Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 12(8)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727157

RESUMO

Fortification of human milk (HM) for preterm and very low-birth weight (VLBW) infants is a standard practice in most neonatal intensive care units. The optimal fortification strategy and the most suitable protein source for achieving better tolerance and growth rates for fortified infants are still being investigated. In a previous clinical trial, preterm and VLBW infants receiving supplementation of HM with experimental donkey milk-based fortifiers (D-HMF) showed decreased signs of feeding intolerance, including feeding interruptions, bilious gastric residuals and vomiting, with respect to infants receiving bovine milk-based fortifiers (B-HMF). In the present ancillary study, the urinary metabolome of infants fed B-HMF (n = 27) and D-HMF (n = 27) for 21 days was analyzed by 1H NMR spectroscopy at the beginning (T0) and at the end (T1) of the observation period. Results showed that most temporal changes in the metabolic responses were common in the two groups, providing indications of postnatal adaptation. The significantly higher excretion of galactose in D-HMF and of carnitine, choline, lysine and leucine in B-HMF at T1 were likely due to different formulations. In conclusion, isocaloric and isoproteic HM fortification may result in different metabolic patterns, as a consequence of the different quality of the nutrients provided by the fortifiers.


Assuntos
Nutrição Enteral/métodos , Alimentos Fortificados , Recém-Nascido Prematuro/urina , Leite Humano/metabolismo , Estado Nutricional , Animais , Carnitina/urina , Bovinos , Colina/urina , Equidae , Feminino , Galactose/urina , Humanos , Recém-Nascido , Leucina/urina , Lisina/urina , Masculino , Metaboloma , Leite Humano/química
2.
Anal Bioanal Chem ; 407(25): 7713-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26253229

RESUMO

A selenosugar (selenosugar 1, methyl-2-acetamido-2-deoxy-1-seleno-ß-D-galactopyranoside) was identified in aqueous extracts of muscle tissue of three marine fish species, mackerel (Scomber scombrus), sardine (Sardina pilchardus), and tuna (Thunnus albacares), by high-performance liquid chromatography coupled to elemental and high-resolution molecular mass spectrometry. Selenoneine (2-selenyl-Nα, Nα, Nα-trimethyl-L-histidine), a known selenium compound in fish, was the major form of selenium in the aqueous extracts, and the methylated derivative of selenoneine, namely Se-methylselenoneine, was also identified as a minor natural constituent in the fish. Selenosugar 1, a major urinary excretion product of selenium often found in organs and body fluids related to selenium excretion, has so far not been reported in muscle tissue. Se-methylselenoneine has been proposed as the main urinary metabolite from selenoneine. This first report of selenosugar 1 and Se-methylselenoneine as natural constituents of fish muscle tissue opens up a new perspective on the role of these compounds in selenium metabolism and is relevant to selenium supplementation studies.


Assuntos
Peixes/metabolismo , Galactose/metabolismo , Galactose/urina , Histidina/análogos & derivados , Compostos Organosselênicos/metabolismo , Compostos Organosselênicos/urina , Animais , Cromatografia Líquida de Alta Pressão/métodos , Galactose/análise , Histidina/análise , Histidina/metabolismo , Histidina/urina , Humanos , Músculos/metabolismo , Compostos Organosselênicos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA