Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Vaccine ; 42(4): 782-794, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38199923

RESUMO

Various plant-derived compounds can activate immune responses against bacterial infections, and this property contributes to them being developed as effective and safe adjuvants for vaccines. This study evaluated the potential adjuvant effects of a galactolipid-enriched fraction generated from the medicinal plant Crassocephalum rabens (designated CRA). Heat shock protein 60 of periodontal disease pathogen Actinobacillus actinomycetemcomitans (AaHSP60) was taken as an antigen and mixed with CRA. The AaHSP60/CRA mixture was then injected intraperitoneally into the BALB/c mice. Titers and affinity of specific antibodies were measured by ELISA. Cytokine profiles in mouse serum or culture media of AaHSP60/CRA-treated splenocytes were analyzed by cytokine multiplex assay and ELISA kits. B cell differentiation and macrophage activation were determined by phenotyping. CRA dramatically enhanced specific antibody titers and induced Ig class switch, as shown by increases in the IgG2a, IgG2b, and IgG3 proportions of total Ig in mouse serum. Furthermore, CRA-induced anti-AaHSP60 antibodies had cross-reactivity to other bacterial HSP60s. Cell-based and animal results demonstrated that CRA induced the release of IL-21 and B cell activating factor (BAFF), which stimulated B cell differentiation. CRA enhanced cell proliferation, uptake ability, and antigen presentation in mouse phagocytes. CRA served as a vaccine adjuvant that enhance mouse immunity against pathogenic antigens. CRA strengthened the activation and capabilities of phagocytes and B cells. Therefore, CRA may be a promising adjuvant for bacterial vaccines including periodontal disease.


Assuntos
Formação de Anticorpos , Doenças Periodontais , Animais , Camundongos , Adjuvantes de Vacinas , Galactolipídeos , Adjuvantes Imunológicos , Interleucina-4 , Imunoglobulina G , Camundongos Endogâmicos BALB C
2.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003299

RESUMO

Glycerol-3-phosphate acyltransferase GPAT9 catalyzes the first acylation of glycerol-3-phosphate (G3P), a committed step of glycerolipid synthesis in Arabidopsis. The role of GPAT9 in Brassica napus remains to be elucidated. Here, we identified four orthologs of GPAT9 and found that BnaGPAT9 encoded by BnaC01T0014600WE is a predominant isoform and promotes seed oil accumulation and eukaryotic galactolipid synthesis in Brassica napus. BnaGPAT9 is highly expressed in developing seeds and is localized in the endoplasmic reticulum (ER). Ectopic expression of BnaGPAT9 in E. coli and siliques of Brassica napus enhanced phosphatidic acid (PA) production. Overexpression of BnaGPAT9 enhanced seed oil accumulation resulting from increased 18:2-fatty acid. Lipid profiling in developing seeds showed that overexpression of BnaGPAT9 led to decreased phosphatidylcholine (PC) and a corresponding increase in phosphatidylethanolamine (PE), implying that BnaGPAT9 promotes PC flux to storage triacylglycerol (TAG). Furthermore, overexpression of BnaGPAT9 also enhanced eukaryotic galactolipids including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), with increased 36:6-MGDG and 36:6-DGDG, and decreased 34:6-MGDG in developing seeds. Collectively, these results suggest that ER-localized BnaGPAT9 promotes PA production, thereby enhancing seed oil accumulation and eukaryotic galactolipid biosynthesis in Brassica napus.


Assuntos
Arabidopsis , Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Galactolipídeos/metabolismo , Glicerol/metabolismo , Escherichia coli/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/genética , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Sementes/genética , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Fosfatídicos/metabolismo , Óleos de Plantas/metabolismo , Fosfatos/metabolismo , Regulação da Expressão Gênica de Plantas
3.
J Exp Bot ; 73(9): 2995-3003, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35560191

RESUMO

Plants that are starved of phosphate trigger membrane lipid remodeling, which hydrolyses phospholipids and presumably allows their phosphate to be utilized, whilst replacing them with galactolipids to maintain the integrity of the membrane system. In addition to the two concurrent pathways of phospholipid hydrolysis by phospholipases C and D that have already been established, an emerging third pathway has been proposed that includes a reaction step catalysed by glycerophosphodiester phosphodiesterases (GDPDs). However, its functional involvement in phosphate-starved plants remains elusive. Here, we show that Arabidopsis GDPD6 is a functional isoform responsible for glycerophosphocholine hydrolysis in vivo. Overexpression of GDPD6 promoted root growth whilst gdpd6 mutants showed impaired root growth under phosphate starvation, and this defect was rescued by supplementing with the reaction product glycerol 3-phosphate but not with choline. Since GDPD6 is induced by phosphate starvation, we suggest that GDPD6 might be involved in root growth via the production of glycerol 3-phosphate in phosphate-starved plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Galactolipídeos/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfatos/metabolismo , Fosfolipídeos/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo
4.
J Exp Bot ; 73(9): 2985-2994, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35560207

RESUMO

Phosphorus (P) is an essential nutrient for plants. Membrane lipid remodeling is an adaptive mechanism for P-starved plants that replaces membrane phospholipids with non-P galactolipids, presumably to retrieve scarce P sources and maintain membrane integrity. Whereas metabolic pathways to convert phospholipids to galactolipids are well-established, the mechanism by which phospholipid biosynthesis is involved in this process remains elusive. Here, we report that phospho-base N-methyltransferases 1 and 2 (PMT1 and PMT2), which convert phosphoethanolamine to phosphocholine (PCho), are transcriptionally induced by P starvation. Shoots of seedlings of pmt1 pmt2 double mutant showed defective growth upon P starvation; however, membrane lipid profiles were unaffected. We found that P-starved pmt1 pmt2 with defective leaf growth had reduced PCho content, and the growth defect was rescued by exogenous supplementation of PCho. We propose that PMT1 and PMT2 are induced by P starvation to produce PCho mainly for leaf growth maintenance, rather than for phosphatidylcholine biosynthesis, in membrane lipid remodeling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Galactolipídeos/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos de Membrana/metabolismo , Metiltransferases/genética , Fosfolipídeos/metabolismo , Fósforo/metabolismo , Fosforilcolina/metabolismo , Folhas de Planta/metabolismo
5.
J Food Sci ; 85(12): 4271-4280, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33174278

RESUMO

The aim of this study was to isolate monogalactosyldiacylglycerols (MGDGs) and digalactosyldiacylglycerols (DGDGs) from perilla [Perilla frutescens (L.) Britton] and to investigate their fatty acid profiles. Perilla displayed the greatest total MGDG and DGDG content among the three types of leaf vegetables tested, that is, spinach, parsley, and perilla, containing 0.16 g/100 g MGDG and 0.04 g/100 g DGDG (on wet weight basis). High purity MGDG (approximately 97 g/100 g) and DGDG (approximately 86 g/100 g) were isolated from perilla chloroform/methanol (2:1, v/v) extracts by two-step silica gel column chromatography. MGDGs were primarily composed of 18:3n-3 and 16:3n-3, predominantly located at the sn-1 and sn-2 positions, respectively. In DGDG, 18:3n-3 and 16:0 were the most abundant fatty acids and were primarily found at the sn-1 and sn-2 positions, respectively. PRACTICAL APPLICATION: MGDGs and DGDGs are the most prevalent forms of galactoglycerolipids found in leaf vegetables including perilla and have been shown to exert health-beneficial effects, such as antitumor, anti-inflammatory, anticancer, and appetite-suppressing activities. Both MGDGs and DGDGs possess emulsifying properties. The present study may help better understand the health-beneficial effects of MGDG and DGDG from perilla, by providing total composition and positional distribution of the fatty acids. The present study also successfully established a protocol to isolate high purity MGDG and DGDG from perilla, thereby increasing their possible use as an ingredient in foods and nutraceuticals.


Assuntos
Galactolipídeos/isolamento & purificação , Perilla frutescens/química , Ácidos Graxos/análise , Galactolipídeos/química , Petroselinum/química , Extratos Vegetais/química , Folhas de Planta/química , Spinacia oleracea/química
6.
PLoS One ; 15(10): e0239058, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33001980

RESUMO

Magnesium (Mg) plays an irreplaceable role in plant growth and development. Mg transporters, especially CorA/MGT/MRS2 family proteins, played a vital role in regulating Mg content in plant cells. Although extensive work has been conducted in model crops, such as Arabidopsis, rice, and maize, the relevant information is scarce in tropical crops. In this study, 10 MaMRS2 genes in banana (Musa acuminata) were isolated from its genome and classified into five distinct clades. The putative physiochemical properties, chromosome location, gene structure, cis-acting elements, and duplication relationships in between these members were analyzed. Complementary experiments revealed that three MaMRS2 gene members (MaMRS2-1, MaMRS2-4, MaMRS2-7), from three distinct phylogenetic branches, were capable of restoring the function of Mg transport in Salmonella typhimurium mutants. Semi-quantitative RT-PCR showed that MaMRS2 genes were differentially expressed in banana cultivar 'Baxijiao' (Musa spp. AAA Cavendish) seedlings. The result was confirmed by real-time PCR analysis, in addition to tissue specific expression, expression differences among MaMRS2 members were also observed under Mg deficiency conditions. These results showed that Mg transporters may play a versatile role in banana growth and development, and our work will shed light on the functional analysis of Mg transporters in banana.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Musa/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Cátions/genética , Mapeamento Cromossômico , Galactolipídeos/genética , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Família Multigênica , Musa/genética , Musa/crescimento & desenvolvimento , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Leveduras/genética , Zea mays/genética
7.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066276

RESUMO

In cereals, C-repeat binding factor genes have been defined as key components of the light quality-dependent regulation of frost tolerance by integrating phytochrome-mediated light and temperature signals. This study elucidates the differences in the lipid composition of barley leaves illuminated with white light or white light supplemented with far-red light at 5 or 15 °C. According to LC-MS analysis, far-red light supplementation increased the amount of monogalactosyldiacylglycerol species 36:6, 36:5, and 36:4 after 1 day at 5 °C, and 10 days at 15 °C resulted in a perturbed content of 38:6 species. Changes were observed in the levels of phosphatidylethanolamine, and phosphatidylserine under white light supplemented with far-red light illumination at 15 °C, whereas robust changes were observed in the amount of several phosphatidylserine species at 5 °C. At 15 °C, the amount of some phosphatidylglycerol species increased as a result of white light supplemented with far-red light illumination after 1 day. The ceramide (42:2)-3 content increased regardless of the temperature. The double-bond index of phosphatidylglycerol, phosphatidylserine, phosphatidylcholine ceramide together with total double-bond index changed when the plant was grown at 15 °C as a function of white light supplemented with far-red light. white light supplemented with far-red light increased the monogalactosyldiacylglycerol/diacylglycerol ratio as well. The gene expression changes are well correlated with the alterations in the lipidome.


Assuntos
Congelamento , Hordeum/metabolismo , Luz , Metabolismo dos Lipídeos , Folhas de Planta/metabolismo , Aclimatação , Resposta ao Choque Frio , Galactolipídeos/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Folhas de Planta/efeitos da radiação
8.
Sci Rep ; 10(1): 11957, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686714

RESUMO

A simple and sensitive method to quantify five different arabidopsides by HPLC-ion trap mass spectrometry in complex plant samples was developed and validated. Arabidopsides are oxidized galactolipids first described in Arabidopsis thaliana but also produced by other plant species under stress conditions. External calibration was performed using arabidopsides purified from freeze-thawed Arabidopsis leaves. Lipids were extracted and pre-purified on an SPE silica column before HPLC-MS analysis. Arabidopsides were separated on a C18 column using a gradient of mQ water and acetonitrile:mQ water (85:15) supplemented with formic acid (0.2%) and ammonium formate (12 mM). The method was validated according to European commission decision 2002/657/CE. LOD, LOQ, linearity, intra-day and inter-day precision and accuracy, selectivity, matrix effects and recoveries were determined for the five metabolites. The established method is highly selective in a complex plant matrix. LOD and LOQ were, respectively, in the range 0.098-0.78 and 0.64-1.56 µM, allowing the arabidopside quantification from 25.6-62.4 nmol/g fresh weight. Calibration curve correlation coefficients were higher than 0.997. Matrix effects ranged from -2.09% to 6.10% and recoveries between 70.7% and 109%. The method was successfully applied to complex plant matrixes: Arabidopsis thaliana and Nasturtium officinale.


Assuntos
Galactolipídeos/química , Galactolipídeos/isolamento & purificação , Oxilipinas/química , Oxilipinas/isolamento & purificação , Plantas/química , Arabidopsis , Cromatografia Líquida , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray
9.
Biochem Biophys Res Commun ; 522(3): 662-668, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31787233

RESUMO

Cyanobacterial monoglucosyldiacylglycerol (MGlcDG) not only serves as a precursor for monogalactosyldiacylglycerol (MGDG) synthesis, but also participates in stress acclimation. Two genes (mgdA and mgdE) related to MGDG synthesis of Synechococcus sp. PCC 7942 were identified. The mgdE-suppressed mutant (AE) accumulated MGlcDG (4.2%) and showed better growth and photosynthetic activities compared with WT and other mutants (mgdA/mgdE-overexpressed and mgdA-suppressed strains), which suggested that MGlcDG was involved in phosphate stress adaptation for Synechococcus sp. PCC 7942. A notable increase in contents of 18:1 fatty acid (FA) of MGDG (127%), DGDG (68%), and SQDG (105%) in AE were found under phosphate starvation. However, the expression of △9 desaturase (desC) was not higher in AE than that in WT during phosphate-starved period. These results suggested that MGlcDG might be involved in the process of FA desaturation, which contributed to membrane fluidity and cell basic metabolism for stress acclimation in cyanobacteria. In complementary experiments of E. coli, although the expression of mgdA and desC in the mgdA and desC coexpressed strain (OEAC) reduced by 22% and 35% compared with that of the strains only overexpressing mgdA (OEA) or desC (OEC), the content of unsaturated FA in OEAC was the highest. This further implied that the accumulation of MGlcDG could prompt FA desaturation in E. coli. Therefore, we propose that an overproduction of MGlcDG is responsible for FA desaturation and participates in phosphate stress adaptation in cyanobacteria.


Assuntos
Galactolipídeos/metabolismo , Fosfatos/metabolismo , Synechococcus/fisiologia , Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Galactolipídeos/genética , Genes Bacterianos , Estresse Fisiológico , Synechococcus/genética
10.
Food Funct ; 10(12): 7806-7817, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31793593

RESUMO

The removal of intact chloroplasts from their cell wall confinement offers a novel way to obtain lipophilic nutrients from green biomass, especially carotenoids and galactolipids. These latter are the main membrane lipids in plants and they represent a major source of the essential α-linolenic acid (18:3; ALA). Nevertheless, knowledge on their digestion is still limited. We have developed a physical method of recovering a chloroplast-rich fraction (CRF) from green biomass and tested its digestibility in vitro under simulated gastrointestinal conditions. Using a two-step static model, CRF from both spinach leaves and postharvest, pea vine field residue (haulm) were first exposed to enzymes from rabbit gastric extracts and then either to pancreatic enzymes from human pancreatic juice (HPJ) or to porcine pancreatic extracts (PPE). The lipolysis of monogalactosyldiacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) was monitored by thin layer chromatography and gas chromatography of fatty acid methyl esters. For both CRF preparations, MGDG and DGDG were converted to monogalactosylmonoacylglycerol (MGMG) and digalactosylmonoacylglycerol (DGMG), respectively, during the intestinal phase and ALA was the main fatty acid released. Galactolipids were more effectively hydrolysed by HPJ than by PPE, and PPE showed a higher activity on MGDG than on DGDG. These findings may be explained by the higher levels of galactolipase activity in HPJ compared to PPE, which mainly results from pancreatic lipase-related protein 2. Thus, we showed that CRF galactolipids are well digested by pancreatic enzymes and represent an interesting vehicle for ALA supplementation in human diet.


Assuntos
Cloroplastos/química , Galactolipídeos/química , Pisum sativum/química , Spinacia oleracea/química , Animais , Cloroplastos/metabolismo , Galactolipídeos/metabolismo , Trato Gastrointestinal/metabolismo , Humanos , Hidrólise , Modelos Biológicos , Pisum sativum/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Coelhos , Spinacia oleracea/metabolismo , Suínos , Ácido alfa-Linolênico
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(12): 158522, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31487556

RESUMO

Organisms use various adaptive strategies against phosphate stress, including lipid remodeling. Here, the response of major membrane lipids to phosphate stress was analyzed in Synechococcus sp. PCC 7942. Unlike plants and eukaryotic microalgae, no significant increases in neutral lipids were found, whereas glycolipids content increased to as high as 6.13% (of dry cell weight, DCW) and phospholipids decreased to 0.34% (of DCW) after 16 days of cultivation without phosphate. Glycolipids accumulation were mainly attributed to the significant increase of digalactosyldiacylglycerol (DGDG) by 50% and sulfoquinovosyldiaclglycerol (SQDG) by 90%, both of which acted as complementary lipids for phosphatidylglycerol (PG) in the cyanobacterial membrane. Also, a notable increase in content (by 48%) of C18 fatty acids (especially C18:1) was observed in all glycolipids at the expense of C12 and C14 (72%). These changes may contribute to membrane fluidity and photosynthetic activity for basic cell metabolism and phosphate stress adaptation. Lipidomic analyses showed the reduction of PG 18:1/16: 0 (by 52%) with the increase of DGDG 18:1/16:0 (133%) and SQDG 18:1/16:0 (245%), strongly suggesting a direct conversion of PG to DGDG and SQDG. Moreover, the decreasing amount of monogalactosyldiacylglycerol (MGDG) 16:1/16:0 (22%) was consistent with the increase of free fatty acids (125%) on day 2 of phosphate absence, which suggested that MGDG is more likely to provide a pool of fatty acids for de novo synthesis of glycolipids. This study provides valuable insight into cyanobacteria adaptation strategies to phosphate stress by membrane lipid remodeling and unveils the underlying acyl chain fluxes into glycolipids.


Assuntos
Glicolipídeos/metabolismo , Lipídeos de Membrana/metabolismo , Fosfatos/metabolismo , Synechococcus/metabolismo , Galactolipídeos/metabolismo , Lipidômica , Fosfatidilgliceróis/metabolismo
12.
Plant J ; 97(2): 341-351, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300943

RESUMO

The FERONIA (FER) signaling pathway is known to have diverse roles in Arabidopsis thaliana, such as growth, reproduction, and defense, but how this receptor kinase is involved in various biological processes is not well established. In this work, we applied multiple mass spectrometry techniques to identify metabolites involved in the FER signaling pathway and to understand their biological roles. A direct infusion Fourier transform ion cyclotron resonance (FT-ICR)-MS approach was used for initial screening of wild-type and feronia (fer) mutant plant extracts, and Arabidopsides were found to be significantly enriched in the mutant. As Arabidopsides are known to be induced by wounding, further experiments on wounded and non-wounded leaf samples were carried out to investigate these oxylipins as well as related phytohormones using a quadrupole-time-of-flight (Q-TOF) MS by direct injection and LC-MS/MS. In a root growth bioassay with Arabidopside A isolated from fer mutants, the wild-type showed significant root growth inhibition compared with the fer mutant. Our results therefore implicated Arabidopsides, and Arabidopside A specifically, in FER functions and/or signaling. Finally, matrix-assisted laser desorption/ionization MS imaging (MALDI-MSI) was used to visualize the localization of Arabidopsides, and we confirmed that Arabidopsides are highly abundant at wounding sites in both wild-type and fer mutant leaves. More significantly, five micron high-spatial resolution MALDI-MSI revealed that Arabidopsides are localized to the chloroplasts where many stress signaling molecules are made.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Galactolipídeos/metabolismo , Oxilipinas/metabolismo , Feofitinas/metabolismo , Fosfotransferases/genética , Transdução de Sinais/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Biomarcadores/metabolismo , Cloroplastos/metabolismo , Cromatografia Líquida , Mutação , Fosfotransferases/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
13.
J Agric Food Chem ; 66(30): 8079-8085, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29998729

RESUMO

We enzymatically prepared structured monogalactosydiacylglycerols (MGDGs) enriched in pinolenic acid (PLA). PLA-enriched free fatty acids (FFAs) containing ∼86 mol % PLA were produced from an FFA fraction obtained from pine nut oil (PLA content, ∼13 mol %) by urea crystallization. Commercial MGDGs (5 mg) were acidolyzed with PLA-enriched FFAs using four commercial immobilized lipases as biocatalysts. The reaction was performed in acetone (4 mL) in a stirred-batch reactor. Lipozyme RM IM (immobilized Rhizomucor miehei lipase) was the most effective biocatalyst for the reaction. Structured MGDGs containing 42.1 mol % PLA were obtained under optimal reaction conditions: temperature, 25 °C; substrate molar ratio, 1:30 (MGDGs/PLA-enriched FFAs); enzyme loading, 20 wt % of total substrates; and reaction time, 36 h. The structured MGDGs were separated from the reaction products at a purity of 96.6 wt % using silica column chromatography. The structured MGDGs could be possibly used as emulsifiers with appetite-suppression effects.


Assuntos
Proteínas Fúngicas/química , Galactolipídeos/química , Ácidos Linolênicos/química , Lipase/química , Pinus/química , Óleos de Plantas/química , Rhizomucor/enzimologia , Enzimas Imobilizadas/química , Estrutura Molecular , Temperatura
14.
Plant Biotechnol J ; 15(1): 56-67, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27307093

RESUMO

Potato tuber is a high yielding food crop known for its high levels of starch accumulation but only negligible levels of triacylglycerol (TAG). In this study, we evaluated the potential for lipid production in potato tubers by simultaneously introducing three transgenes, including WRINKLED 1 (WRI1), DIACYLGLYCEROL ACYLTRANSFERASE 1 (DGAT1) and OLEOSIN under the transcriptional control of tuber-specific (patatin) and constitutive (CaMV-35S) promoters. This coordinated metabolic engineering approach resulted in over a 100-fold increase in TAG accumulation to levels up to 3.3% of tuber dry weight (DW). Phospholipids and galactolipids were also found to be significantly increased in the potato tuber. The increase of lipids in these transgenic tubers was accompanied by a significant reduction in starch content and an increase in soluble sugars. Microscopic examination revealed that starch granules in the transgenic tubers had more irregular shapes and surface indentations when compared with the relatively smooth surfaces of wild-type starch granules. Ultrastructural examination of lipid droplets showed their close proximity to endoplasmic reticulum and mitochondria, which may indicate a dynamic interaction with these organelles during the processes of lipid biosynthesis and turnover. Increases in lipid levels were also observed in the transgenic potato leaves, likely due to the constitutive expression of DGAT1 and incomplete tuber specificity of the patatin promoter. This study represents an important proof-of-concept demonstration of oil increase in tubers and provides a model system to further study carbon reallocation during development of nonphotosynthetic underground storage organs.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Melhoramento Genético/métodos , Engenharia Metabólica/métodos , Óleos de Plantas/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Solanum tuberosum/genética , Carboidratos/análise , Ácidos Graxos/análise , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Galactolipídeos/metabolismo , Genes de Plantas , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Fosfolipídeos/metabolismo , Óleos de Plantas/análise , Óleos de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/citologia , Plantas Geneticamente Modificadas , Solanum tuberosum/citologia , Amido/análise , Amido/metabolismo , Transformação Genética , Triglicerídeos/metabolismo
15.
Radiat Oncol ; 11(1): 153, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27876069

RESUMO

BACKGROUND: In our previous study, monogalactosyl diacylglycerol (MGDG) purified from spinach was found to have cytotoxic effects in human cancer cell lines. This study further assessed whether MGDG can enhance the cytotoxic effects of radiation in human pancreatic cancer cells in vitro and in vivo. METHODS: Glycoglycerolipids from spinach including MGDG were extracted from dried spinach. The cytotoxicity of MGDG were evaluated by the MTT assay using four human pancreatic cancer cell lines (MIAPaCa-2, AsPC-1, BxPC-3 and PANC-1) and normal human dermal fibroblasts (NHDFs). The effects of radiation and MGDG alone or in combination in MIAPaCa-2 cells was analyzed with the colony forming and apoptosis assays, western blotting and cell cycle and DNA damage analyses (γ-H2AX foci staining and comet assay). The inhibitory effects on tumor growth were assessed in a mouse xenograft tumor model. RESULTS: MGDG showed dose- and time-dependent cytotoxicity, with half-maximal inhibitory concentrations (IC50) in PANC-1, BxPC-3, MIAPaCa-2 and AsPC-1 cells at 72 h of 25.6 ± 2.5, 26.9 ± 1.3, 18.5 ± 1.7, and 22.7 ± 1.9 µM, respectively. The colony forming assay revealed fewer MIAPaCa-2, BxPC-3 and AsPC-1 cell colonies upon treatment with both MGDG and radiation as compared to irradiation alone (P < 0.05). The combination of MGDG and radiation induced a higher proportion of apoptosis in MIAPaCa-2 cells; this effect was associated with increased mitochondrial release of cytochrome c and activation of cleaved poly (ADP-ribose) polymerase and caspase-3. DNA damage was detected and DNA repair mechanisms were more frequently impaired in cells receiving the combination treatment as compared to either one alone. Tumor growth was inhibited to a greater degree in mice treated by intratumoral injection of MGDG combined with irradiation as compared to either one alone (P < 0.05). CONCLUSIONS: This is the first report demonstrating that MGDG enhances the cytotoxicity of radiation to induce apoptosis of cancer cells in vitro and in vivo. Our findings indicate that this therapeutic combination can be an effective strategy for the treatment of pancreatic cancer.


Assuntos
Quimiorradioterapia/métodos , Galactolipídeos/farmacologia , Neoplasias Pancreáticas/patologia , Extratos Vegetais/farmacologia , Radiossensibilizantes/farmacologia , Spinacia oleracea , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Western Blotting , Linhagem Celular Tumoral , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Sci Rep ; 6: 36172, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27812010

RESUMO

Root hairs are tubular extensions of specific root epidermal cells important in plant nutrition and water absorption. To determine membrane glycerolipids in root hairs and roots may differ, as well as their respective response to nutrient availability, this study analyzed the membrane glycerolipid species in soybean root hairs and in roots stripped of root hairs, and their response to nitrogen (N) and phosphate (Pi) supplementation. The ratio of phospholipids to galactolipids was 1.5 fold higher in root hairs than in stripped roots. Under Pi deficiency, the ratio of phospholipids to galactolipids in stripped roots decreased with the greatest decrease found in the level of phosphatidylethanolamine (PE) in root hairs and stripped roots, and root hairs had an increased level of phosphatidic acid (PA). When seedlings were not supplied with N, the level of the N-containing lipids PE and phosphatidylserine in root hairs decreased whereas the level of non-N-containing lipids galactolipids and PA increased compared to N-supplied conditions. In stripped roots, the level of major membrane lipids was not different between N-sufficient and -deficient conditions. The results indicate that the membrane glycerolipidomes in root hairs are more responsive to nutrient availability than are the rest of roots.


Assuntos
Glycine max/metabolismo , Glicolipídeos/metabolismo , Lipídeos de Membrana/metabolismo , Galactolipídeos/metabolismo , Glicolipídeos/classificação , Nitrogênio/metabolismo , Fosfatos/metabolismo , Fosfolipídeos/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Glycine max/anatomia & histologia
17.
Climacteric ; 19(6): 568-573, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27736245

RESUMO

OBJECTIVE: Royal jelly (RJ) from honeybees (Apis mellifera) has estrogenic activity. Estrogen deficiency after menopause leads to a high risk of memory impairment and depression as well as metabolic syndrome and osteoporosis. We here investigated the effect of RJ on memory impairment and depression-like behaviors in ovariectomized (OVX) rats. METHODS: OVX rats were administered with RJ for 82 days. Hippocampus-dependent spatial memory and depression-like behaviors were assessed by the Morris water maze test and the forced swimming test, respectively. The weights of body, brain and uterus and the contents of protein and myelin galactolipids including galactosylceramide and sulfatide were measured. RESULTS: Memory impairment and depression-like behaviors in OVX rats were recovered to the levels of sham-operated rats by RJ administration. Increased body weight and decreased uterine weight in OVX rats were recovered to the levels of sham-operated rats by 17ß-estradiol (E2) administration but not by RJ administration. In contrast, brain weight was slightly increased by RJ administration but not by E2 administration. The contents of protein and myelin galactolipids were higher in the brains of RJ-administered OVX rats than in the brains of E2-administered OVX rats. CONCLUSION: The results suggest that RJ has a beneficial effect on neurological symptoms of a menopausal disorder.


Assuntos
Depressão/tratamento farmacológico , Ácidos Graxos/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Pós-Menopausa/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Estradiol/farmacologia , Ácidos Graxos/administração & dosagem , Feminino , Galactolipídeos/análise , Aprendizagem em Labirinto/efeitos dos fármacos , Bainha de Mielina/química , Proteínas do Tecido Nervoso/análise , Tamanho do Órgão/efeitos dos fármacos , Ovariectomia , Ratos , Ratos Wistar , Natação , Útero/efeitos dos fármacos
18.
Biochim Biophys Acta ; 1861(9 Pt B): 1315-1328, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27033152

RESUMO

During evolution, the male gametophyte of Angiosperms has been severely reduced to the pollen grain, consisting of a vegetative cell containing two sperm cells. This vegetative cell has to deliver the sperm cells from the stigma through the style to the ovule. It does so by producing a pollen tube and elongating it to many centimeters in length in some species, requiring vast amounts of fatty acid and membrane lipid synthesis. In order to optimize this polar tip growth, a unique lipid composition in the pollen has evolved. Pollen tubes produce extraplastidial galactolipids and store triacylglycerols in lipid droplets, probably needed as precursors of glycerolipids or for acyl editing. They also possess special sterol and sphingolipid moieties that might together form microdomains in the membranes. The individual lipid classes, the proteins involved in their synthesis as well as the corresponding Arabidopsis knockout mutant phenotypes are discussed in this review. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.


Assuntos
Lipídeos/genética , Tubo Polínico/genética , Pólen/genética , Triglicerídeos/genética , Galactolipídeos/biossíntese , Galactolipídeos/genética , Regulação da Expressão Gênica de Plantas , Gotículas Lipídicas/metabolismo , Lipídeos/biossíntese , Pólen/metabolismo , Tubo Polínico/metabolismo , Transdução de Sinais , Triglicerídeos/biossíntese
19.
Phytomedicine ; 23(5): 509-16, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27064010

RESUMO

BACKGROUND: The leaves of Cirsium brevicaule A. GRAY (CL) significantly decreased hepatic lipid accumulation and the expression of fatty acid synthase gene (FASN) in mice. PURPOSE: We aimed to purify and identify the active compound(s) from CL and determine the inhibitory mechanism of expression of FASN. METHODS: We purified monogalactosyldiacylglycerol (MGDG) from extracts of CL (CL-MGDG) and showed that it was the active CL component through analyses of its effects on the expression of genes of human breast cancer cell line, SKBR-3. RESULTS: The content and fatty acid composition of CL-MGDG are distinctly different from those of other vegetable-derived MGDGs. Treatment of SKBR-3 cells with MGDG decreased the level of FASN mRNA as well as the levels of mRNA encoding other protein involved in lipogenesis. Further, MGDG treatments significantly inhibited luciferase activities of constructs containing liver X receptor response element in FASN promoter region without altering the levels of mRNA encoding transcription factors. MGDG and the FASN inhibitor C75 decreased the viabilities of SKBR-3 cells in a concentration-dependent manner. CL-MGDG more potently inhibited cell viability than a commercial MGDG preparation. CONCLUSIONS: CL represents a good source of glycoglycerolipids with potential as functional ingredients of food.


Assuntos
Cirsium/química , Ácido Graxo Sintase Tipo I/metabolismo , Galactolipídeos/química , Linhagem Celular Tumoral , Ácido Graxo Sintase Tipo I/genética , Ácidos Graxos/química , Humanos , Lipogênese , Fígado/metabolismo , Estrutura Molecular , RNA Mensageiro
20.
Rapid Commun Mass Spectrom ; 30(5): 611-9, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26842582

RESUMO

RATIONALE: Laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. METHODS: The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis of single cells and tissue. RESULTS: Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (~4-15 µm) even when agglomerated together. Turbid Allium Cepa cells (~150 µm) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. CONCLUSIONS: Laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.


Assuntos
Química Encefálica , Chlamydomonas reinhardtii/química , Galactolipídeos/análise , Microdissecção e Captura a Laser/instrumentação , Cebolas/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Triglicerídeos/análise , Animais , Encéfalo/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Chlamydomonas reinhardtii/citologia , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Terapia a Laser/instrumentação , Camundongos , Imagem Molecular , Cebolas/citologia , Imagem Óptica , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA