Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hypertens Res ; 47(2): 427-434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030803

RESUMO

Nifedipine has exhibited to be the oldest primary drug having promising therapeutic potential for hypertension, angina pectoris, and pre-eclampsia treatment which are the most emergency serious complications worldwide. Moreover, for long-term treatment transdermal route of delivery using polymeric dissolving microneedles (DMNs) patches has shown greater advantages, thus enhancing treatment compliance, painless, reducing the daily number of doses, prolonged release in a controlled manner, and variable bioavailability making this an ideal candidate for the transdermal therapeutic system. Here, we fabricated DMN patches made of gelatin and PVP using PDMS molds loaded with nifedipine drugs for a controlled painless delivery for a longer stable duration. The prepared gelatin-PVP (gel-PVP) DMN patches loaded with nifedipine were fabricated by centrifugation casting method. The characterization results displayed excellent mechanical strength of the needles to penetrate the skin. SEM and confocal microscopy showed penetration of the needles up to 567-600 µm using rhodamine B applied to the hairless punctured skin site. FTIR study exhibited no degradation of the drug was observed while fabricating the DMNs patch at different pH 7.4 and 4. Skin resealing test proved that there was immediate resealing of the skin observed within 10-15 min. Further in-vitro drug release profile study was carried out by dissolution method at different pH 7.4 and 4 showed sustained release of the drug up to 96 ± 2% till 48-72 h avoiding polymer or drug loss which was quantified by UV vis spectrophotometer at 235 nm absorbance showed stable release of the drug upto 48-72 h. A stability study carried out by the HPLC method showed the DMN patches loaded with the drug were found to be stable for up to 30 days at 25 °C. This novel preliminary data are the first study to our knowledge introducing these fabricated nifedipine gel-PVP DMN patches were found to be very efficient and showed prolonged controlled release up to 48-72 h thereby treating hypertension in a convenient, painless manner. This DMN patch-formulated design might act as a potential approach leading to a controllable, self-administrative, and rapid transdermal delivery system.


Assuntos
Gelatina , Hipertensão , Humanos , Gelatina/metabolismo , Nifedipino , Sistemas de Liberação de Medicamentos/métodos , Pele , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo
2.
Int J Biol Macromol ; 245: 125308, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37315661

RESUMO

Metastasis is one of the major causes for cancer mortality. Its early steps comprise of invasion of basement membrane and migration. Thus, it is hypothesized that a platform, that allows quantification and grading of migration capability of cells can potentially be used for predicting metastatic potential. Two-dimensional (2D) models have been rendered inadequate for modelling in-vivo microenvironment due to various reasons. To attenuate homogeneity observed in 2D, three-dimensional (3D) platforms supplemented with bioinspired components have been designed. Unfortunately, till date there are no simple models to capture the migration of cells in 3D along with quantification of the process. In this study, we report an alginate-collagen based 3D model system, which can predict the migratory property of the cells within 72 h. The micron size of the scaffold enabled faster readout and the optimum pore-size provided conducive cellular growth environment. The platform's ability to allow observation of cellular migration was validated by encapsulating cells with transiently upregulated matrix metalloprotease 9 (MMP9), which has been reported to play a significant role in migration of cells during metastasis. The readout for migration was clustering of cells in the microscaffolds detected in a short span of 48 h. The observed clustering in MMP9 upregulated cells was validated by observing changes in the epithelial-mesenchymal transition (EMT) markers. Thus, this simple 3D platform can be used to study migration and predict the metastatic potential of cells.


Assuntos
Alginatos , Movimento Celular , Colágeno , Alicerces Teciduais , Alginatos/química , Alginatos/metabolismo , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Colágeno/química , Colágeno/metabolismo , Transição Epitelial-Mesenquimal , Gelatina/metabolismo , Microfluídica , Metástase Neoplásica , Porosidade , Alicerces Teciduais/química , Fatores de Transcrição Twist/metabolismo , Humanos , Linhagem Celular Tumoral
3.
AAPS PharmSciTech ; 24(2): 68, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792766

RESUMO

The aim of this study was the improvement of rutin solubility along with targeting its release to colon for effective treatment of colon cancer. Five formulations of compression-coated tablets were prepared with the same core composition including rutin-polyvinyl pyrrolidone K30 solid dispersion (rutin-PVP K30 SD) but differ in being coated with either frankincense alone or different combinations of frankincense with gelatin. The superior formula was selected based on the in vitro drug release then further evaluated in terms of physical properties and in vivo performance in dogs using X-ray. Moreover, in vitro cytotoxicity of rutin, rutin-PVP K30 SD, frankincense, and a mixture of rutin-PVP K30 SD with frankincense in a ratio representing their concentrations in the selected formula was assessed against human colon cancer (HCT-116) cell lines using sulforhodamine B assay. The formula (F4) with the coat consisted of 65%w/w frankincense and 35%w/w gelatin achieved acceptable in vitro controlled drug release. In vivo X-ray in dogs confirmed that F4 tablet could remain intact in the stomach and small intestine until reaching the colon. In vitro cytotoxicity revealed that mixture of rutin-PVP K30 SD with frankincense was more effective in arresting cancer cell growth than rutin or frankincense alone. Moreover, stability studies revealed that F4 tablets were physically and chemically stable. Thus, improving rutin solubility using solid dispersion technique and formulating it into frankincense-based compression-coated (F4) tablets would be a successful approach for colonic delivery of rutin with potential of improving therapeutic efficacy.


Assuntos
Neoplasias do Colo , Franquincenso , Humanos , Animais , Cães , Química Farmacêutica/métodos , Franquincenso/metabolismo , Gelatina/metabolismo , Comprimidos/química , Colo/metabolismo , Povidona/química , Solubilidade , Neoplasias do Colo/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos
4.
Int J Biol Macromol ; 192: 771-819, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634337

RESUMO

Heck cross-coupling reaction (HCR) is one of the few transition metal catalyzed CC bond-forming reactions, which has been considered as the most effective, direct, and atom economical synthetic method using various catalytic systems. Heck reaction is widely employed in numerous syntheses including preparation of pharmaceutical and biologically active compounds, agrochemicals, natural products, fine chemicals, etc. Commonly, Pd-based catalysts have been used in HCR. In recent decades, the application of biopolymers as natural and effective supports has received attention due to their being cost effective, abundance, and non-toxicity. In fact, recent studies demonstrated that biopolymer-based catalysts had high sorption capacities, chelating activities, versatility, and stability, which make them potentially applicable as green materials (supports) in HCR. These catalytic systems present high stability and recyclability after several cycles of reaction. This review aims at providing an overview of the current progresses made towards the application of various polysaccharide and gelatin-supported metal catalysts in HCR in recent years. Natural polymers such as starch, gum, pectin, chitin, chitosan, cellulose, alginate and gelatin have been used as natural supports for metal-based catalysts in HCR. Diverse aspects of the reactions, different methods of preparation and application of polysaccharide and gelatin-based catalysts and their reusability have been reviewed.


Assuntos
Alginatos/química , Celulose/química , Quitina/química , Quitosana/química , Gelatina/química , Pectinas/química , Gomas Vegetais/química , Amido/química , Alginatos/metabolismo , Biopolímeros/química , Catálise , Celulose/metabolismo , Técnicas de Química Sintética , Quitina/metabolismo , Quitosana/metabolismo , Gelatina/metabolismo , Redes e Vias Metabólicas , Estrutura Molecular , Acoplamento Oxidativo , Pectinas/metabolismo , Gomas Vegetais/metabolismo , Polissacarídeos/química , Amido/metabolismo
5.
Food Funct ; 12(15): 7029-7039, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34152329

RESUMO

The influence of dandelion root polysaccharide (DRP) on the gelatinization properties and in vitro digestibility of corn starch was investigated. Pasting behaviors indicated that the addition of DRP led to an increase of the pasting temperature and a decrease of viscosity. Compared to native corn starch, the swelling power, solubility and content of amylose leaching were reduced as the DRP addition increased. Scanning electron microscopy (SEM) analysis showed that DRP was easily dispersed in the starchy matrix, and a more uniform structure was observed in corn starch/DRP pastes. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) analyses confirmed that the crystal shape of the corn starch gels was not changed and no new groups were produced with increasing DRP concentration. Moreover, DRP could improve the fluidity of the gelatinized corn starch and reduce its digestibility. These findings provided fundamental information about DRP's application in the whole processing of corn starch.


Assuntos
Extratos Vegetais , Raízes de Plantas/química , Polissacarídeos/química , Amido , Taraxacum/química , Gelatina/química , Gelatina/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Reologia , Amido/química , Amido/metabolismo
6.
Food Chem ; 349: 129170, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548887

RESUMO

In this study, potato, lotus seed and wheat starch samples with different degree of gelatinization (DG) were prepared and their in vitro digestibility at low α-amylase activity evaluated by measuring the release of reducing sugar. The hydrolysis rate (k) and the final equilibrium concentration (C∞) of the three starches increased with increasing DG. Kinetic analyses showed that the Michaelis-Menten constant (Km) and the catalytic efficiency (kcat/Km) increased with increasing DG, indicative of the increasing affinity and catalytic efficiency of α-amylase with all three starch samples. Of the three starches, lotus seed starch showed a much greater increase in k and kcat/Km than potato and wheat starches as the DG of starch increased. From this study, we concluded that at low activity of α-amylase, DG is a major determinant for the binding affinity and catalytic efficiency of α-amylase to starch and in turn the digestion rate of starch.


Assuntos
Digestão , Amido/metabolismo , alfa-Amilases/metabolismo , Catálise , Cristalização , Gelatina/metabolismo , Hidrólise , Técnicas In Vitro , Cinética , Lotus/embriologia , Sementes/metabolismo , Solanum tuberosum/química , Especificidade por Substrato
7.
AAPS PharmSciTech ; 21(4): 128, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32399597

RESUMO

Capsule-based dry powder inhaler (DPI) products can be influenced by a multitude of interacting factors, including electrostatic charging. Tribo-charging is a process of charge transfer impacted by various factors, i.e., material surface characteristics, mechanical properties, processing parameters and environmental conditions. Consequently, this work aimed to assess how the charging behavior of capsules intended for inhalation might be influenced by environmental conditions. Capsules having different chemical compositions (gelatin and hydroxypropyl methylcellulose (HPMC)) and distinct inherent characteristics from manufacturing (thermally and cold-gelled) were exposed to various environmental conditions (11%, 22% and 51% RH). Their resulting properties were characterized and tribo-charging behavior was measured against stainless steel and PVC. It was observed that all capsule materials tended to charge to a higher extent when in contact with PVC. The tribo-charging of the thermally gelled HPMC capsules (Vcaps® Plus) was more similar to the gelatin capsules (Quali-G™-I) than to their HPMC cold-gelled counterparts (Quali-V®-I). The sorption of water by the capsules at different relative humidities notably impacted their properties and tribo-charging behavior. Different interactions between the tested materials and water molecules were identified and are proposed to be the driver of distinct charging behaviors. Finally, we showed that depending on the capsule types, distinct environmental conditions are necessary to mitigate charging and assure optimal behavior of the capsules.


Assuntos
Fenômenos Químicos , Inaladores de Pó Seco/métodos , Derivados da Hipromelose/química , Eletricidade Estática , Administração por Inalação , Cápsulas , Avaliação Pré-Clínica de Medicamentos/métodos , Excipientes/química , Excipientes/metabolismo , Gelatina/química , Gelatina/metabolismo , Derivados da Hipromelose/metabolismo , Pós
8.
Amino Acids ; 51(9): 1397-1407, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31471743

RESUMO

Acetoanaerobium sticklandii DSM 519 is a hyper-ammonia-producing anaerobe. It has the ability to produce organic solvents and acids from protein catabolism through Stickland reactions and specialized pathways. Nevertheless, its protein catabolism-directed biofuel production has not yet been understood. The present study aimed to decipher such growth-associated metabolic potential of this organism at different growth phases using metabolic profiling. A seed culture of this organism was grown separately in metabolic assay media supplemented with gelatin and or a mixture of amino acids. The extracellular metabolites produced by this organism were qualitatively analyzed by gas chromatography-mass spectrometry platform. The residual amino acids after protein degradation and amino acids assimilation were identified and quantitatively measured by high-performance liquid chromatography (HPLC). Organic solvents and acids produced by this organism were detected and the quantity of them determined with HPLC. Metabolic profiling data confirmed the presence of amino acid catabolic products including tyramine, cadaverine, methylamine, and putrescine in fermented broth. It also found products including short-chain fatty acids and organic solvents of the Stickland reactions. It reported that amino acids were more appropriate for its growth yield compared to gelatin. Results of quantitative analysis of amino acids indicated that many amino acids either from gelatin or amino acid mixture were catabolised at a log-growth phase. Glycine and proline were poorly consumed in all growth phases. This study revealed that apart from Stickland reactions, a specialized system was established in A. sticklandii for protein catabolism-directed biofuel production. Acetone-butanol-ethanol (ABE), acetic acid, and butyric acid were the most important biofuel components produced by this organism. The production of these components was achieved much more on gelatin than amino acids. Thus, A. sticklandii is suggested herein as a potential organism to produce butyric acid along with ABE from protein-based wastes (gelatin) in bio-energy sectors.


Assuntos
Aminoácidos/metabolismo , Biocombustíveis , Clostridiales/metabolismo , Gelatina/metabolismo , Ácido Acético/metabolismo , Acetona/metabolismo , Aminoácidos/química , Butanóis/metabolismo , Ácido Butírico/metabolismo , Cromatografia Líquida de Alta Pressão , Etanol/metabolismo , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Solventes/química , Solventes/metabolismo
9.
J Texture Stud ; 50(5): 400-409, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31063585

RESUMO

The gelling and structural properties of microbial transglutaminase (MTGase) and pectin modified fish gelatin were compared to investigate their performances on altering fish gelatin properties. Our results showed that within a certain concentration, both MTGase and pectin had positive effects on the gelation point, melting point, gel strength, textural, and swelling properties of fish gelatin. Particularly, low pectin content (0.5%, w/v) could give fish gelatin gels the highest values of gel strength, melting temperature, and hardness. Meantime, flow behavior results showed that both MTGase and pectin could increase fish gelatin viscosity without changing its fluid characteristic, but the latter gave fish gelatin higher viscosity. Both MTGase and pectin could increase the lightness of fish gelatin gels but decreases its transparency. More importantly, fluorescence and UV absorbance spectra, particle size distribution, and confocal microscopy results indicated that MTGase and pectin could change the structure of fish gelatin with the formation of large aggregates. Compared with MTGae modified fish gelatin, pectin could endow fish gelatin had similar gel strength, thermal and textural properties to pig skin gelatin.


Assuntos
Peixes , Gelatina/química , Gelatina/metabolismo , Géis/química , Pectinas/química , Transglutaminases/metabolismo , Animais , Cor , Manipulação de Alimentos/métodos , Dureza , Tamanho da Partícula , Pele/química , Suínos , Temperatura , Resistência à Tração , Viscosidade
10.
Prep Biochem Biotechnol ; 49(5): 501-509, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30945982

RESUMO

A new collagenase producing a strain of Bacillus cereus, isolated from the pollen of a bee of Amazon Region (Brazil), had its enzyme characterized and the production medium composition and culture conditions enhanced. A two-level design on three factors, namely initial medium pH, the substrate (gelatin) concentration and agitation intensity, allowed identifying the first two variables as the most significant ones, while a central composite design (CCD) was subsequently used to identify their optimal levels. Statistics highlighted maximized collagenolytic activity when substrate concentration and initial medium pH were selected at their highest levels (positive effects), whereas agitation intensity at the lowest (negative effect). Triplicate runs performed under predicted optimal conditions (pH 7.8 and 1.7% gelatin concentration) yielded a collagenolytic activity (305.39 ± 5.15 U) 4.6- to 15-fold those obtained with the preliminary design. The enzyme displayed optimum activity at 45 °C and pH 7.2, was stable over wide ranges of pH values and temperatures (7.2-11.0 and 25-50 °C, respectively) and was strongly inhibited by 10 mM phenylmethylsulphonyl fluoride. The zymogram showed two prominent bands at 50 and 76 kDa. These results are a first attempt to elucidate the features of this new collagenase, its production conditions, and possible scale-up.


Assuntos
Bacillus cereus/enzimologia , Colagenases/química , Animais , Bacillus cereus/genética , Técnicas de Tipagem Bacteriana , Abelhas , Brasil , Colagenases/isolamento & purificação , Meios de Cultura , Precursores Enzimáticos/química , Precursores Enzimáticos/isolamento & purificação , Gelatina/metabolismo , Concentração de Íons de Hidrogênio , Inibidores de Metaloproteinases de Matriz/química , Pólen/microbiologia , RNA Ribossômico 16S/genética , Temperatura
11.
Appl Microbiol Biotechnol ; 103(7): 2973-2984, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30805670

RESUMO

Microbial transglutaminase (mTGase) is commonly known in the food industry as meat glue due to its incredible ability to "glue" meat proteins together. Aside from being widely exploited in the meat processing industries, mTGase is also widely applied in other food and textile industries by catalysing the formation of isopeptide bonds between peptides or protein substrates. The advancement of technology has opened up new avenues for mTGase in the field of biomedical engineering. Efforts have been made to study the structural properties of mTGase in order to gain an in-depth understanding of the structure-function relationship. This review highlights the developments in mTGase engineering together with its role in biomedical applications including biomaterial fabrication for tissue engineering and biotherapeutics.


Assuntos
Bioengenharia/métodos , Terapia Biológica , Streptomyces/enzimologia , Engenharia Tecidual , Transglutaminases/biossíntese , Materiais Biocompatíveis , Quitosana/metabolismo , Colágeno/metabolismo , Indústria Alimentícia , Gelatina/metabolismo , Transglutaminases/genética
12.
J Sci Food Agric ; 97(14): 4898-4903, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28390071

RESUMO

BACKGROUND: With the continuous improvement in material life, the generation of fish by-products and the market demand for calcium supplements have been increasing in China. Therefore a calcium-chelating peptide complex (CPC) from tilapia skins was prepared and its effect on calcium (Ca)-deficient mice was investigated. RESULTS: The molecular weight distribution of CPC mainly ranged from 2000 to 180 Da, and its contents of complete amino acids and free amino acids were 85.30 and 8.67% (w/w) respectively. Scanning electron microscopy images and Fourier transform infrared data revealed that Ca crystals were bound with gelatin hydrolysates via interaction between Ca ions and NH/CN groups. When Ca-deficient mice were fed CPC and CaCO3 respectively for 4 weeks, no significant differences in serum biochemistry or bone mineral density were found. However, the length, weight, Ca content and hydroxyproline content of the femur, Ca absorption and body weight gain of mice fed CPC were significantly higher than those of mice fed CaCO3 . CONCLUSION: It is concluded that the prepared CPC could promote bone formation via better bioavailability of Ca and an increase in bone collagen. © 2017 Society of Chemical Industry.


Assuntos
Cálcio da Dieta/metabolismo , Cálcio/metabolismo , Proteínas de Peixes/química , Peptídeos/metabolismo , Pele/química , Aminoácidos/análise , Aminoácidos/metabolismo , Animais , Cálcio/química , Cálcio da Dieta/análise , Colágeno/metabolismo , Fêmur/metabolismo , Proteínas de Peixes/metabolismo , Gelatina/química , Gelatina/metabolismo , Masculino , Camundongos , Peptídeos/química , Tilápia
13.
Toxins (Basel) ; 8(10)2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27754342

RESUMO

Snake venom metalloproteinases (SVMPs) play key biological roles in prey immobilization and digestion. The majority of these activities depend on the hydrolysis of relevant protein substrates in the tissues. Hereby, we describe several isoforms and a cDNA clone sequence, corresponding to PII SVMP homologues from the venom of the Central American pit viper Bothriechis lateralis, which have modifications in the residues of the canonical sequence of the zinc-binding motif HEXXHXXGXXH. As a consequence, the proteolytic activity of the isolated proteins was undetectable when tested on azocasein and gelatin. These PII isoforms comprise metalloproteinase and disintegrin domains in the mature protein, thus belonging to the subclass PIIb of SVMPs. PII SVMP homologues were devoid of hemorrhagic and in vitro coagulant activities, effects attributed to the enzymatic activity of SVMPs, but induced a mild edema. One of the isoforms presents the characteristic RGD sequence in the disintegrin domain and inhibits ADP- and collagen-induced platelet aggregation. Catalytically-inactive SVMP homologues may have been hitherto missed in the characterization of snake venoms. The presence of such enzymatically-inactive homologues in snake venoms and their possible toxic and adaptive roles deserve further investigation.


Assuntos
Metaloproteases/isolamento & purificação , Peptídeos/isolamento & purificação , Venenos de Serpentes/química , Viperidae , Adulto , Sequência de Aminoácidos , Animais , Coagulação Sanguínea/efeitos dos fármacos , Caseínas/metabolismo , Clonagem Molecular , DNA Complementar/genética , Edema , Gelatina/metabolismo , Hemorragia , Humanos , Metaloproteases/química , Metaloproteases/genética , Metaloproteases/farmacologia , Camundongos , Modelos Moleculares , Peptídeos/química , Peptídeos/genética , Peptídeos/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Domínios Proteicos , Proteólise , Zinco/metabolismo
14.
Plant Physiol ; 169(3): 2048-63, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26378099

RESUMO

Contractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils. As reported here, this hypothesis was corroborated by sequential extraction and analysis of cell wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid aspen (Populus tremula × Populus tremuloides). ß-(1→4)-Galactan and type II arabinogalactan were the main large matrix polymers retained by cellulose microfibrils that were specifically found in tension wood. Xyloglucan was detected mostly in oligomeric form in the alkali-labile fraction and was enriched in tension wood. ß-(1→4)-Galactan and rhamnogalacturonan I backbone epitopes were localized in the gelatinous cell wall layer. Type II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl)glucuronic acid and galactose in tension wood than in normal wood. Thus, ß-(1→4)-galactan and a specialized form of type II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are the main candidate polymers for the generation of tensional stresses by the entrapment mechanism. We also found high ß-galactosidase activity accompanying tension wood differentiation and propose a testable hypothesis that such activity might regulate galactan entrapment and, thus, mechanical properties of cell walls in tension wood.


Assuntos
Celulose/metabolismo , Galactanos/metabolismo , Microfibrilas/metabolismo , Modelos Biológicos , Polissacarídeos/metabolismo , Populus/metabolismo , Biopolímeros/química , Biopolímeros/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Celulose/química , Galactanos/química , Galactose/metabolismo , Gelatina/química , Gelatina/metabolismo , Glucanos/química , Glucanos/metabolismo , Microfibrilas/química , Pectinas/química , Pectinas/metabolismo , Polissacarídeos/química , Populus/química , Populus/citologia , Madeira/química , Madeira/citologia , Madeira/metabolismo , Xilanos/química , Xilanos/metabolismo , beta-Galactosidase/metabolismo
15.
Food Funct ; 6(6): 1887-92, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25946069

RESUMO

In our previous study, Atlantic salmon skin gelatin hydrolysed with flavourzyme possessed 42.5% dipeptidyl-peptidase (DPP)-IV inhibitory activity at a concentration of 5 mg mL(-1). The oral administration of the hydrolysate (FSGH) at a single dose of 300 mg per day in streptozotocin (STZ)-induced diabetic rats for 5 weeks was evaluated for its antidiabetic effect. During the 5-week experiment, body weight increased, and the food and water intake was reduced by FSGH in diabetic rats. The daily administration of FSGH for 5 weeks was effective for lowering the blood glucose levels of diabetic rats during an oral glucose tolerance test (OGTT). After the 5-week treatment, plasma DPP-IV activity was inhibited; the plasma activity of glucagon-like peptide-1 (GLP-1), insulin, and the insulin-to-glucagon ratio were increased by FSGH in diabetic rats. The results indicate that FSGH has the function of inhibiting GLP-1 degradation by DPP-IV, resulting in the enhancement of insulin secretion and improvement of glycemic control in STZ-induced diabetic rats.


Assuntos
Diabetes Mellitus Tipo 2/dietoterapia , Suplementos Nutricionais , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Proteínas de Peixes/uso terapêutico , Gelatina/uso terapêutico , Hidrolisados de Proteína/uso terapêutico , Salmo salar , Animais , Colúmbia Britânica , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Suplementos Nutricionais/economia , Dipeptidil Peptidase 4/sangue , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/economia , Inibidores da Dipeptidil Peptidase IV/isolamento & purificação , Inibidores da Dipeptidil Peptidase IV/metabolismo , Endopeptidases/metabolismo , Proteínas de Peixes/economia , Proteínas de Peixes/isolamento & purificação , Proteínas de Peixes/metabolismo , Indústria de Processamento de Alimentos/economia , Gelatina/economia , Gelatina/isolamento & purificação , Gelatina/metabolismo , Glucagon/antagonistas & inibidores , Glucagon/sangue , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hiperglicemia/prevenção & controle , Resíduos Industriais/análise , Resíduos Industriais/economia , Insulina/agonistas , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Masculino , Hidrolisados de Proteína/economia , Hidrolisados de Proteína/isolamento & purificação , Hidrolisados de Proteína/metabolismo , Ratos Sprague-Dawley , Pele/química
16.
Oral Dis ; 21(5): 652-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25704205

RESUMO

OBJECTIVES: To investigate whether low-level laser therapy (LLLT) alters the expression and activity of MMP-2 and MMP-9 in the trigeminal ganglion (TG) during different stages of temporomandibular joint (TMJ) inflammation in rats. It also evaluated whether LLLT modifies mechanical allodynia and orofacial hyperalgesia. MATERIALS AND METHODS: Wistar rats (±250 g) were divided into groups that received saline (SAL) or complete Freund's adjuvant (CFA, 50 µl) in the TMJ, and that later underwent LLLT (20 J cm(-2) ) at their TMJ or not (groups SAL, SAL + LLLT, CFA, and CFA + LLLT). LLLT was applied on days 3, 5, 7, and 9 after SAL or CFA. Mechanical allodynia was evaluated on days 1, 3, 5, 7, and 10; orofacial hyperalgesia was assessed on day 10. Gelatin zymography and in situ zymography aided quantification of MMPs in the TG. RESULTS: Low-level laser therapy abolished the reduction in the mechanical orofacial threshold and the increase in orofacial rubbing during the orofacial formalin test induced by CFA. LLLT also decreased the CFA-induced rise in the levels of MMP-9 and MMP-2 as well as the gelatinolytic activity in the TG. CONCLUSION: Low-level laser therapy could constitute an adjuvant therapy to treat temporomandibular disorders and prevent inflammation-induced alterations in the levels of MMP-2 and MMP-9 and in the gelatinolytic activity in TGs.


Assuntos
Artrite Experimental/terapia , Colagenases/biossíntese , Terapia com Luz de Baixa Intensidade/métodos , Transtornos da Articulação Temporomandibular/enzimologia , Transtornos da Articulação Temporomandibular/terapia , Articulação Temporomandibular/inervação , Gânglio Trigeminal/enzimologia , Animais , Colagenases/metabolismo , Dor Facial/terapia , Adjuvante de Freund/farmacologia , Gelatina/metabolismo , Hiperalgesia/terapia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ratos , Ratos Wistar , Cloreto de Sódio/administração & dosagem , Articulação Temporomandibular/efeitos dos fármacos , Articulação Temporomandibular/cirurgia , Transtornos da Articulação Temporomandibular/patologia , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/patologia
17.
Carbohydr Polym ; 117: 853-861, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25498709

RESUMO

The physicochemical properties of flax fiber cell wall rhamnogalacturonan I (RG-I) and its fragments, obtained after galactanase treatment (fraction G1), were characterized. RG-I retains its hydrodynamic volume after its molecular weight decreases by approximately half, as revealed by SEC. Two techniques, DLS and NMR, with different principles of diffusion experiment were used to establish the reasons for this property of RG-I. Three possible types of particles were revealed by DLS depending on the concentration of the RG-I and G1 solutions (2-2.5, 15-20, and 150-200 nm). It was determined by BPP-LED experiments that the backbone of the RG-I was 1.3-1.9-fold more mobile than the side chains. The obtained data suggest a novel type of pectin spatial organization-the formation of RG-I associates with the backbone at the periphery and the interaction between the side chains to form a core zone.


Assuntos
Parede Celular/química , Linho/citologia , Gelatina/metabolismo , Pectinas/química , Sequência de Carboidratos , Galactose/química , Hidrodinâmica , Dados de Sequência Molecular , Pectinas/metabolismo , beta-Galactosidase/metabolismo
18.
J Med Food ; 18(4): 503-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24404975

RESUMO

The present report examined the effects of essential oils (EOs) from Satureja hortensis L. and Salvia fruticosa M. on the viability and outer membrane permeability of the periodontopathogen Fusobacterium nucleatum, a key bacteria in oral biofilms, as well as the inhibition of matrix metalloproteinase (MMP-2 and MMP-9) activities in epithelial cells exposed to such bacteria. Membrane permeability was tested by measuring the N-phenyl-1-naphthylamine uptake and bacterial viability by using the commercially available Live/Dead BacLight kit. In addition, gelatin zymography was performed to analyze the inhibition of F. nucleatum-induced MMP-2 and MMP-9 activities in HaCaT cells. We showed that 5, 10, and 25 µL/mL of Sat. hortensis L. EO decreased the ratio of live/dead bacteria and increased the outer membrane permeability in a range of time from 0 to 5 min. Treatments with 10 and 25 µL/mL of Sal. fruticosa M. also increased the membrane permeability and 5, 10, and 25 µL/mL of both EOs inhibited MMP-2 and MMP-9 activities in keratinocytes induced after exposure of 24 h to F. nucleatum. We conclude that antibacterial and antigelatinolytic activities of Sat. hortensis L. EO have potential for the treatment of periodontal inflammation.


Assuntos
Antibacterianos/farmacologia , Células Epiteliais/microbiologia , Fusobacterium nucleatum/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Satureja/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Fusobacterium nucleatum/crescimento & desenvolvimento , Gelatina/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/enzimologia , Queratinócitos/microbiologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo
19.
Biomed Res Int ; 2013: 217026, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24063001

RESUMO

OBJECTIVES: The development of intimal hyperplasia and graft failure is an important problem in cardiac surgery. A fundamental process in intimal hyperplasia is the degradation of extracellular matrix by metalloproteases which induces the vascular smooth-muscle cells migration and sets the scene for graft atherosclerosis. This study investigated whether doxycycline, a metalloproteases inhibitor, can prevent the intimal hyperplasia occurrence in cultured human internal mammary artery, thus extending graft patency. METHODS: Segments of internal mammary artery from 20 consecutive patients were prepared and cultured for 2 weeks in serum-supplemented medium (control) or in medium supplemented with 10⁻5 M and 10⁻6 M doxycycline concentrations. Tissues were fixed, sectioned, and stained, and neointimal thickness was measured by computer-aided image analysis. Further sections were cultured and prepared for gel enzymography to measure the matrix metalloproteinase-2 and -9 levels. RESULTS: At the end of the culture period, neointimal thickness was significantly (P = 0.001) dose-dependently reduced in samples treated with doxycycline when compared with controls. Gelatin enzymography demonstrated a reduction in values for both latent and active forms of metalloproteases. CONCLUSIONS: Doxycycline, in a model of internal mammary artery intimal hyperplasia, has a specific role in inhibiting metalloproteases activity and may prevent graft stenosis.


Assuntos
Doxiciclina/farmacologia , Doxiciclina/uso terapêutico , Artéria Torácica Interna/patologia , Artéria Torácica Interna/fisiopatologia , Túnica Íntima/patologia , Túnica Íntima/fisiopatologia , Linhagem Celular Tumoral , Gelatina/metabolismo , Humanos , Hiperplasia/tratamento farmacológico , Hiperplasia/patologia , Hiperplasia/fisiopatologia , Hiperplasia/prevenção & controle , Artéria Torácica Interna/efeitos dos fármacos , Túnica Íntima/efeitos dos fármacos , Grau de Desobstrução Vascular/efeitos dos fármacos
20.
Arthritis Res Ther ; 14(6): R240, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23127210

RESUMO

INTRODUCTION: Rheumatoid arthritis is an autoimmune arthritis characterized by joint destruction. Anti-citrullinated protein antibodies are pathologic in rheumatoid arthritis, but the role of the citrullinated proteins themselves is much less clear. Citrullination is the conversion of the arginine residues of a protein to citrulline. In the inflamed rheumatoid joint there is increased protein citrullination. Several proteins are citrullinated in rheumatoid arthritis, including collagen type II, fibrinogen, and fibronectin. Fibronectin is thought to mediate the adhesion of joint-invading synovial fibroblasts to the rheumatoid cartilage in addition to regulating other synovial fibroblast functions. However, the effect of citrullinated fibronectin on synovial fibroblasts is unknown. METHODS: To investigate the effect of citrullinated fibronectin on synovial fibroblast behavior, we cultured normal murine, arthritic murine, and human rheumatoid synovial fibroblasts. We then compared several synovial fibroblast functions in the presence of fibronectin versus citrullinated fibronectin. We assessed adhesion with time-lapse microscopy, migration with transwell assays, focal adhesion kinase and paxillin phosphorylation by western blot, and focal matrix degradation by fluorescent gelatin degradation. RESULTS: Normal synovial fibroblasts have impaired adhesion, spreading, migration, and integrin-mediated phosphorylation of focal adhesion kinase and paxillin on citrullinated fibronectin. Murine arthritic and human rheumatoid synovial fibroblasts also have impaired adhesion and spreading on citrullinated fibronectin, but focal matrix degradation is unaffected by citrullinated fibronectin. CONCLUSION: Citrullination of fibronectin alters synovial fibroblast behavior and may affect how these cells adhere to and invade the joint and travel through the bloodstream. This work suggests an important role for the interaction of synovial fibroblasts with citrullinated matrix in the pathophysiology of rheumatoid arthritis.


Assuntos
Movimento Celular , Citrulina/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Animais , Articulação do Tornozelo/citologia , Artrite/metabolismo , Artrite/patologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Western Blotting , Adesão Celular , Células Cultivadas , Fibroblastos/citologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Gelatina/metabolismo , Humanos , Integrinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Paxilina/metabolismo , Fosforilação , Líquido Sinovial/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA