , Clonagem Molecular
3.
J Steroid Biochem Mol Biol ; 233: 106360, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429547

RESUMO

Retinoid X receptor (RXR) is a member of the ligand-dependent nuclear receptor family. Previous studies revealed that RXRs are involved in reproduction in vertebrates. However, information on the function of RXRs in turtles is scarce. In this study, the Rxrγ cDNA sequence of Pelodiscus sinensis was cloned and analyzed, and a polyclonal antibody was constructed. RXRγ protein showed a positive signal in both mature and differentiated gonads of the turtle. Subsequently, the function of the Rxrγ gene in gonadal differentiation was confirmed using short interfering RNA (RNAi). The full-length cDNA sequence of the Rxrγ gene in P. sinensis was 2152 bp, encoding 407 amino acids and containing typical nuclear receptor family domains, including the DNA-binding domain (DBD), ligand-binding domain (LBD), and activation function 1 (AF1). Moreover, gonadal Ps-Rxrγ showed sexual dimorphism expression patterns in differentiated gonads. Real-time quantitative PCR results revealed that the Rxrγ gene was highly expressed in the turtle ovary. RNAi treatment increased the number of Sertoli cells in ZZ embryonic gonads. Furthermore, RNA interference upregulated Dmrt1 and Sox9 in ZZ and ZW embryonic gonads. However, Foxl2, Cyp19a1, Stra8, and Cyp26b1 were downregulated in embryonic gonads. The results indicated that Rxrγ participated in gonadal differentiation and development in P. sinensis.


Assuntos
Tartarugas , Masculino , Animais , Feminino , Tartarugas/genética , DNA Complementar , Ligantes , Gônadas , Diferenciação Celular
4.
J Enzyme Inhib Med Chem ; 38(1): 2205052, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37184069

RESUMO

Curcuminoids are functional food additives, and the effect on gonadal hormone biosynthesis remains unclear. Gonads contain 3ß-hydroxysteroid dehydrogenase isoforms, h3ß-HSD2 (humans) and r3ß-HSD1 (rats), which catalyse pregnenolone into progesterone. The potency and mechanisms of curcuminoids to inhibit 3ß-HSD activity were explored. The inhibitory potency was bisdemethoxycurcumin (IC50, 1.68 µM) >demethoxycurcumin (3.27 µM) > curcumin (13.87 µM) > tetrahydrocurcumin (109.0 µM) > dihydrocurcumin and octahydrocurcumin on KGN cell h3ß-HSD2, while that was bisdemethoxycurcumin (1.22 µM) >demethoxycurcumin (2.18 µM) > curcumin (4.12 µM) > tetrahydrocurcumin (102.61 µM) > dihydrocurcumin and octahydrocurcumin on testicular r3ß-HSD1. All curcuminoids inhibited progesterone secretion by KGN cells under basal and forskolin-stimulated conditions at >10 µM. Docking analysis showed that curcuminoids bind steroid-active site with mixed or competitive mode. In conclusion, curcuminoids inhibit gonadal 3ß-HSD activity and de-methoxylation of curcumin increases inhibitory potency and metabolism of curcumin by saturation of carbon chain losses inhibitory potency.


Assuntos
Curcumina , Humanos , Ratos , Animais , Curcumina/farmacologia , Progesterona/farmacologia , Relação Estrutura-Atividade , Gônadas
5.
Cells ; 12(7)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048056

RESUMO

The world is increasingly aging, and there is an urgent need to find a safe and effective way to delay the aging of the body. It is well known that the endocrine glands are one of the most important organs in the context of aging. Failure of the endocrine glands lead to an abnormal hormonal environment, which in turn leads to many age-related diseases. The aging of endocrine glands is closely linked to oxidative stress, cellular autophagy, genetic damage, and hormone secretion. The first endocrine organ to undergo aging is the pineal gland, at around 6 years old. This is followed in order by the hypothalamus, pituitary gland, adrenal glands, gonads, pancreatic islets, and thyroid gland. This paper summarises the endocrine gland aging-related genes and pathways by bioinformatics analysis. In addition, it systematically summarises the changes in the structure and function of aging endocrine glands as well as the mechanisms of aging. This study will advance research in the field of aging and help in the intervention of age-related diseases.


Assuntos
Glândulas Endócrinas , Hipófise , Gônadas , Hipotálamo
6.
PLoS One ; 18(2): e0281787, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36787330

RESUMO

Knowledge of the reproductive strategy is a key prerequisite to predict population dynamics and potential invasiveness of both native and non-indigenous outbreak-forming species. In 2014 the Lessepsian upside-down jellyfish Cassiopea andromeda reached the harbor of Palermo (NW Sicily, Thyrrenian Sea), to date its established westernmost outpost in the Mediterranean Sea. To predict C. andromeda reproductive success in its novel habitat, gonad histology was carried out to record the number and size of mature and immature oocytes. Both male and female simultaneously presented gametes at all stages of development suggesting an asynchronous, yet apparently continuous, reproduction strategy. Indeed, oogenesis was observed throughout the year from pre-vitellogenic, vitellogenetic, and late-vitellogenetic to mature oocytes suggesting multiple reproductive events, as known in other Mediterranean Rhizostomeae. Oocytes were found from May to December, with two seasonal peaks of abundance (late spring = 392 and autumn = 272), suggesting imminent spawning events. Further, jellyfish size varied significantly throughout the year, with maximum diameter (up to 24 cm) in summer, and minimum diameter (6 cm) in winter. Small-sized jellyfish in winter belong to the new cohort, most probably arising from intense summer strobilation of polyps. Late spring fertilization, planula development, and metamorphosis, followed by polyp strobilation in the summer months, may explain the late appearance of a new jellyfish cohort, likely coincident with that recorded throughout winter.


Assuntos
Cnidários , Cifozoários , Feminino , Masculino , Animais , Mar Mediterrâneo , Sicília , Reprodução , Gônadas , Estações do Ano
7.
Free Radic Biol Med ; 194: 199-208, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470319

RESUMO

BACKGROUND: The maturation of the hypothalamic-pituitary-gonadal (HPG) axis is crucial for the establishment of reproductive function. In female mice, neuronal nitric oxide synthase (nNOS) activity appears to be key for the first postnatal activation of the neural network promoting the release of gonadotropin-releasing hormone (GnRH), i.e. minipuberty. However, in males, the profile of minipuberty as well as the role of nNOS-expressing neurons remain unexplored. METHODS: nNOS-deficient and wild-type mice were studied during postnatal development. The expression of androgen (AR) and estrogen receptor alpha (ERα) as well as nNOS phosphorylation were evaluated by immunohistochemistry in nNOS neurons in the median preoptic nucleus (MePO), where most GnRH neuronal cell bodies reside, and the hormonal profile of nNOS-deficient male mice was assessed using previously established radioimmunoassay and ELISA methods. Gonadectomy and pharmacological manipulation of ERα were used to elucidate the mechanism of minipubertal nNOS activation and the maturation of the HPG axis. RESULTS: In male mice, minipubertal FSH release occurred at P23, preceding the LH surge at P30, when balanopreputial separation occurs. Progesterone and testosterone remained low during minipuberty, increasing around puberty, whereas estrogen levels were high throughout postnatal development. nNOS neurons showed a sharp increase in Ser1412 phosphorylation of nNOS at P23, a phenomenon that occurred even in the absence of the gonads. In male mice, nNOS neurons did not appear to express AR, but abundantly expressed ERα throughout postnatal development. Selective pharmacological blockade of ERα during the infantile period blunted Ser1412 phosphorylation of nNOS at P23. CONCLUSIONS: Our results show that the timing of minipuberty differs in male mice when compared to females, but as in the latter, nNOS activity in the preoptic region plays a role in this process. Additionally, akin to male non-human primates, the profile of minipuberty in male mice is shaped by sex-independent mechanisms, and possibly involves extragonadal estrogen sources.


Assuntos
Receptor alfa de Estrogênio , Piridinolcarbamato , Feminino , Camundongos , Masculino , Animais , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Receptor alfa de Estrogênio/genética , Hormônio Liberador de Gonadotropina/análise , Hormônio Liberador de Gonadotropina/metabolismo , Estrogênios/metabolismo , Gônadas/química , Gônadas/metabolismo , Neurônios/metabolismo , Hipotálamo/metabolismo
8.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142817

RESUMO

As lower vertebrates, teleost species could be affected by dynamic aquatic environments and may respond to environmental changes through the hypothalamus-pituitary-gonad (HPG) axis to ensure their normal growth and sexual development. Chinese sea bass (Lateolabrax maculatus), euryhaline marine teleosts, have an extraordinary ability to deal with a wide range of salinity changes, whereas the salinity decrease during their sex-maturation season may interfere with the HPG axis and affect their steroid hormone metabolism, resulting in abnormal reproductive functioning. To this end, in this study, 40 HPG axis genes in the L. maculatus genome were systematically characterized and their copy numbers, phylogenies, gene structures, and expression patterns were investigated, revealing the conservation of the HPG axis among teleost lineages. In addition, freshwater acclimation was carried out with maturing male L. maculatus, and their serum cortisol and 11-ketotestosterone (11-KT) levels were both increased significantly after the salinity change, while their testes were found to be partially degraded. After salinity reduction, the expression of genes involved in cortisol and 11-KT synthesis (cyp17a, hsd3b1, cyp21a, cyp11c, hsd11b2, and hsd17b3) showed generally upregulated expression in the head kidneys and testes, respectively. Moreover, cyp11c and hsd11b2 were involved in the synthesis and metabolism of both cortisol and 11-KT, and after salinity change their putative interaction may contribute to steroid hormone homeostasis. Our results proved the effects of salinity change on the HPG axis and steroidogenic pathway in L. maculatus and revealed the gene interactions involved in the regulation of steroid hormone levels. The coordinated interaction of steroidogenic genes provides comprehensive insights into steroidogenic pathway regulation, as well as sexual development, in teleost species.


Assuntos
Bass , Animais , Bass/genética , Bass/metabolismo , China , Gônadas/metabolismo , Hidrocortisona/metabolismo , Hipotálamo/metabolismo , Masculino , Complexos Multienzimáticos/metabolismo , Salinidade
9.
Food Funct ; 13(18): 9544-9558, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-35997033

RESUMO

This study investigated the influence of carrier oils on the in vitro and in vivo bioavailability of PTE encapsulated in scallop gonad protein isolates (SGPIs)-epigallocatechin gallate (EGCG) conjugate stabilized emulsions. The SGPIs-EGCG stabilized emulsions were subjected to an in vitro simulated digestion, and the resulting corn oil and MCT micelles were used to evaluate the PTE transportation using the Caco-2 cell model. Both emulsions remarkably improved the bioaccessibility of PTE in the micelle phase. Nevertheless, corn oil emulsions increased trans-enterocyte transportation of PTE more efficiently than MCT emulsions. Furthermore, the maximum plasma concentrations of PTE and its metabolites in mice fed with PTE emulsions were prominently higher than those in mice fed with PTE solution, while the in vivo metabolic patterns of PTE in different oil-stabilized emulsions were different. Therefore, SGPIs-EGCG stabilized emulsions could enhance the bioavailability of PTE through controlled release, in which corn oil is more suitable than MCT.


Assuntos
Micelas , Pectinidae , Animais , Disponibilidade Biológica , Células CACO-2 , Catequina/análogos & derivados , Óleo de Milho/metabolismo , Preparações de Ação Retardada/metabolismo , Emulsões/metabolismo , Excipientes/metabolismo , Gônadas/metabolismo , Humanos , Camundongos , Óleos/metabolismo , Pectinidae/metabolismo , Proteínas/metabolismo , Estilbenos
10.
Neuropeptides ; 91: 102216, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34974357

RESUMO

Neuropeptides being regulators of the hypothalamus-pituitary-adrenal (HPA) axis activity, also affect the function of the hypothalamus-pituitary-gonadal (HPG) axis by regulating gonadotrophin-releasing hormone (GnRH) secretion from hypothalamic neurons. Here, we review the available data on how neuropeptides affect HPG axis activity directly or indirectly via their influence on the HPA axis. The putative role of neuropeptides in stress-induced infertility, such as polycystic ovary syndrome, is also described. This review discusses both well-known neuropeptides (i.e., kisspeptin, Kp; oxytocin, OT; arginine-vasopressin, AVP) and more recently discovered peptides (i.e., relaxin-3, RLN-3; nesfatin-1, NEFA; phoenixin, PNX; spexin, SPX). For the first time, we present an up-to-date review of all published data regarding interactions between the aforementioned neuropeptide systems. The reviewed literature suggest new pathophysiological mechanisms leading to fertility disturbances that are induced by stress.


Assuntos
Gônadas/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Infertilidade/metabolismo , Neuropeptídeos/metabolismo , Animais , Feminino , Hipotálamo/metabolismo , Estresse Psicológico/metabolismo
11.
Toxicol Sci ; 186(2): 179-189, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-34850235

RESUMO

The hypothalamic-pituitary-gonadal (HPG) axis is the principal modulator of reproductive function. Proper control of this system relies on several hormonal pathways, which make the female reproductive components susceptible to disruption by endocrine-disrupting chemicals such as tributyltin (TBT). Here, we review the relevant research on the associations between TBT exposure and dysfunction of the female HPG axis components. Specifically, TBT reduced hypothalamic gonadotropin-releasing hormone (GnRH) expression and gonadotropin release, and impaired ovarian folliculogenesis, steroidogenesis, and ovulation, at least in part, by causing abnormal sensitivity to steroid feedback mechanisms and deleterious ovarian effects. This review covers studies using environmentally relevant doses of TBT in vitro (1 ng-20 ng/ml) and in vivo (10 ng-20 mg/kg) in mammals. The review also includes discussion of important gaps in the literature and suggests new avenue of research to evaluate the possible mechanisms underlying TBT-induced toxicity in the HPG axis. Overall, the evidence indicates that TBT exposure is associated with toxicity to the components of the female reproductive axis. Further studies are needed to better elucidate the mechanisms through which TBT impairs the ability of the HPG axis to control reproduction.


Assuntos
Compostos de Trialquitina , Animais , Feminino , Gônadas , Sistema Hipotálamo-Hipofisário , Hipotálamo , Mamíferos , Hipófise , Reprodução , Compostos de Trialquitina/toxicidade
12.
Neuroendocrinology ; 112(10): 998-1026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34963114

RESUMO

INTRODUCTION: The kisspeptin gene Kiss1 is expressed in two hypothalamic areas: anteroventral periventricular nucleus/periventricular nucleus (AVPV/PeN) and arcuate nucleus (ARC), and also in gonads. Several pieces of evidence suggests that gamma-amino butyric acid B receptors (GABAB) signaling can regulate Kiss1 expression. Here, we inhibited GABAB signaling from PND2 to PND21 and evaluated the hypothalamic-pituitary-gonadal (HPG) axis. METHODS: BALB/c mice were treated on postnatal days 2-21 (PND2-PND21) with CGP55845 (GABAB antagonist) and evaluated in PND21 and adulthood: gene expression (qPCR) in the hypothalamus and gonads, hormones by radioimmunoassay, gonad histochemistry (H&E), puberty onset, and estrous cycles. RESULTS: At PND21, CGP inhibited Kiss1 and Tac2 and increased Pdyn and Gabbr1 in the ARC of both sexes and decreased Th only in female AVPV/PeN. Serum follicle-stimulating hormone (FSH) and testis weight were decreased in CGP-males, and puberty onset was delayed. In adults, Kiss1, Tac2, Pdyn, Pgr, Cyp19a1, and Gad1 were downregulated, while Gabbr1 was upregulated in the ARC of both sexes. In the AVPV/PeN, Kiss1, Th, Cyp19a1, and Pgr were decreased while Gad1 was increased in CGP-females, whereas Cyp19a1 was increased in CGP-males. Serum FSH was increased in CGP-males while prolactin was increased in CGP-females. Testosterone and progesterone were increased in ovaries from CGP-females, in which Kiss1, Cyp19a1, and Esr1 were downregulated while Hsd3b2 was upregulated, together with increased atretic and decreased ovulatory follicles. Testes from CGP-males showed decreased progesterone, increased Gabbr1, Kiss1, Kiss1r, and Esr2 and decreased Cyp19a1, and clear signs of seminiferous tubules atrophy. CONCLUSION: These results demonstrate that appropriate GABAB signaling during this critical prepubertal period is necessary for the normal development of the HPG axis.


Assuntos
Kisspeptinas , Progesterona , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Hormônio Foliculoestimulante , Antagonistas GABAérgicos , Gônadas , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Camundongos , Progesterona/metabolismo , Prolactina/metabolismo , Receptores de Kisspeptina-1/metabolismo , Maturidade Sexual/fisiologia , Testosterona/metabolismo , Desmame
13.
Gynecol Endocrinol ; 37(9): 841-847, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34236272

RESUMO

Purpose: Anti-Müllerian hormone (AMH) is one of the local factors involved in follicle development. In addition, AMH and its receptor are broadly expressed throughout the body. In this study, we examined how AMH modifies gene expression of Kiss-1 and GnRH.Materials and methods: mHypoA-50 and mHypoA-55 cells were originated from the hypothalamic anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC), respectively, and these cells are known as Kiss-1 (which encodes kisspeptin) expressing cell models. These cells also express gonadotropin-releasing hormone (GnRH) genes. Our experiments were performed useing these cell models.Results: Both mHypoA-50 and mHypoA-55 hypothalamic cells expressed AMH and AMH receptor type 2 (AMHR2). Exogenous AMH failed to alter the expression levels of the Kiss-1 gene in both cell models but significantly increased GnRH gene expression by 1.73 ± 0.2-fold at 100 pM in mHypoA-50 AVPV cells and by 1.74 ± 0.17-fold at 1 nM in mHypoA-55 ARC cells. AMH also augmented GnRH protein expression in both cell models. Similar to the phenomenon observed in the hypothalamic cell lines, 100 pM AMH significantly increased GnRH, but not Kiss-1, mRNA expression in primary cultures of fetal rat brain cells. Kisspeptin-10 (KP10) increased Kiss-1 gene expression in mHypoA-55 ARC cells but this was blocked by AMH. AMH did not alter the expression of the kisspeptin receptor (Kiss1R) or that of neurokinin B or dynorphin A in mHypoA-55 ARC cells.Conclusions: It was demonstrated that AMH participates in hypothalamic-pituitary-gonadal axis control by stimulating GnRH expression. In addition, AMH might be a potent repressor of Kiss-1 gene expression induced by KP10.


Assuntos
Hormônio Antimülleriano/farmacologia , Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/genética , Hipotálamo/metabolismo , Kisspeptinas/genética , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Encéfalo/embriologia , Linhagem Celular , Células Cultivadas , Gônadas , Sistema Hipotálamo-Hipofisário , Hipotálamo Anterior/metabolismo , Neurônios , RNA Mensageiro/análise , Ratos
14.
Front Endocrinol (Lausanne) ; 12: 632060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149609

RESUMO

Investigation of the negative impacts of stress on reproduction has largely centered around the effects of the adrenal steroid hormone, corticosterone (CORT), and its influence on a system of tissues vital for reproduction-the hypothalamus of the brain, the pituitary gland, and the gonads (the HPG axis). Research on the action of CORT on the HPG axis has predominated the stress and reproductive biology literature, potentially overshadowing other influential mediators. To gain a more complete understanding of how elevated CORT affects transcriptomic activity of the HPG axis, we experimentally examined its role in male and female rock doves (Columba livia). We exogenously administrated CORT to mimic circulating levels during the stress response, specifically 30 min of restraint stress, an experimental paradigm known to increase circulating CORT in vertebrates. We examined all changes in transcription within each level of the HPG axis as compared to both restraint-stressed birds and vehicle-injected controls. We also investigated the differential transcriptomic response to CORT and restraint-stress in each sex. We report causal and sex-specific effects of CORT on the HPG transcriptomic stress response. Restraint stress caused 1567 genes to uniquely differentially express while elevated circulating CORT was responsible for the differential expression of 304 genes. Only 108 genes in females and 8 in males differentially expressed in subjects that underwent restraint stress and those who were given exogenous CORT. In response to elevated CORT and restraint-stress, both sexes shared the differential expression of 5 genes, KCNJ5, CISH, PTGER3, CEBPD, and ZBTB16, all located in the pituitary. The known functions of these genes suggest potential influence of elevated CORT on immune function and prolactin synthesis. Gene expression unique to each sex indicated that elevated CORT affected more gene transcription in females than males (78 genes versus 3 genes, respectively). To our knowledge, this is the first study to isolate the role of CORT in HPG genomic transcription during a stress response. We present an extensive and openly accessible view of the role corticosterone in the HPG transcriptomic stress response. Because the HPG system is well conserved across vertebrates, these data have the potential to inspire new therapeutic strategies for reproductive dysregulation in multiple vertebrate systems, including our own.


Assuntos
Columbidae/fisiologia , Corticosterona/fisiologia , Gônadas/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Hipotálamo/metabolismo , Hipófise/metabolismo , Reprodução/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Corticosterona/metabolismo , Feminino , Perfilação da Expressão Gênica , Masculino , Fatores Sexuais , Estresse Fisiológico
15.
Sci Total Environ ; 778: 145196, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030373

RESUMO

Microcystins (MCs) are common, well-known cyanobacterial toxins that can affect health of humans. Recently, it has been reported that MCs affect endocrine functions. In the present study, for the first time, histopathology, concentrations of hormones and transcription of genes along the hypothalamic-pituitary-adrenal (HPA), hypothalamic-pituitary-gonad (HPG) and hypothalamic-pituitary-thyroid (HPT) axes were examined in rats exposed to microcystin-LR (MC-LR). Female, Sprague-Dawley (SD) rats were exposed acutely to MC-LR by a single intraperitoneal (i.p.) injection at doses of 0.5, 0.75, or 1 median lethal dose (LD50), i.e. 36.5, 54.75, or 73 µg MC-LR/kg body mass (bm) then euthanized 24 hours after exposure. Acute exposure to MC-LR significantly increased relative mass of adrenal in a dose-dependent manner, but relative mass of hypothalamus, pituitary, ovary and thyroid were not significantly different from respective mass in controls. However, damage to all these tissues was observed by histology. Along the HPA axis, lesser concentrations of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were observed in blood serum of exposed individuals, relative to controls. For the HPG axis, concentrations of gonadotropin-releasing hormone (GnRH) and estradiol (E2) were significantly less in rats treated with MC-LR, but greater concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone (T) were observed. Along the HPT axis, MC-LR caused greater concentrations of thyroid-stimulating hormone (TSH), but lesser concentrations of thyrotropin-releasing hormone (TRH), free tetra-iodothyronine (fT4) and tri-iodothyronine (fT3). Significant positive/negative correlations of concentrations of hormones were observed among the HPA, HPG and HPT axes. In addition, profiles of transcription of genes for synthesis of hormones along the endocrine axes and nuclear hormone receptors in adrenal, ovary and thyroid were significantly altered. Therefore, these results suggested that MC-LR affected HPA, HPG and HPT axes and exerted endocrine-disrupting effects. Effects of MC-LR on crosstalk among these three axes need further studies.


Assuntos
Microcistinas , Glândula Tireoide , Animais , Feminino , Gônadas , Sistema Hipotálamo-Hipofisário , Hipotálamo , Microcistinas/toxicidade , Sistema Hipófise-Suprarrenal , Ratos , Ratos Sprague-Dawley , Peixe-Zebra
16.
Zhongguo Zhong Yao Za Zhi ; 46(6): 1374-1378, 2021 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-33787134

RESUMO

Protein kinase C(PKC) is a kind of kinase which is widely involved in cell proliferation and development. PKC(Wp-PKC) in Whitmania pigra body belongs to classic PKC. In order to investigate the effect of Wp-PKC on the development of Wh. pigra germ cells, 17ß-estradiol(17ß-E2)(100 ng·mL~(-1)) and methyltestosterone(MT)(150 µg·L~(-1)), 150 µg·L~(-1)(MT)+0.5 mg·L~(-1) PKC, 0.5 mg·L~(-1) PKC inhibitor were added to Wh. pigra culture water, and no addition group(control group) was added, and the effects on the development of Wh. pigra germ cells and the expression of Wp-PKC were observed. The results showed that: Wp-PKC in male gonads was always higher than that in female gonads; MT promoted the development of male gonads in Wh. pigra, while the expression of Wp-PKC was significantly higher than that in the control; 17ß-E2 promoted the development of female gonads in Wh. pigra and Wp-PKC expression significantly lower than that of the control; while the development of the female and male gonads in the PKC inhibitor group was inhibited, the expression of Wp-PKC was significantly lower than that of the control. In summary, Wp-PKC may promote the development of Wh. pigra, especially the development of male gonads.


Assuntos
Gônadas , Sanguessugas , Animais , Estradiol , Feminino , Masculino , Metiltestosterona , Ovário
17.
Zhongguo Zhong Yao Za Zhi ; 46(3): 599-604, 2021 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-33645025

RESUMO

Protein kinase C(PKC) is a type of protein kinase widely involved in cell proliferation and development, but the developmental mechanism in the gonads of androgynous animals is still unclear. In order to explore the role of protein kinase C in the development of Whitmania pigra germ cells, the Wh. pigra PKC(Wp-PKC) gene was cloned, bioinformatics analysis was conducted, and fluorescent quantitative PCR was used to analyze the expression of female and male gonads. The results showed that:(1)The cloned Wp-PKC had a full length of 2 580 bp, a relative molecular weight of 76 555.19, and contains an open reading frame encoding 670 amino acids, Wp-PKC was closely related to Danio rerio PKC-α and rat PKC-γ. The similarity of amino acid sequence was 55% and 58%.(2)The protein encoded by Wp-PKC had no signal peptide and was a hydrophilic protein. The secondary structure is mainly composed of random coils, α-helices, extended chains, folds and folds, with the largest proportion of random coils and α-helices. Wp-PKC protein does not contain a transmembrane domain. Multiple sequence alignment and domain prediction analysis show that Wp-PKC contains 4 conserved domains of classical protein kinase C.(3)Fluorescence quantitative results showed that the expression of Wp-PKC in Wh. pigra gonads was positively correlated with the development of germ cells, and the expression in male gonads was significantly higher than that in female gonads. In summary, Wp-PKC is a classic PKC, and Wp-PKC may promote the development of Wh. pigra, especially the development of male gonads, and provide references for further research on the developmental mechanisms of Wh. pigra.


Assuntos
Sanguessugas , Animais , Clonagem Molecular , Feminino , Gônadas , Sanguessugas/genética , Masculino , Ovário , Proteína Quinase C/genética , Ratos
18.
Eur J Endocrinol ; 184(4): 617-625, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33524006

RESUMO

OBJECTIVE: To investigate the incidence of hypothalamus-pituitary-gonadal (HPG) axis initiation/recovery after treatment and to identify predictive risk factors for noninitiation/recovery. METHODS: A total of 127 consecutive suprasellar germ cell tumor (GCT) patients managed at Peking Union Medical College Hospital (2006-2019) were retrospectively analyzed. Prepubertal patients (followed up until 13 years of age for girls and 14 years of age for boys) and patients with HPG dysfunction (followed up for 2 years) were divided into the initiation/recovery and noninitiation/recovery groups. RESULTS: Of the 127 suprasellar GCT patients, 75 met the follow-up criteria, 28 (37.3%) of whom experienced HPG axis initiation/recovery. Compared to the noninitiation/recovery group, the initiation/recovery group included more males and had shorter delayed diagnosis times, smaller tumor sizes, lower panhypopituitarism rates, thinner pituitary stalk widths, lower visual deficit rates, and higher serum testosterone and estradiol levels. The cutoff values of pituitary stalk width, tumor size, and delayed diagnosis time used to predict noninitiation/recovery were 6.9 mm, 6.9 mm and 1.7 years, respectively. Tumor size ≥6.9 mm (odds ratio (OR) = 7.5, 95% CI: 2.2-25.8, P = 0.001), panhypopituitarism (OR = 5.0, 95% CI: 1.4-17.6, P = 0.013), and delayed diagnosis time ≥1.7 years (OR = 5.7, 95% CI: 1.5-20.7, P = 0.009) were risk factors for noninitiation/recovery. CONCLUSIONS: Among suprasellar GCT patients, nearly one-third of prepubertal patients and patients with HPG dysfunction experience HPG axis initiation/recovery after treatment. Tumor size ≥6.9 mm, panhypopituitarism, and delayed diagnosis time ≥1.7 years were identified as predictive risk factors for noninitiation/recovery.


Assuntos
Gônadas/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Neoplasias Embrionárias de Células Germinativas/terapia , Neoplasias Hipofisárias/terapia , Recuperação de Função Fisiológica/fisiologia , Adolescente , Idade de Início , Estudos de Casos e Controles , Criança , China/epidemiologia , Feminino , Hormônio Foliculoestimulante/sangue , Seguimentos , Humanos , Hipotálamo/fisiologia , Hormônio Luteinizante/sangue , Masculino , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Neoplasias Embrionárias de Células Germinativas/epidemiologia , Neoplasias Embrionárias de Células Germinativas/reabilitação , Neoplasias Hipofisárias/diagnóstico , Neoplasias Hipofisárias/epidemiologia , Neoplasias Hipofisárias/reabilitação , Prognóstico , Puberdade/sangue , Puberdade/fisiologia , Estudos Retrospectivos , Testosterona/sangue
19.
Klin Lab Diagn ; 66(1): 10-14, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33567167

RESUMO

The characterization of the functioning of the blood circulatory system of the organism in terms of its ability to adapt to environmental conditions includes the definition of adaptive potential (AP). The purpose of the study is to supplement the idea of adaptive potential in the aspect of its association with indicators of the hypothalamus-pituitary-gonadal system in healthy men living in the climatic conditions of the Arctic zone of the Russian Federation. The study involved 94 apparently healthy men. Serum hormone levels of the hypothalamus-pituitary-gonadal system were determined by enzyme-linked immunosorbent assay. Percent of men with satisfactory adaptation was 67%. Markers of increased tension in adaptive mechanisms include a decrease in values of testosterone, sex hormone -binding globulin, and testosterone / estradiol ratio. It has been shown that in individuals with a 4-th degree of adaptive potential, the activity of the pituitary-gonadal and the pituitary-adrenal cortex systems participating in the maintenance of the circulatory system is suppressed. That may be associated with a decrease in the reserves of hormone synthesis in these systems. An increase in the tension of the adaptive mechanisms of the circulatory system occurs with a decrease in the levels of anabolic hormones and a simultaneous increase in the level of estradiol as a compensatory reaction to maintain the function of the cardiovascular system. It is established that when moving northward beyond the border of the Arctic Circle an increase in the tension of the adaptive mechanisms of the circulatory system is noted for men living in extreme climatic conditions. The results of the study show a negative correlation of adaptive potential with the values of testosterone, sex hormone-binding globulin and the testosterone / estradiol ratio. The tension of the adaptive mechanisms of the blood circulatory system occurs with decreased sex hormones levels, which can be considered as a marker of disadaptation changes amid the risk of the ecological well-being of the population.


Assuntos
Hormônio Luteinizante , Testosterona , Regiões Árticas , Estradiol , Gônadas , Humanos , Hipotálamo , Masculino , Federação Russa
20.
Mol Cell Endocrinol ; 524: 111147, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33388353

RESUMO

This work evaluated the effects of neonatal overfeeding, induced by litter size reduction, on fertility and the noradrenaline-kisspeptin-gonadotrophin releasing hormone (GnRH) pathway in adult female rats. The litter size was adjusted to 3 pups with each mother in the small litters (SL) and 10 pups with each mother in the normal litters (NL). SL females exhibited metabolic changes associated with reproductive dysfunctions, shown by earlier vaginal opening and first estrus, later regular cyclicity onset, and lower and higher occurrences of estrus and diestrus phases, respectively, as well as reduced fertility, estradiol plasma levels, and mRNA expressions of tyrosine hydroxylase in the locus coeruleus, kisspeptin, and GnRH in the preoptic area in adult females in the afternoon of proestrus. These results suggest that neonatal overfeeding in female rats promotes reproductive dysfunctions in adulthood, such as lower estradiol plasma levels associated with impairments in fertility and noradrenaline-kisspeptin-GnRH pathway during positive feedback.


Assuntos
Envelhecimento/fisiologia , Estradiol/sangue , Fertilidade/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Norepinefrina/metabolismo , Hipernutrição/sangue , Hipernutrição/metabolismo , Animais , Animais Recém-Nascidos , Glicemia/metabolismo , Tronco Encefálico/patologia , Ciclo Estral , Feminino , Hormônio Liberador de Gonadotropina/genética , Gônadas/patologia , Hipotálamo/patologia , Lipídeos/sangue , Tamanho da Ninhada de Vivíparos , Masculino , Hipófise/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Maturidade Sexual , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA