Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2829-2840, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282943

RESUMO

Natural Cordyceps sinensis as an insect-fungal complex, which is developed after Ophiocordyceps sinensis infects a larva of Hepialidae family. Seventeen genotypes of O. sinensis have been identified in natural C. sinensis. This paper summarized the literature reports and GenBank database regarding occurrence and transcription of the mating-type genes of MAT1-1 and MAT1-2 idiomorphs in natural C. sinensis, in Hirsutella sinensis(GC-biased Genotype #1 of O. sinensis), to infer the mating pattern of O. sinensis in the lifecycle of natural C. sinensis. The mating-type genes and transcripts of MAT1-1 and MAT1-2 idiomorphs were identified in the metagenomes and metatranscriptomes of natural C. sinensis. However, their fungal sources are unclear because of co-colonization of several genotypes of O. sinensis and multiple fungal species in natural C. sinensis. The mating-type genes of MAT1-1 and MAT1-2 idiomorphs were differentially present in 237 H. sinensis strains, constituting the genetic control of the O. sinensis reproduction. Transcriptional control of the O. sinensis reproduction includes: differential transcription or silencing of the mating-type genes of MAT1-1 and MAT1-2 idiomorphs, and the MAT1-2-1 transcript with unspliced intron I that contains 3 stop codons. Research on the H. sinensis transcriptome demonstrated differential and complementary transcriptions of the mating-type genes of MAT1-1 and MAT1-2 idiomorphs in Strains L0106 and 1229, which may become mating partners to accomplish physiological heterothallism. The differential occurrence and transcription of the mating-type genes in H. sinensis are inconsistent with the self-fertilization hypothesis under homothallism or pseudohomothallism, but instead indicate the need of mating partners of the same H. sinensis species, either monoecious or dioecious, for physiological heterothallism, or heterospecific species for hybridization. Multiple GC-and AT-biased genotypes of O. sinensis were identified in the stroma, stromal fertile portion(densely covered with numerous ascocarps) and ascospores of natural C. sinensis. It needs to be further explored if the genome-independent O. sinensis genotypes could become mating partners to accomplish sexual reproduction. S. hepiali Strain FENG experienced differential transcription of the mating-type genes with a pattern complementary to that of H. sinensis Strain L0106. Additional evidence is needed to explore a hybridization possibility between S. hepiali and H. sinensis, whether they are able to break the interspecific reproductive isolation. Genotypes #13~14 of O. sinensis feature large DNA segment reciprocal substitutions and genetic material recombination between 2 heterospecific parental fungi, H. sinensis and an AB067719-type fungus, indicating a possibility of hybridization or parasexuality. Our analysis provides important information at the genetic and transcriptional levels regarding the mating-type gene expression and reproduction physiology of O. sinensis in the sexual life of natural C. sinensis and offers crucial reproductive physiology evidence, to assist in the design of the artificial cultivation of C. sinensis to supplement the increasing scarcity of natural resource.


Assuntos
Cordyceps , Cordyceps/genética , Genes Fúngicos Tipo Acasalamento/genética , Reprodução/genética
2.
PLoS One ; 15(1): e0221604, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31961875

RESUMO

Phytophthora infestans (Mont.) de Bary, a hemibiotrophic oomycete, has caused severe epidemics of late blight in tomato and potato crops around the world since the Irish Potato Famine in the 1840s. Breeding of late blight resistant cultivars is one of the most effective strategies to overcome this disruptive disease. However, P. infestans is able to break down host resistance and acquire resistance to various fungicides, possibly because of the existence of high genetic variability among P. infestans isolates via sexual and asexual reproduction. Therefore, to manage this disease, it is important to understand the genetic divergence of P. infestans isolates. In this study, we analyzed the genomes of P. infestans isolates collected from Egypt and Japan using various molecular approaches including the mating type assay and genotyping simple sequence repeats, mitochondria DNA, and effector genes. We also analyzed genome-wide single nucleotide polymorphisms using double-digest restriction-site associated DNA sequencing and whole genome resequencing (WGRS). The isolates were classified adequately using high-resolution genome-wide approaches. Moreover, these analyses revealed new clusters of P. infestans isolates in the Egyptian population. Monitoring the genetic divergence of P. infestans isolates as well as breeding of resistant cultivars would facilitate the elimination of the late blight disease.


Assuntos
Genes Fúngicos Tipo Acasalamento/genética , Sequenciamento de Nucleotídeos em Larga Escala , Phytophthora infestans/genética , Doenças das Plantas/microbiologia , DNA Mitocondrial/genética , Fungicidas Industriais/farmacologia , Genótipo , Solanum lycopersicum/microbiologia , Repetições de Microssatélites/genética , Phytophthora infestans/crescimento & desenvolvimento , Doenças das Plantas/genética , Análise de Sequência de DNA , Solanum tuberosum/microbiologia
3.
Plant Dis ; 102(11): 2074-2082, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30156961

RESUMO

Annual epidemics of Cercospora leaf spot (CLS), caused by the fungus Cercospora beticola, can result in substantial defoliation in table beet fields in New York. High allelic and genotypic diversity have been described within C. beticola populations; however, information on the temporal stability of populations is lacking. C. beticola isolates were obtained from symptomatic leaves in three table beet fields in successive years. Two of the fields were organic mixed-cropping farms and the third was managed conventionally in a broad-acre cropping system. C. beticola isolates (n = 304) were genotyped using 12 microsatellite markers. Genotypic diversity (Simpson's complement index = 0.178 to 0.990), allele frequencies, and indices of differentiation between years varied. Pairwise index of differentiation values ranged from 0.02 to 0.25 for clone-corrected data, and indicated significant genetic differentiation at Farm 2. No multilocus genotype was shared between years. The shift in multilocus genotypes between years questions the role of clonally reproducing primary inoculum. Collectively, these results suggest that a dominant inoculum source for initiating annual CLS epidemics is external to the field of interest. These findings have implications for CLS disease management in conventional and organic table beet production.


Assuntos
Ascomicetos/genética , Beta vulgaris/microbiologia , Variação Genética , Genética Populacional , Doenças das Plantas/microbiologia , Ascomicetos/isolamento & purificação , Ascomicetos/fisiologia , Frequência do Gene , Genes Fúngicos Tipo Acasalamento/genética , Deriva Genética , Genótipo , Técnicas de Genotipagem , Repetições de Microssatélites/genética , Tipagem de Sequências Multilocus , Técnicas de Tipagem Micológica , New York , Folhas de Planta/microbiologia
4.
Phytopathology ; 103(5): 445-59, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23113547

RESUMO

In total, 286 Verticillium dahliae isolates from mint, potato, and other hosts and substrates were characterized for mating type, vegetative compatibility group (VCG), and multilocus microsatellite haplotype to determine population genetic structure among populations infecting mint and potato. Populations from mint and potato fit a clonal reproductive model, with all isolates a single mating type (MAT1-2) and multiple occurrences of the same haplotypes. Haplotype H02 represented 88% of mint isolates and was primarily VCG2B, while haplotype H04 represented 70% of potato isolates and was primarily VCG4A. Haplotypes H02 and H04 typically caused severe disease on mint and potato, respectively, in greenhouse assays regardless of host origin. Principal coordinate analysis and analysis of molecular variance indicated that mint and potato populations were significantly genetically diverged (P = 0.02), and identification of private alleles and estimation of migration rates suggested restricted gene flow. Migration was detected between infected potato plants and seed tubers, infested tare soil, and field soils. Genetic differentiation of V. dahliae from mint and potato may be due to the occurrence of a single mating type and differences in VCG. Populations of V. dahliae in potato and mint were characterized by the presence of aggressive, clonally reproducing haplotypes which are widely distributed in commercial mint and potato production.


Assuntos
Variação Genética , Mentha/microbiologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Verticillium/genética , Alelos , DNA Fúngico/genética , Fluxo Gênico , Genes Fúngicos Tipo Acasalamento/genética , Genótipo , Haplótipos , Repetições de Microssatélites/genética , Mutação , Filogenia , Verticillium/classificação , Verticillium/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA