Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172270, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583627

RESUMO

Recent studies show that greenhouse gas (GHG) emissions from urban landscape water are significant and cannot be overlooked, underscoring the need to develop effective strategies for mitigating GHG production from global freshwater systems. Calcium peroxide (CaO2) is commonly used as an eco-friendly reagent for controlling eutrophication in water bodies, but whether CaO2 can reduce GHG emissions remains unclear. This study investigated the effects of CaO2 dosage on the production of methane (CH4) and nitrous oxide (N2O) in urban landscape water under anoxic conditions during summer. The findings reveal that CaO2 addition not only improved the physicochemical and organoleptic properties of simulated urban landscape water but also reduced N2O production by inhibiting the activity of denitrifying bacteria across various dosages. Moreover, CaO2 exhibited selective effects on methanogens. Specifically, the abundance of acetoclastic methanogen Methanosaeta and methylotrophic methanogen Candidatus_Methanofastidiosum increased whereas the abundance of the hydrogenotrophic methanogen Methanoregula decreased at low, medium, and high dosages, leading to higher CH4 production at increased CaO2 dosage. A comprehensive multi-objective evaluation indicated that an optimal dosage of 60 g CaO2/m2 achieved 41.21 % and 84.40 % reductions in CH4 and N2O production, respectively, over a 50-day period compared to the control. This paper not only introduces a novel approach for controlling the production of GHGs, such as CH4 and N2O, from urban landscape water but also suggests a methodology for optimizing CaO2 dosage, providing valuable insights for its practical application.


Assuntos
Metano , Óxido Nitroso , Peróxidos , Qualidade da Água , Metano/análise , Óxido Nitroso/análise , Peróxidos/análise , Poluentes Químicos da Água/análise , Gases de Efeito Estufa/análise
2.
J Environ Manage ; 355: 120469, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38432010

RESUMO

Crop byproducts can be supplemented in livestock feeds to improve the utilization of resources and reduce greenhouse gas (GHG) emissions. We explored the mitigation potential of GHG emissions by supplementing crop byproducts in feeds based on a typical intensive dairy farm in China. Results showed that GHG emissions associated with production of forage were significantly decreased by 25.60 % when no GHG emissions were allocated to crop byproducts, and enteric methane emission was significantly decreased by 13.46 % on the basis of CO2 eq, g/kg fat and protein corrected milk. The supplementation did not affect lactation performance, rumen microbiota and microbial enzymes at the gene level. Metabolomics analysis revealed changes in amino acid catabolism of rumen fluid, which were probably responsible for more propionate production. In conclusion, supplementing crop byproducts in feeds can be a potential strategy to reduce GHG emissions of livestock.


Assuntos
Gases de Efeito Estufa , Animais , Feminino , Gases de Efeito Estufa/análise , Gases de Efeito Estufa/metabolismo , Gado , Leite/química , Suplementos Nutricionais/análise , Ração Animal/análise , Metano/análise , Efeito Estufa
3.
Huan Jing Ke Xue ; 45(2): 929-939, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471931

RESUMO

The effects of biochar application on soil nitrous oxide (N2O) and methane (CH4) emissions in a typical rice-vegetable rotation system in Hainan after two years were investigated. The aim was to clarify the long-term effects of biochar on greenhouse gas emissions under this model, and it provided a theoretical basis for N2O and CH4 emission reduction in rice-vegetable rotation systems in tropical regions of China. Four treatments were set up in the field experiment, including no nitrogen fertilizer control (CK); nitrogen, phosphorus, and potassium fertilizer (CON); nitrogen, phosphorus, and potassium fertilizer combined with 20 t·hm-2 biochar (B1); and nitrogen, phosphorus, and potassium fertilizer combined with 40 t·hm-2 biochar (B2). The results showed that: ① compared with that in the CON treatment, the B1 and B2 treatments significantly reduced N2O emissions by 32% and 54% in the early rice season (P < 0.05, the same below), but the B1 and B2 treatments significantly increased N2O emissions by 31% and 81% in the late rice season. The cumulative emissions of N2O in the pepper season were significantly higher than those in the early and late rice seasons, and the B1 treatment significantly reduced N2O emissions by 35%. There was no significant difference between the B2 and CON treatments. ② Compared with that in the CON treatment, B1 and B2 significantly reduced CH4 emissions by 63% and 65% in the early rice season, and the B2 treatment significantly increased CH4 emissions by 41% in the late rice season. There was no significant difference between the B1 and CON treatments. There was no significant difference in cumulative CH4 emissions between treatments in the pepper season. ③ The late rice season contributed to the main global warming potential (GWP) of the rice-vegetable rotation system, and CH4 emissions determined the magnitude of GWP and greenhouse gas emission intensity (GHGI). After two years of biochar application, B1 reduced the GHGI of the whole rice-vegetable rotation system, and B2 increased the GHGI and reached a significant level. However, the B1 and B2 treatments significantly reduced GHGI in the early rice season and pepper season, and only the B2 treatment increased GHGI in the late rice season. ④ Compared with that in the CON treatment, the B1 and B2 treatments significantly increased the yield of early rice by 33% and 51%, and the B1 and B2 treatments significantly increased the yield of pepper season by 53% and 81%. In the late rice season, there was no significant difference in yield except for in the CK treatment without nitrogen fertilizer. The results showed that the magnitude of greenhouse gas emissions in the tropical rice-vegetable rotation system was mainly determined by CH4 emissions in the late rice season. After two years of biochar application, only low biochar combined with nitrogen fertilizer had a significant emission reduction effect, but high and low biochar combined with nitrogen fertilizer increased the yield of early rice and pepper crops continuously.


Assuntos
Carvão Vegetal , Gases de Efeito Estufa , Oryza , Gases de Efeito Estufa/análise , Agricultura/métodos , Fertilizantes/análise , Solo , Nitrogênio , China , Metano/análise , Óxido Nitroso/análise , Fósforo , Verduras , Potássio
4.
J Environ Manage ; 353: 120241, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38301473

RESUMO

With global population growth and climate change, food security and global warming have emerged as two major challenges to agricultural development. Plastic film mulching (PM) has long been used to improve yields in rain-fed agricultural systems, but few studies have focused on soil gas emissions from mulched rainfed potatoes on a long-term and regional scale. This study integrated field data with the Denitrification-Decomposition (DNDC) model to evaluate the impacts of PM on potato yields, greenhouse gas (GHG) and ammonia (NH3) emissions in rainfed agricultural systems in China. We found that PM increased potato yield by 39.7 % (1505 kg ha-1), carbon dioxide (CO2) emissions by 15.4 % (123 kg CO2 eq ha-1), nitrous oxide (N2O) emissions by 47.8 % (1016 kg CO2 eq ha-1), and global warming potential (GWP) by 38.9 % (1030 kg CO2 eq ha-1), while NH3 volatilization decreased by 33.9 % (8.4 kg NH3 ha-1), and methane (CH4) emissions were little changed compared to CK. Specifically, the yield after PM significantly increased in South China (SC), North China (NC), and Northwest China (NWC), with increases of 66.1 % (2429 kg ha-1), 44.1 % (1173 kg ha-1), and 43.6 % (956 kg ha-1) compared to CK, respectively. The increase in GWP and greenhouse gas emission intensity (GHGI) under PM was more pronounced in the Northeast China (NEC) and NWC regions, with respective increases of 57.1 % and 60.2 % in GWP, 16.9 % and 10.3 % in GHGI. While in the Middle and Lower reaches of the Yangtze River (MLYR) and SC, PM decreased GHGI with 10.2 % and 31.1 %, respectively. PM significantly reduced NH3 emissions in all regions and these reductions were most significant in Southwest China (SWC), SCand MLYR, which were 41 %, 38.0 %, and 38.0 % lower than CK, respectively. In addition, climatic and edaphic variables were the main contributors to GHG and NH3 emissions. In conclusion, it is appropriate to promote the use of PM in the MLYR and SC regions, because of the ability to increase yields while reducing environmental impacts (lower GHGI and NH3 emissions). The findings provide a theoretical basis for sustainable agricultural production of PM potatoes.


Assuntos
Gases de Efeito Estufa , Solanum tuberosum , Gases de Efeito Estufa/análise , Amônia , Dióxido de Carbono/análise , Agricultura , Solo , China , Metano/análise , Óxido Nitroso/análise , Fertilizantes/análise
5.
Huan Jing Ke Xue ; 45(1): 364-375, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216486

RESUMO

In this study, we sought to quantify the effect of planting structure change on fertilizer input and environmental cost in Chongqing and develop scientific and rational strategies for chemical fertilizer reduction. Based on the crop fertilizer quota standard and large sample farmer survey data under the medium productivity level in Chongqing, we evaluated and analyzed the application reduction potential and environmental benefits of fertilizer with the difference method and life cycle assessment. The results showed that:① since Chongqing became a municipality directly under the central government (1997), Chongqing crop planting structure had greatly changed, and the proportion of food crop (rice, corn, wheat, bean, and potato) decreased by 21%. The area of fruits and vegetables increased from 3.36×105 hm2 to 1.05×106 hm2, and their proportion increased by 20%. ② Nearly 55% of fertilizers had been consumed by vegetable (37%) and citrus production systems, and 11%, 12%, and 12% of fertilizers were consumed by rice, corn, and potato, respectively. ③ The total fertilizer reduction of the Chongqing planting industry could reach up to 1.69×105 tons during the period of "the 14th Five-Year Plan," with a fertilizer reduction potential of 18.6%. The fertilizer reduction potential (reduction amount) of rice, corn, citrus, and vegetables would reach 0.3% (2.9×102 tons), 12% (1.45×104 tons), 21% (3.65×104 tons), and 30% (1.18×105 tons), respectively. On the other hand, the rape system was insufficient in phosphorus potassium fertilizers, and the corn tended to be insufficient in potash fertilizer. ④ The current production level was low, and the nitrogen loss, greenhouse gas emissions, and eutrophication potential in the planting industry of Chongqing reached 1.81×105 tons (N), 1.43×107 tons (CO2-eq), and 1.74×105 tons (PO4-eq). With the increase in the realization degree of the crop quota standard (60%-100%), the reactive nitrogen loss, greenhouse gas emissions, and eutrophication potential decreased by 14.9%-24.9%, 10.1%-16.7%, and 13.8%-23%, respectively. The structure of the planting industry in Chongqing significantly changed, the total fertilizer consumption in Chongqing tended to decline gradually, and the fertilization intensity of commercial crops stayed at a high level. The agricultural fertilizer reduction potential and the reactive nitrogen and greenhouse gas emission reduction potential were large, especially for citrus and vegetable production systems. However, it is also necessary to pay attention to insufficient corn potash fertilizer and rape phosphorus potassium fertilizer investment and carry out collaborative promotion of fertilizer reduction.


Assuntos
Gases de Efeito Estufa , Oryza , Fertilizantes/análise , Gases de Efeito Estufa/análise , Agricultura/métodos , Verduras , Nitrogênio/análise , Fósforo/análise , Potássio , China , Solo/química , Óxido Nitroso/análise
6.
Sci Total Environ ; 915: 170062, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38220023

RESUMO

Mangrove forests, crucial carbon-rich ecosystems, are increasingly vulnerable to soil carbon loss and greenhouse gas (GHG) emissions due to human disturbance. However, the contribution of mangrove trees to GHG emissions remains poorly understood. This study monitored CO2, CH4, and N2O fluxes from the stems of two mangrove species, native Kandelia obovata (KO) and exotic Sonneratia apetala (SA), at three heights (0.7 m, 1.2 m, and 1.7 m) during the dry winter period on Qi'ao Island, Pearl River Estuary, China. Heartwood samples were analyzed to identify potential functional groups related to gas fluxes. Our study found that tree stems acted as both sinks and sources for N2O (ranging from -9.49 to 28.35 µg m-2 h-1 for KO and from -6.73 to 28.95 µg m-2 h-1 for SA) and CH4. SA exhibited significantly higher stem CH4 flux (from -26.67 to 97.33 µg m-2 h-1) compared to KO (from -44.13 to 88.0 µg m-2 h-1) (P < 0.05). When upscaled to the community level, both species were net emitters of CH4, contributing approximately 4.68 % (KO) and 0.51 % (SA) to total CH4 emissions. The decrease in stem CH4 flux with increasing height, indicates a soil source. Microbial analysis in the heartwood using the KEGG database indicated aceticlastic methanogenesis as the dominant CH4 pathway. The presence of methanogens, methanotrophs, denitrifiers, and nitrifiers suggests microbial involvement in CH4 and N2O production and consumption. Remarkably, the dominance of Cyanobacteria in the heartwood microbiome (with the relative abundance of 97.5 ± 0.6 % for KO and 99.1 ± 0.2 % for SA) implies roles in carbon and nitrogen fixation for mangroves coping with nitrogen limitation in coastal wetlands, and possibly in CH4 production. Although the present study has limitations in sampling duration and area, it highlights the significant role of tree stems in GHG emissions which is crucial for a holistic evaluation of the global carbon sequestration capability of mangrove ecosystems. Future research should broaden spatial and temporal scales to enhance the accuracy of upscaling tree stem gas fluxes to the mangrove ecosystem level.


Assuntos
Ecossistema , Gases de Efeito Estufa , Humanos , Óxido Nitroso/análise , Metano/análise , Estuários , Qi , Rios , Monitoramento Ambiental , Áreas Alagadas , Gases de Efeito Estufa/análise , China , Carbono/análise , Solo , Dióxido de Carbono/análise
7.
Sci Total Environ ; 912: 168749, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38007120

RESUMO

Rehabilitation of degraded soil health using high-performance and sustainable measures are urgently required for restoring soil primary productivity and mitigating greenhouse gas (GHG) emission of coastal ecosystems. However, the effect of livestock manure derived hydrochar on GHG emission and plant productivity in the coastal salt-affected soils, one of blue carbon (C) ecosystems, was poorly understood. Therefore, a cattle manure hydrochar (CHC) produced at 220 °C was prepared to explore its effects and mechanisms on CH4 and N2O emissions and tomato growth and fruit quality in a coastal soil in comparison with corresponding hydrochars derived from plant straws, i.e., sesbania straw hydrochars (SHC) and reed straw hydrochars (RHC) using a 63-day soil column experiment. The results showed that CHC posed a greater efficiency in reducing the global warming potential (GWP, 54.6 % (36.7 g/m2) vs. 45.5-45.6 % (22.2-30.6 g/m2)) than those of RHC and SHC. For the plant growth, three hydrochars at 3 % (w/w) significantly increased dry biomass of tomato shoot and fruit by 12.4-49.5 % and 48.6-165 %, respectively. Moreover, CHC showed the highest promotion effect on shoot and fruit dry biomass of tomato, followed by SHC ≈ RHC. Application of SHC, CHC and RHC significantly elevated the tomato sweetness compared with CK, with the order of CHC (54.4 %) > RHC (35.6 %) > SHC (22.1 %). Structural equation models revealed that CHC-depressed denitrification and methanogen mainly contributed to decreased GHG emissions. Increased soil phosphorus availability due to labile phosphorus supply from CHC dominantly accounted for elevated tomato growth and fruit production. Comparably, SHC-altered soil properties (e.g., decreased pH and increased total carbon content) determined variations of GHG emission and tomato growth. The findings provide the high-performance strategies to enhance soil primary productivity and mitigate GHG emissions in the blue C ecosystems.


Assuntos
Gases de Efeito Estufa , Solanum lycopersicum , Bovinos , Animais , Solo , Gases de Efeito Estufa/análise , Esterco , Ecossistema , Dióxido de Carbono/análise , Óxido Nitroso/análise , Metano/análise , Fertilizantes/análise , Carbono , Fósforo , Agricultura/métodos
8.
PLoS One ; 18(10): e0292659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37815985

RESUMO

Livestock production is under scrutiny for its impact on greenhouse gas (GHG) emissions. Animal disease outbreaks will have economic effects on producers and the indirect cost of an animal disease outbreak is the result of shifts in consumption across commodities. This shift in demand for meat products will also positively or negatively affect carbon emissions. We explore the indirect costs and subsequent carbon impact of four potential exotic disease outbreaks, namely African swine fever, sheep pox, bluetongue, and foot and mouth disease. The indirect costs are quantified under different severities of outbreak using a vector error correction model and by estimating the changes in revenues of livestock and feed markets. By associating subsequent consumption switches with emission factors, we quantify the hidden carbon impact of these livestock disease outbreaks. The indirect costs vary based on severity and type of disease outbreak. Similarly, the net reduction in supply and subsequent consumption impacts result in averting between 0.005 and 0.67 million tonnes of CO2 eq. for these sectors. A foot and mouth disease outbreak has the highest indirect costs and largest reduction in GHG emissions as it decreases the production of cattle as consumers switch to lower emitting meat commodities. Conversely, African swine fever has the smallest reduction in GHG emissions, reflecting the more industrialised nature of pig farming. Our modelling approach opens a provocative debate around how compensation to producers supports restocking and how this relates to commitments to net zero farming. Overall, an exotic disease outbreak may trigger an opportunity to switch to lower emitting breeds or species if a more holistic, joined up approach were taken by Government.


Assuntos
Febre Suína Africana , Febre Aftosa , Gases de Efeito Estufa , Ovinos , Animais , Bovinos , Suínos , Criação de Animais Domésticos , Febre Aftosa/epidemiologia , Gases de Efeito Estufa/análise , Gado , Efeito Estufa , Dióxido de Carbono/análise
9.
Water Res ; 236: 119969, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37099862

RESUMO

There is growing global concern that greenhouse gas (GHG) emissions from water bodies are increasing because of interactions between nutrient levels and climate warming. This paper investigates key land-cover, seasonal and hydrological controls of GHGs by comparison of the semi-natural, agricultural and urban environments in a detailed source-to-sea study of the River Clyde, Scotland. Riverine GHG concentrations were consistently oversaturated with respect to the atmosphere. High riverine concentrations of methane (CH4) were primarily associated with point source inflows from urban wastewater treatment, abandoned coal mines and lakes, with CH4-C concentrations between 0.1 - 44 µg l-1. Concentrations of carbon dioxide (CO2) and nitrous oxide (N2O) were mainly driven by nitrogen concentrations, dominated by diffuse agricultural inputs in the upper catchment and supplemented by point source inputs from urban wastewater in the lower urban catchment, with CO2-C concentrations between 0.1 - 2.6 mg l-1 and N2O-N concentrations between 0.3 - 3.4 µg l-1. A significant and disproportionate increase in all GHGs occurred in the lower urban riverine environment in the summer, compared to the semi-natural environment, where GHG concentrations were higher in winter. This increase and change in GHG seasonal patterns points to anthropogenic impacts on microbial communities. The loss of total dissolved carbon, to the estuary is approximately 48.4 ± 3.6 Gg C yr-1, with the annual inorganic carbon export approximately double that of organic carbon and four times that of CO2, with CH4 accounting for 0.03%, with the anthropogenic impact of disused coal mines accelerating DIC loss. The annual loss of total dissolved nitrogen to the estuary is approximately 4.03 ± 0.38 Gg N yr-1 of which N2O represents 0.06%. This study improves our understanding of riverine GHG generation and dynamics which can contribute to our knowledge of their release to the atmosphere. It identifies where action could support reductions in aquatic GHG generation and emission.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Dióxido de Carbono , Efeito Estufa , Rios , Nitrogênio , Carvão Mineral , Metano/análise , Óxido Nitroso/análise , Solo
10.
Sci Total Environ ; 876: 162821, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36921873

RESUMO

Agroforestry-based coffee production systems (AFs) contribute to climate change mitigation through carbon sequestration. However, it is unclear whether AFs produce lower nitrous oxide (N2O) and methane (CH4) emissions than the open-shade coffee production system. In addition, little to no evidence is available to explain the relationship between canopy cover levels and greenhouse gas (GHG) emissions in AFs. The aim of this study was to investigate N2O, CH4 and yield-scaled emissions in AFs with differing shade-tree canopy levels. Three canopy cover levels were identified: (i) dense shade (80 % canopy closure), (ii) medium shade (49 % canopy closure), and (iii) open-shade (full sun) production. To determine the effect of canopy cover on GHG emissions under varying soil fertility management practices, three soil fertilization strategies were included: (i) mineral fertilizer, (ii) compost, and (iii) control (i.e., without soil amendment). The results showed that N2O emissions were two-to-three times greater when there was dense canopy cover than from open-shade production. The effect of canopy cover on N2O emission was more pronounced under the mineral fertilizer treatment. CH4 emissions were 44-64 % greater under the open-shade production system than under AFs. The yield-scaled global warming potential of 1 kg of fresh coffee cherries was 0.72 kg CO2eq for open-shade production, 0.58 kg CO2eq for medium canopy cover and 0.52 kg CO2eq for dense canopy cover. This study provides the first evidence of the importance of considering canopy cover intensity when determining the spatial-temporal variations in GHG emissions from agroforestry systems.


Assuntos
Gases de Efeito Estufa , Óxido Nitroso , Óxido Nitroso/análise , Café , Metano/análise , Fertilizantes/análise , Gases de Efeito Estufa/análise , Solo , Minerais , Agricultura/métodos , Dióxido de Carbono/análise
11.
Huan Jing Ke Xue ; 43(11): 5149-5158, 2022 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-36437087

RESUMO

The study of the effects of different fertilization treatments on soil methane (CH4) and nitrous oxide (N2O) emissions in rice-vegetable rotation systems is of great significance to supplement the research gap on greenhouse gas emissions in tropical regions of China. In this study, four fertilization treatments were set up during the pepper season:phosphorus and potassium fertilizer application (PK); nitrogen, phosphorus, and potassium (NPK) application; half application of nitrogen, phosphorus, and potassium plus half application of organic fertilizer (NPK+M); and application of organic fertilizer (M). There was no fertilizer application during the following early rice season. The objective of our study was to investigate the rules of CH4 and N2O emissions under different fertilization treatments in the pepper growth season, and the effects of different fertilization treatments in the pepper growth season on rice yield, and CH4 and N2O emissions in the following early rice growth season. The close static chamber-gas chromatography method was applied to determine soil CH4 and N2O emissions. We measured crop yield, estimated global warming potential (GWP), and calculated greenhouse gas emission intensity (GHGI). Our results showed that:① the cumulative CH4 emission under the four fertilization treatments ranged between 0.9 kg·hm-2 to 2.7 kg·hm-2 during the pepper growth season and between 5.5 kg·hm-2 to 8.4 kg·hm-2 during the early rice growth season. Compared with NPK, NPK+M and M reduced the cumulative CH4 emission in the pepper growth season by 35.3% and 7.6%, respectively; however, NPK+M and M increased the cumulative CH4 emission in the early rice season by 37.5% and 55.1%, respectively. There was a significant difference in cumulative CH4 emission between M and NPK in the early rice growth season. ② The cumulative N2O emission under the four fertilization treatments varied from 0.5 kg·hm-2 to 3.0 kg·hm-2 in the pepper growth season and from 0.3 kg·hm-2 to 0.5 kg·hm-2 in the early rice growth season. The cumulative N2O emission was significantly decreased by 33.7% in NPK+M and by 16.0% in M, compared with that in NPK. In the early rice growth season, the cumulative N2O emission was decreased by 23.5% by NPK+M but was increased by 9.1% by M. There was no significant difference in the cumulative N2O emission among the four fertilization treatments. ③ The yields of pepper and early rice under the four fertilization treatments were 3055.6-37722.5 kg·hm-2 and 5850.9-6994.4 kg·hm-2, respectively. Compared with that in NPK, NPK+M and M significantly increased pepper yield. The GWP under the four fertilization treatments in the pepper-early rice rotation system varied from 508.0 kg·hm-2 to 1864.4 kg·hm-2. Compared with NPK, NPK+M significantly decreased GWP by 25.7% and M insignificantly decreased GWP by 5.7%. The pepper growth season with the four fertilization treatments contributed to 69.2%-78.1% of the total GWP, and N2O contributed to 77.3%-85.3% of the total GWP. The GHGI ranged between 0.03 kg·kg-1 and 0.09 kg·kg-1 in the pepper growth season and between 0.04 kg·kg-1 and 0.24 kg·kg-1 in the early rice growth season. Compared with that in NPK, both M and NPK+M significantly reduced the GHGI by 71.5% and 54.7%, respectively, in the pepper growth season. In the early rice season, NPK+M significantly decreased the GHGI by 44.0%, but M non-significantly decreased the GHGI by 20.8%. The peak in N2O emission in the tropical pepper-early rice rotation system appeared after fertilization, and N2O emissions primarily occurred in the pepper growth season. However, CH4 emission was mainly concentrated in the early rice season. Considering the overall enhancing effects on crop yield and mitigation of greenhouse gas emissions, the co-application of chemical and organic fertilizers (NPK+M) can be recommended as an optimal fertilization practice to mitigate greenhouse gas emissions and maintain crop yield in pepper-rice rotation systems of Hainan, China.


Assuntos
Gases de Efeito Estufa , Oryza , Óxido Nitroso/análise , Metano/análise , Gases de Efeito Estufa/análise , Verduras , Agricultura/métodos , Fertilizantes/análise , Solo/química , Nitrogênio/análise , Fósforo/análise , Potássio , Fertilização
12.
Water Res ; 222: 118874, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35914498

RESUMO

For mitigation of climate change, all sources and sinks of greenhouse gases from the environment must be quantified and their driving factors identified. Nitrous oxide (N2O) is a strong greenhouse gas, and the contribution of aquatic systems to the global N2O budget remains poorly constrained. In this study, we measured N2O concentrations in a eutrophic coastal system, Roskilde Fjord (Denmark), and combined measurements with statistical modeling to quantify the N2O fluxes and budget in the system over a period of six months. To do so, we collected water at 15 sampling points and measured N2O concentrations along with physico-chemical water quality parameters, e.g. temperature, salinity, dissolved inorganic nitrogen and phosphorus, and silicon. We used mixed-effect regression models to predict N2O concentrations in the water from water quality parameters. We then derived N2O fluxes using well-established equations of N2O solubility and water-atmosphere exchanges. These fluxes were then put in perspective with those measured at the landscape scale by eddy-covariance at a 96 m nearby tall tower, and to those estimated from the agricultural land next to the fjord using Intergovernmental Panel on Climate Change (IPCC) guidelines. N2O concentrations in the Roskilde Fjord ranged between 2.40 and 8.05 nmol l-1. The best fitting model between water parameters and N2O concentrations in water included phosphorus and temperature. We estimated that (i) Roskilde Fjord was a sink of N2O, with a median inward flux of -0.04 nmol m-2 s-1, (ii) while the surrounding median agricultural flux was 0.13-0.18 nmol m-2 s-1, and (iii) the median landscape flux was 0.07 nmol m-2 s-1. All estimates of N2O fluxes were of the same magnitude and consistent with each other. These preliminary results need to be consolidated by further research.


Assuntos
Gases de Efeito Estufa , Óxido Nitroso , Monitoramento Ambiental/métodos , Estuários , Gases de Efeito Estufa/análise , Óxido Nitroso/análise , Fósforo
13.
Chemosphere ; 307(Pt 2): 135792, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35872065

RESUMO

In this study, hydrochar samples derived from hydrothermal treatment (HTT) of sludge and sludge-biomass mixtures were applied to a sandy soil and their effects on soil properties, soil nutrients, greenhouse gas (GHG) emissions, and soluble heavy metals were investigated. The application of untreated sludge and hydrochar derived from HTT of sludge at 180 °C led to the highest soluble nitrate, CO2 and N2O emissions, followed by the application of hydrochar samples derived from HTT of sludge-biomass mixtures at 180 °C. Although the application of hydrochar samples derived from HTT of sludge alone and sludge-biomass mixtures at 240 °C in sandy soil led to the lowest emissions of CO2 and N2O, it resulted in lower levels of soil electrical conductivity (EC), cation exchange capacity (CEC) and soluble phosphorus. The application of hydrochar samples derived from HTT at 240 °C led to the production of CH4 and lower nitrate-N contents than hydrochar samples derived from HTT at 180 °C. These results indicated that the soils containing hydrochar samples from HTT at 240 °C were anaerobic, which might inhibit the growth of plants. The application of hydrochar samples derived from HTT of sludge-biomass at 180 °C led to significantly improved contents of soil soluble phosphorus (2.56 and 2.84 g kg-1 soil) and soil nitrate-N (160.2 and 263.2 mg kg-1 soil) at the end of 60 days of incubation. However, these contents were lower than the contents of soluble phosphorus (3.71 and 4.45 g kg-1 soil) and nitrate-N (528.3 and 583.2 mg kg-1 soil) with the application of untreated sludge and sludge derived from HTT of sludge alone at 180 °C. Although more studies are needed to understand the mechanisms and effects on different soils, this study provides useful insights into the application of hydrochar derived from sludge-biomass mixture in soil.


Assuntos
Gases de Efeito Estufa , Metais Pesados , Dióxido de Carbono/análise , Gases de Efeito Estufa/análise , Lignina , Nitratos/análise , Nitrogênio/análise , Óxido Nitroso/análise , Fósforo , Areia , Esgotos , Solo
14.
Sci Total Environ ; 838(Pt 2): 155997, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588830

RESUMO

Synergies to achieve high phosphorus (P) use efficiency (PUE) and mitigate greenhouse gas (GHG) emissions are critical for developing strategies aimed toward agricultural green development. However, the potential effects of such synergies in the entire P supply chain through optimizing P management in crop production are poorly understood. In this study, a partial life cycle of a GHG emissions model was developed to quantify the P-related GHG emissions in the entire P supply chain in China. Our results showed that 16.3 kg CO2-equivalent (CO2-eq) was produced from the entire P supply chain per unit of P used for grain agriculture (maize, rice, and wheat). P-related GHG emissions in China increased more than five-fold from 1980 (7.2 Tg CO2-eq) to 2018 (44.9 Tg CO2-eq). GHG emissions were found to be strongly associated with the intensity of grain production in China, and they varied considerably across production regions owing to the differences in the P fertilizer production efficiency. Mineral P fertilizer use in crop production was the primary source of P-related GHG emissions. The results suggest that sustainable P management by matching mineral P fertilizer rates and fertilizer types with crop needs can mitigate GHG emissions by 10.8-27.7 Tg (24.0-65.1%). Moreover, this can improve PUE and reduce mineral P input by 0.7-1.4 Tg (24.0-46.0%). These findings highlight that potential synergies between high PUE and low P-related GHG emissions can be achieved via sustainable P management, thereby enhancing green agricultural development in China and other regions worldwide.


Assuntos
Fertilizantes , Gases de Efeito Estufa , Agricultura/métodos , Dióxido de Carbono/análise , China , Fertilizantes/análise , Efeito Estufa , Gases de Efeito Estufa/análise , Fósforo
15.
Bioresour Technol ; 357: 127312, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35577221

RESUMO

The addition of external carbon sources is crucial for effective biological treatment of nutrient-rich but carbon-depleted hydroponic wastewater using constructed wetlands. In this study, we examined the effects of applying three types of carbon substrates, namely sucrose, hydroponic kale residues, and common reed litter, on the nutrient removal efficiency and greenhouse gas emission rate of vertical flow constructed wetlands. The addition of sucrose and common reed litter was shown to perform equally well in enhancing the removal of total nitrogen (84.9-93.5%), nitrate (98.3-99.8%) and phosphate (53.8-55.2%) as compared to the control. Moreover, the application of common reed litter led to significantly lower mean CH4 and N2O emissions than that of kale residues. These findings suggested that Phragmites reed litter, which is easily found in wetlands worldwide, could be an effective, low-cost and climate-friendly carbon substrate to be applied in constructed wetlands for hydroponic wastewater treatment.


Assuntos
Gases de Efeito Estufa , Áreas Alagadas , Carbono , Gases de Efeito Estufa/análise , Hidroponia , Metano/análise , Nitrogênio , Óxido Nitroso/análise , Nutrientes , Sacarose , Águas Residuárias/análise
16.
Sci Total Environ ; 829: 154539, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35302036

RESUMO

Intensive cultivation and post-harvest vegetable oil production stages are major sources of greenhouse gas (GHG) emissions. Variation between production systems and reporting disparity have resulted in discordance in previous emissions estimates. The aim of this study was to assess global systems-wide variation in GHG emissions resulting from palm, soybean, rapeseed and sunflower oil production. Such an analysis is critical to understand the implications of meeting increasing edible oil demand. To achieve this, we performed a unified re-analysis of life cycle input data from diverse palm, soybean, rapeseed, and sunflower oil production systems, from a saturating search of published literature. The resulting dataset reflects almost 6000 producers in 38 countries, and is representative of over 71% of global vegetable oil production. Across all oil crop systems, median GHG emissions were 3.81 kg CO2e per kg refined oil. Crop specific median emissions ranged from 2.49 kg CO2e for rapeseed oil to 4.25 kg CO2e for soybean oil per kg refined oil. Determination of the carbon cost of agricultural land occupation revealed that carbon storage potential in native compared to agricultural land cover drives variation in production GHG emissions, and indicates that expansion of production in low carbon storage potential land, whilst reforesting areas of high carbon storage potential, could reduce net GHG emissions whilst boosting productivity. Nevertheless, there remains considerable scope to improve sustainability within current production systems, including through increasing yields whilst limiting application of inputs with high carbon footprints, and in the case of palm oil through more widespread adoption of methane capture technologies in processing stages.


Assuntos
Efeito Estufa , Gases de Efeito Estufa , Carbono/análise , Pegada de Carbono , Gases de Efeito Estufa/análise , Óleos de Plantas/análise , Glycine max , Óleo de Girassol/análise
17.
Bioresour Technol ; 349: 126805, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35131460

RESUMO

To explore the effect of microelement selenium on greenhouse gas emission, nitrogen loss and related functional genes during the composting. Selenite and selenate were respectively mixed with goat manure and wheat straw and then composted the mixture without selenium regarded as control. The results indicated adding selenite prolonged the thermophilic phase and improved the organic matter degradation, while the selenate presented the opposite results. Selenite and selenate influenced ammonium transformation while prompting the formation of nitrate. Compared to the control, adding selenite and selenate both decreased NH3 emissions (by 26.7%-53.1%) and increased the total nitrogen content of compost. The addition of selenium increased mcrA in the early phase of composting, thereby promoting CH4 emission (by 3.5-18.4%). Meanwhile, adding selenate significantly reduced nirK abundance and consequently reduced N2O emission. Moreover, selenate added treatment presented the highest compost maturity (88.77%) and the lowest global warm potential (117.46 g/kg CO2-eq.) among all treatments.


Assuntos
Compostagem , Gases de Efeito Estufa , Selênio , Animais , Cabras , Gases de Efeito Estufa/análise , Esterco , Metano/análise , Micronutrientes , Nitrogênio/análise , Solo
18.
J Environ Manage ; 307: 114568, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078062

RESUMO

Although the response of plants to nitrogen (N) in conventional systems has been extensively described in the literature, there is a lack of information available to refine the strategic N fertilisation program required in intercropping systems to match the nutrient supply with crop demands and reduce environmental impacts on greenhouse gas emissions. Therefore, this study aims to investigate the effect of N management on the growth, production, quality, greenhouse gas emissions (GHG) and carbon footprint of a beet-arugula intercropping system during two growing seasons (winter and summer). The efficiency of N fertilisation in each season was assessed by the supply of 20 N doses, varying the amounts applied at planting and as a side dressing (0-80, 0-120, 0-160, 0-200, 0-240, 20-80, 20-120, 20-160, 20-200, 20-240, 40-80, 40-120, 40-160, 40-200, 40-240, 60-80, 60-120,60-160, 60-200 and 60-240 kg N ha-1). GHG emissions and carbon footprint were calculated and converted to CO2 equivalent (CO2 eq) utilising IPCC methodology. The height, total and marketable productivities of beet plants were 33, 31 and 34% higher in winter than in summer, respectively. Arugula plants achieved the highest performance (height, fresh mass and yield) in summer. Considering the environmental impact on global warming/climate change caused by the use of N fertilisers, total GHG emissions may range from 1723.9 to 3369.8 kg CO2eq ha-1 cycle-1 according to the N dose applied. However, based on the carbon footprint, the application of 60-120 kg N ha-1 at planting and as side dressing was the best N dose, since it reduced the carbon footprint (equivalent to 0.134 g CO2eq kcal-1 vegetables) without compromising crop yield.


Assuntos
Beta vulgaris , Gases de Efeito Estufa , Agricultura , Pegada de Carbono , Fertilização , Efeito Estufa , Gases de Efeito Estufa/análise , Metano/análise , Nitrogênio/análise
19.
Chemosphere ; 286(Pt 2): 131663, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34371357

RESUMO

In this study, an immobilization method for forming and keeping dominant petroleum degradation bacteria was successfully developed by immobilizing Pseudomonas, Acinetobacter, and Sphingobacterium genus bacteria on wheat bran biochar pyrolyzed at 300, 500, and 700 °C. The removal efficiency indicated that the highest TPHs (total petroleum hydrocarbons) removal rate of BC500-4 B (biochar pyrolyzed at 500 °C with four kinds of petroleum bacteria) was 58.31%, which was higher than that of BC500 (36.91%) and 4 B (43.98%) used alone. The soil properties revealed that the application of biochar increased the content of organic matter, available phosphorus, and available potassium, but decreased pH and ammonium nitrogen content in soil. Bacterial community analysis suggested that the formation of dominant degrading community represented by Acinetobacter played key roles in TPHs removal. The removal rate of alkanes was similar to that of TPHs. Besides, biochar and immobilized material can also mediate greenhouse gas emission while removing petroleum, biochar used alone and immobilized all could improve CO2 emission, but decrease N2O emission and had no significant impact on CH4 emission. Furthermore, it was the first time to found the addition of Acinetobacter genus bacteria can accelerate the process of forming a dominant degrading community in wheat bran biochar consortium. This study focused on controlling greenhouse gas emission which provides a wider application of combining biochar and bacteria in petroleum soil remediation.


Assuntos
Gases de Efeito Estufa , Petróleo , Poluentes do Solo , Álcalis , Bactérias , Biodegradação Ambiental , Carvão Vegetal , Fibras na Dieta , Gases de Efeito Estufa/análise , Hidrocarbonetos , Petróleo/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
20.
Sci Total Environ ; 806(Pt 1): 150297, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571235

RESUMO

As an emerging power generation technology, small module reactors (SMRs) have the potential for development with its contribution to reducing greenhouse gas (GHG) emissions. In this study, an SMR-induced environmental input-output model (SEIOM) is proposed to simulate the environmental consequences of SMRs development and provide suggested schemes for SMRs deployment. A case study of Saskatchewan, Canada is conducted to demonstrate the proposed model. Specifically, key industries with high reduction potentials are first identified in the study; then, the power supply for three energy-intensive industries is assumed to be replaced by power generated from SMRs at various penetration degrees. The corresponding changes in direct and indirect GHG emissions and the interrelationships among multiple economic sectors associated with GHG flows are analyzed. The results indicate that there are close interdependences between various sectors and a small group of sectors could play a big role in GHG emission mitigation. In Saskatchewan, "Electricity power generation, transmission and distribution", "Oil and gas extraction", "Potash mining" and "Petroleum refineries" are key sectors for realizing GHG emission reduction targets. Meanwhile, it is estimated that replacing the power supply for "Oil and gas extraction" sector with SMRs would contribute the most to the reduction in GHG emission, which is much more than those for "Potash mining" and "Petroleum refineries" sectors. This study is expected to provide a basis for supporting the initiative and application of SMRs.


Assuntos
Gases de Efeito Estufa , Petróleo , Efeito Estufa , Gases de Efeito Estufa/análise , Modelos Teóricos , Petróleo/análise , Saskatchewan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA