Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 23, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117315

RESUMO

The potential active chemicals found in medicinal plants, which have long been employed as natural medicines, are abundant. Exploring the genes responsible for producing these compounds has given new insights into medicinal plant research. Previously, the authentication of medicinal plants was done via DNA marker sequencing. With the advancement of sequencing technology, several new techniques like next-generation sequencing, single molecule sequencing, and fourth-generation sequencing have emerged. These techniques enshrined the role of molecular approaches for medicinal plants because all the genes involved in the biosynthesis of medicinal compound(s) could be identified through RNA-seq analysis. In several research insights, transcriptome data have also been used for the identification of biosynthesis pathways. miRNAs in several medicinal plants and their role in the biosynthesis pathway as well as regulation of the disease-causing genes were also identified. In several research articles, an in silico study was also found to be effective in identifying the inhibitory effect of medicinal plant-based compounds against virus' gene(s). The use of advanced analytical methods like spectroscopy and chromatography in metabolite proofing of secondary metabolites has also been reported in several recent research findings. Furthermore, advancement in molecular and analytic methods will give new insight into studying the traditionally important medicinal plants that are still unexplored.


Assuntos
MicroRNAs , Plantas Medicinais , Plantas Medicinais/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Genes Virais , Zidovudina
2.
Nat Commun ; 12(1): 5398, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518545

RESUMO

As one of the largest biotechnological applications, activated sludge (AS) systems in wastewater treatment plants (WWTPs) harbor enormous viruses, with 10-1,000-fold higher concentrations than in natural environments. However, the compositional variation and host-connections of AS viruses remain poorly explored. Here, we report a catalogue of ~50,000 prokaryotic viruses from six WWTPs, increasing the number of described viral species of AS by 23-fold, and showing the very high viral diversity which is largely unknown (98.4-99.6% of total viral contigs). Most viral genera are represented in more than one AS system with 53 identified across all. Viral infection widely spans 8 archaeal and 58 bacterial phyla, linking viruses with aerobic/anaerobic heterotrophs, and other functional microorganisms controlling nitrogen/phosphorous removal. Notably, Mycobacterium, notorious for causing AS foaming, is associated with 402 viral genera. Our findings expand the current AS virus catalogue and provide reference for the phage treatment to control undesired microorganisms in WWTPs.


Assuntos
Ciclo do Carbono , Células Procarióticas/virologia , Esgotos/virologia , Viroma/genética , Vírus/genética , Purificação da Água/métodos , Archaea/classificação , Archaea/genética , Archaea/virologia , Bactérias/classificação , Bactérias/genética , Bactérias/virologia , Metabolismo Energético/genética , Genes Virais/genética , Variação Genética , Interações Hospedeiro-Patógeno , Fases de Leitura Aberta/genética , Células Procarióticas/metabolismo , Análise de Sequência de DNA/métodos , Esgotos/microbiologia , Vírus/classificação , Vírus/metabolismo
3.
Int J Biol Sci ; 17(6): 1588-1599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33907523

RESUMO

At present, the COVID-19 pandemic is running rampant, having caused 2.18 million deaths. Characterizing the global patent landscape of coronaviruses is essential not only for informing research and policy, given the current pandemic crisis, but also for anticipating important future developments. While patents are a promising indicator of technological knowledge production widely used in innovation research, they are often an underused resource in biological sciences. In this study, we present a patent landscape for the seven coronaviruses known to infect humans. The information included in this paper provides a strong intellectual groundwork for the ongoing development of therapeutic agents and vaccines along with a deeper discussion of intellectual property rights under epidemic conditions. The results show that there has been a rapid increase in human coronavirus patents, especially COVID-19 patents. China and the United States play an outstanding role in global cooperation and patent application. The leading role of academic institutions and government is increasingly apparent. Notable technological issues related to human coronaviruses include pharmacochemical treatment, diagnosis of viral infection, viral-vector vaccines, and traditional Chinese medicine. Furthermore, a critical challenge lies in balancing commercial competition, enterprise profit, knowledge sharing, and public interest.


Assuntos
COVID-19/virologia , Internacionalidade , Patentes como Assunto , SARS-CoV-2/genética , Genes Virais , Humanos
4.
Int J Hyperthermia ; 38(1): 202-212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33682604

RESUMO

Increased transmissibility of the pandemic severe acute respiratory coronavirus 2 (SARS-CoV-2) has been noted to occur at lower ambient temperatures. This is seemingly related to a better replication of most respiratory viruses, including SARS-CoV-2, at lower-than-core body temperatures (i.e., 33 °C vs 37 °C). Also, intrinsic characteristics of SARS-CoV-2 make it a heat-susceptible pathogen. Thermotherapy has successfully been used to combat viral infections in plants which could otherwise result in great economic losses; 90% of viruses causing infections in plants are positive-sense single-stranded ribonucleic acid (+ssRNA) viruses, a characteristic shared by SARS-CoV-2. Thus, it is possible to envision the use of heat-based interventions (thermotherapy or mild-temperature hyperthermia) in patients with COVID-19 for which moderate cycles (every 8-12 h) of mild-temperature hyperthermia (1-2 h) have been proposed. However, there are potential safety and mechanistic concerns which could limit the use of thermotherapy only to patients with mild-to-moderate COVID-19 to prevent disease progression rather than to treat patients who have already progressed to severe-to-critical COVID-19. Here, we review the characteristics of SARS-CoV-2 which make it a heat-susceptible virus, potential host mechanisms which could be enhanced at higher temperatures to aid viral clearance, and how thermotherapy could be investigated as a modality of treatment in patients with COVID-19 while taking into consideration potential risks.


Assuntos
COVID-19/terapia , Hipertermia Induzida , Animais , Temperatura Corporal , COVID-19/virologia , Genes Virais , Humanos , Hipertermia/imunologia , Plantas/virologia , Interferência de RNA , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
5.
Braz J Microbiol ; 52(1): 219-227, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33410101

RESUMO

We described the complete genome sequence of a novel baculovirus isolate of species Buzura suppressaria nucleopolyhedrovirus, called by isolate CNPSo-25. The occlusion bodies were found to be polyhedral in shape and to contain virions with singly embedded nucleocapsids. The size of the genome is 121,377 bp with a G+C content of 36.7%. We annotated 131 ORFs that cover 90.42% of the genome. Moreover, phylogenetic inference indicated that CNPSo-25 is a member of genus Alphabaculovirus that clustered together with two other Chinese isolates of the same species. We called the virus by Biston suppressaria nucleopolyhedrovirus isolate CNPSo-25 (BisuNPV-CNPSo-25), as Buzura was placed inside the lepidopteran genus Biston. As expected, we detected intra-population variability in the virus sample when the novel isolate was compared to the Chinese isolates: 292 single nucleotide variants were found in the genome, with 181 affecting the protein product. The closest representatives of other species to BisuNPV-CNPSo-25 was found to be Sucra jujuba nucleopolyhedrovirus and Hyposidra talaca nucleopolyhedrovirus, two other virus isolates of geometrid caterpillars. The study of baculovirus genomes is of importance for the development of tools for insect pest biological control and biotechnology.


Assuntos
Genoma Viral , Genômica , Mariposas/virologia , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/genética , Animais , Composição de Bases , Genes Virais/genética , Nucleopoliedrovírus/isolamento & purificação , Filogenia , Análise de Sequência de DNA , Chá , Vírion , Sequenciamento Completo do Genoma
6.
ACS Appl Bio Mater ; 4(7): 5669-5677, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35006751

RESUMO

The rapid and accurate monitoring of viral genes plays an important role in the area of disease diagnosis, biomedical research, and food safety. Herein, we successfully designed a sensing system that combined the technologies of target DNA recycling amplification, magnetic separation, and in situ formation of fluorescent copper nanoclusters (CuNCs) for viral DNA analysis. In the presence of target viral DNA (tDNA), a large quantity of output DNA (oDNA) was produced from hairpin DNA (hDNA) through an exonuclease III-assisted target recycling amplification strategy. Magnetic beads (MBs) labeled with capture DNA (cDNA) were hybridized with oDNA, and the partially complementary oDNA served as a bridge that could link AT-rich dsDNA on the surface of MBs, which led to a decrease of AT-rich dsDNA in solution after magnetic separation. On account of the lack of AT-rich dsDNA as a template in solution, in situ formation of fluorescent CuNCs was blocked, which resulted in a decrease in the fluorescence intensity at 590 nm. Therefore, taking advantage of one-step magnetic separation and in situ formation of CuNCs, the target viral DNA was sensitively and specifically detected in a linear range from 5 pM to 5 nM with a detection limit of 1 pM. The MB-based platform was not only reusable but also achieved magnetic separation, which could eliminate interferences in complex samples. The assay combining the MB-based probe with fluorescent CuNCs provided a universal, label-free, and reusable platform for viral DNA detection.


Assuntos
Cobre , DNA Viral , DNA Viral/genética , Genes Virais , Fenômenos Magnéticos , Técnicas de Amplificação de Ácido Nucleico
7.
Viruses ; 14(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062209

RESUMO

Klebsiella pneumoniae is a human pathogen that worsens the prognosis of many immunocompromised patients. Here, we annotated and compared the genomes of two lytic phages that infect clinical strains of K. pneumoniae (vB_KpnM-VAC13 and vB_KpnM-VAC66) and phenotypically characterized vB_KpnM-VAC66 (time of adsorption of 12 min, burst size of 31.49 ± 0.61 PFU/infected cell, and a host range of 20.8% of the tested strains). Transmission electronic microscopy showed that vB_KpnM-VAC66 belongs to the Myoviridae family. The genomic analysis of the phage vB_KpnM-VAC66 revealed that its genome encoded 289 proteins. When compared to the genome of vB_KpnM-VAC13, they showed a nucleotide similarity of 97.56%, with a 93% of query cover, and the phylogenetic study performed with other Tevenvirinae phages showed a close common ancestor. However, there were 21 coding sequences which differed. Interestingly, the main differences were that vB_KpnM-VAC66 encoded 10 more homing endonucleases than vB_KpnM-VAC13, and that the nucleotidic and amino-acid sequences of the L-shaped tail fiber protein were highly dissimilar, leading to different three-dimensional protein predictions. Both phages differed significantly in their host range. These viruses may be useful in the development of alternative therapies to antibiotics or as a co-therapy increasing its antimicrobial potential, especially when addressing multidrug resistant (MDR) pathogens.


Assuntos
Genoma Viral , Klebsiella pneumoniae/virologia , Myoviridae/genética , Myoviridae/fisiologia , Bacteriólise , Genes Virais , Especificidade de Hospedeiro , Humanos , Infecções por Klebsiella/terapia , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/fisiologia , Terapia por Fagos , Fenótipo , Filogenia , Proteínas Virais/genética , Sequenciamento Completo do Genoma
8.
Drug Dev Ind Pharm ; 46(8): 1345-1353, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32643448

RESUMO

PURPOSE: Huashi Baidu formula (HSBDF) was developed to treat the patients with severe COVID-19 in China. The purpose of this study was to explore its active compounds and demonstrate its mechanisms against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through network pharmacology and molecular docking. METHODS: All the components of HSBDF were retrieved from the pharmacology database of TCM system. The genes corresponding to the targets were retrieved using UniProt and GeneCards database. The herb-compound-target network was constructed by Cytoscape. The target protein-protein interaction network was built using STRING database. The core targets of HSBDF were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The main active compounds of HSBDF were docked with SARS-CoV-2 and angiotensin converting enzyme II (ACE2). RESULTS: Compound-target network mainly contained 178 compounds and 272 corresponding targets. Key targets contained MAPK3, MAPK8, TP53, CASP3, IL6, TNF, MAPK1, CCL2, PTGS2, etc. There were 522 GO items in GO enrichment analysis (p < .05) and 168 signaling pathways (p < .05) in KEGG, mainly including TNF signaling pathway, PI3K-Akt signaling pathway, NOD-like receptor signaling pathway, MAPK signaling pathway, and HIF-1 signaling pathway. The results of molecular docking showed that baicalein and quercetin were the top two compounds of HSBDF, which had high affinity with ACE2. CONCLUSION: Baicalein and quercetin in HSBDF may regulate multiple signaling pathways through ACE2, which might play a therapeutic role on COVID-19.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular/métodos , Farmacologia Clínica/métodos , Pneumonia Viral/tratamento farmacológico , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/química , Betacoronavirus/genética , COVID-19 , China , Bases de Dados Factuais , Ontologia Genética , Marcação de Genes , Genes Virais/efeitos dos fármacos , Genes Virais/genética , Humanos , Medicina Tradicional Chinesa , Pandemias , Peptidil Dipeptidase A/efeitos dos fármacos , Peptidil Dipeptidase A/genética , SARS-CoV-2 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tratamento Farmacológico da COVID-19
9.
Artigo em Inglês | MEDLINE | ID: mdl-32117796

RESUMO

Influenza A virus (IAV) is a threat to public health due to its high mutation rate and resistance to existing drugs. In this investigation, 15 targets selected from an influenza virus-host interaction network were successfully constructed as a multitarget virtual screening system for new drug discovery against IAV using Naïve Bayesian, recursive partitioning, and CDOCKER methods. The predictive accuracies of the models were evaluated using training sets and test sets. The system was then used to predict active constituents of Compound Yizhihao (CYZH), a Chinese medicinal compound used to treat influenza. Twenty-eight compounds with multitarget activities were selected for subsequent in vitro evaluation. Of the four compounds predicted to be active on neuraminidase (NA), chlorogenic acid, and orientin showed inhibitory activity in vitro. Linarin, sinensetin, cedar acid, isoliquiritigenin, sinigrin, luteolin, chlorogenic acid, orientin, epigoitrin, and rupestonic acid exhibited significant effects on TNF-α expression, which is almost consistent with predicted results. Results from a cytopathic effect (CPE) reduction assay revealed acacetin, indirubin, tryptanthrin, quercetin, luteolin, emodin, and apigenin had protective effects against wild-type strains of IAV. Quercetin, luteolin, and apigenin had good efficacy against resistant IAV strains in CPE reduction assays. Finally, with the aid of Gene Ontology biological process analysis, the potential mechanisms of CYZH action were revealed. In conclusion, a compound-protein interaction-prediction system was an efficient tool for the discovery of novel compounds against influenza, and the findings from CYZH provide important information for its usage and development.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas/métodos , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Células A549 , Animais , Antivirais/química , Antivirais/metabolismo , Simulação por Computador , Efeito Citopatogênico Viral , Cães , Medicamentos de Ervas Chinesas/química , Genes Virais , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H3N2/fisiologia , Ligantes , Células Madin Darby de Rim Canino , Neuraminidase/antagonistas & inibidores , Relação Quantitativa Estrutura-Atividade , Vírus Reordenados/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Virais/antagonistas & inibidores
10.
Virology ; 542: 28-33, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31957663

RESUMO

Horizontal pollen transmission by the raspberry bushy dwarf virus 1b deletion mutant (RBΔ1bstop), which is defective in virus virulence, was significantly decreased compared to wild-type raspberry bushy dwarf virus (wtRBDV). We assessed accumulation of viral genomic (g) RNAs in pollen grains from RBΔ1bstop-infected plants and found that the pollen grains had less viral gRNA than those from wtRBDV-infected plants. In addition, pollen grains from 1b-expressing transgenic plants (1b-plants) infected with RBΔ1bstop were more efficient in horizontal virus transmission to healthy plants after pollination than pollen from RBΔ1bstop-infected wild type plants. Moreover, viral gRNA accumulation in pollen grains from RBΔ1bstop-infected 1b-plants was higher than in pollen from RBΔ1bstop-infected wild type plants. We suggest that 1b increases the amount of viral gRNAs released from elongating pollen grains.


Assuntos
Genes Virais , Doenças das Plantas/virologia , Vírus de Plantas/genética , Pólen/virologia , Rubus/virologia , Transmissão de Doença Infecciosa , Hibridização In Situ , Mutação , Vírus de Plantas/patogenicidade , Plantas Geneticamente Modificadas , Polinização , Vírus de RNA/genética , Vírus de RNA/patogenicidade , RNA Viral/genética , RNA Viral/metabolismo , Rubus/fisiologia , Nicotiana/genética , Nicotiana/fisiologia , Nicotiana/virologia
11.
Plant Dis ; 103(8): 2083-2089, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31210599

RESUMO

Beet necrotic yellow vein virus (BNYVV) is the causal agent of rhizomania, a disease of global importance to the sugar beet industry. The most widely implemented resistance gene to rhizomania to date is Rz1, but resistance has been circumvented by resistance-breaking (RB) isolates worldwide. In an effort to gain greater understanding of the distribution of BNYVV and the nature of RB isolates in Minnesota and eastern North Dakota, sugar beet plants were grown in 594 soil samples obtained from production fields and subsequently were analyzed for the presence of BNYVV as well as coding variability in the viral P25 gene, the gene previously implicated in the RB pathotype. Baiting of virus from the soil with sugar beet varieties possessing no known resistance to rhizomania resulted in a disease incidence level of 10.6% in the region examined. Parallel baiting analysis of sugar beet genotypes possessing Rz1, the more recently introgressed Rz2, and with the combination of Rz1 + Rz2 resulted in a disease incidence level of 4.2, 1.0, and 0.8%, respectively. Virus sequences recovered from sugar beet bait plants possessing resistance genes Rz1 and/or Rz2 exhibited reduced genetic diversity in the P25 gene relative to those recovered from the susceptible genotype while confirming the hypervariable nature of the coding for amino acids (AAs) at position 67 and 68 in the P25 protein. In contrast to previous reports, we did not find an association between any one specific AA signature at these positions and the ability to circumvent Rz1-mediated resistance. The data document ongoing virulence development in BNYVV populations to previously resistant varieties and provide a baseline for the analysis of genetic change in the virus population that may accompany the implementation of new resistance genes to manage rhizomania.


Assuntos
Beta vulgaris , Vírus de Plantas , Sequência de Aminoácidos , Beta vulgaris/virologia , Genes Virais/genética , Minnesota , North Dakota , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Prevalência
12.
Viruses ; 11(6)2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167478

RESUMO

Banana trees, citrus fruit trees, pome fruit trees, grapevines, mango trees, and stone fruit trees are major fruit trees cultured worldwide and correspond to nearly 90% of the global production of woody fruit trees. In light of the above, the present manuscript summarizes the viruses that infect the major fruit trees, including their taxonomy and morphology, and highlights selected viruses that significantly affect fruit production, including their genomic and biological features. The results showed that a total of 163 viruses, belonging to 45 genera classified into 23 families have been reported to infect the major woody fruit trees. It is clear that there is higher accumulation of viruses in grapevine (80/163) compared to the other fruit trees (each corresponding to less than 35/163), while only one virus species has been reported infecting mango. Most of the viruses (over 70%) infecting woody fruit trees are positive-sense single-stranded RNA (+ssRNA), and the remainder belong to the -ssRNA, ssRNA-RT, dsRNA, ssDNA and dsDNA-RT groups (each corresponding to less than 8%). Most of the viruses are icosahedral or isometric (79/163), and their diameter ranges from 16 to 80 nm with the majority being 25-30 nm. Cross-infection has occurred in a high frequency among pome and stone fruit trees, whereas no or little cross-infection has occurred among banana, citrus and grapevine. The viruses infecting woody fruit trees are mostly transmitted by vegetative propagation, grafting, and root grafting in orchards and are usually vectored by mealybug, soft scale, aphids, mites or thrips. These viruses cause adverse effects in their fruit tree hosts, inducing a wide range of symptoms and significant damage, such as reduced yield, quality, vigor and longevity.


Assuntos
Frutas/virologia , Vírus de Plantas , Árvores/virologia , Citrus/virologia , Classificação , Genes Virais , Genoma Viral , Malus/virologia , Mangifera/virologia , Musa/virologia , Filogenia , Doenças das Plantas/virologia , Vírus de Plantas/classificação , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/ultraestrutura , Prunus avium/virologia , Prunus domestica/virologia , Vitis/virologia
13.
Mar Biotechnol (NY) ; 21(4): 503-514, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31111339

RESUMO

Although alginate is known as an immunostimulant in shrimp, the comprehensive and simultaneous study on its activity to resolve the relationship of the hematological parameters, upregulation of immune-related gene expression, and resistance to pathogen has not been found in shrimp. We performed experiments to evaluate the effect and mechanism of alginate from S. siliquosum on Pacific white shrimp immune system. Hematological parameters were examined after oral administration of Na alginate in the shrimp. White spot syndrome virus (WSSV) was injected to the shrimp at 14 days, and its copy number was examined quantitatively (qRT-PCR). Immune-related gene expression was evaluated by qRT-PCR. Alginate increased some hematological immune parameters of shrimp. Before WSSV infection, expression levels of Toll and lectin genes were upregulated. The lectin gene were upregulated post infection, and the Toll gene in all the treatments were downregulated, except the shrimps fed with alginate at 6.0 g kg-1 at 48 h post infection (hpi). The shrimps fed with alginate at 6.0 g kg-1 were the most resistant and gave the least WSSV copy number at 48 hpi. Resistance of shrimps fed the alginate-supplemented diets against WSSV was significantly higher compared to that of the control treatment with 56% and 10% of survival rates, respectively. Oral administration of alginate did not affect the growth and total protein plasma. At 120 h post challenge, alginate treatment at 6.0 g kg-1 exhibited the highest survival rate. It is concluded that oral administration of alginate enhanced the innate immunity by upregulating immune-related gene expression. Consequently, the enhancement of the shrimp innate immunity improves the resistance against WSSV infection.


Assuntos
Alginatos/administração & dosagem , Resistência à Doença/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Penaeidae/efeitos dos fármacos , Sargassum/química , Vírus da Síndrome da Mancha Branca 1/efeitos dos fármacos , Administração Oral , Alginatos/isolamento & purificação , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Resistência à Doença/genética , Dosagem de Genes , Regulação da Expressão Gênica , Genes Virais/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Lectinas/genética , Lectinas/imunologia , Penaeidae/genética , Penaeidae/imunologia , Penaeidae/virologia , Transdução de Sinais , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Vírus da Síndrome da Mancha Branca 1/genética , Vírus da Síndrome da Mancha Branca 1/metabolismo
14.
PLoS One ; 14(4): e0214481, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31022205

RESUMO

The bacteriophage Mu Com is a small zinc finger protein that binds to its cognate mom mRNA and activates its translation. The Mom protein, in turn, elicits a chemical modification (momification) of the bacteriophage genome, rendering the DNA resistant to cleavage by bacterial restriction endonucleases, and thereby protecting it from defense mechanisms of the host. We examined the basis of specificity in Com-RNA interactions by in vitro selection and probing of RNA structure. We demonstrated that Com recognizes a sequence motif within a hairpin-loop structure of its target RNA. Our data support the model of Com interaction with mom mRNA, in which Com binds to the short hairpin structure proximal to the so-called translation inhibition structure. We also observed that Com binds its target motif weakly if it is within an RNA duplex. These results suggest that the RNA structure, in addition to its sequence, is crucial for Com to recognize its target and that RNA conformational changes may constitute another level of Mom regulation. We determined a crystal structure of a Com binding site variant designed to form an RNA duplex preferentially. Our crystal model forms a 19-mer self-complementary double helix composed of the canonical and non-canonical base pairs. The helical parameters of crystalized RNA indicate why Com may bind it more weakly than a monomeric hairpin form.


Assuntos
Bacteriófago mu/genética , RNA Complementar/química , Proteínas Virais/química , Dedos de Zinco , Pareamento de Bases , Sítios de Ligação , DNA/metabolismo , Genes Virais , Haemophilus , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Biossíntese de Proteínas , RNA Mensageiro/genética , Técnica de Seleção de Aptâmeros , Solventes , Transcrição Gênica
15.
BMC Vet Res ; 14(1): 113, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587768

RESUMO

BACKGROUND: Avian pathogenic Escherichia coli (APEC) are causative agent of extraintestinal infections, collectively known as colibacillosis, which results significant losses in poultry industries. The extraintestinal survival of E. coli is facilitated by numerous virulence factors which are coded by virulence genes. This study was conducted to find out the pattern of antibiotic resistance and virulence genes content in the APEC strains isolated from broiler chickens at National Avian Disease Investigation Laboratory and Veterinary Teaching Hospital, Rampur, Chitwan, Nepal. RESULTS: A total of 50 E. coli strains were isolated from 50 colibacillosis suspected broiler chickens. Out of 50 isolates of E. coli, 47 (94%) showed resistant to three or more antimicrobials. The highest levels (22%) of multidrug-resistant E. coli were observed for five different types of antimicrobials. Antibiogram profiles of 50 E. coli strains showed the maximum resistance to ampicillin (98%), followed by co-trimoxazole (90%), and doxycycline (62%). The highest intermediate resistance was shown by colistin (50%) and the highest sensitivity was against amikacin (84%), followed by nitrofurantoin (55%). Based on the genetic criteria, 45 (90%) E. coli isolates were considered as pathogenic (APEC) which contained more than five virulence genes. Out of total APEC genes detected, we found the combination of iss, iucD, hlyF, ompT, iroN, and iutA genes were mostly associated with the APEC and additionally, to some lesser extent irp2, papC, Cva/cvi, and tsh genes showed the critical role for virulent traits of APEC strains. CONCLUSION: In this study, high prevalent of antimicrobial resistant pattern was found with avian pathogenic E. coli strains isolated from broiler chickens. To our knowledge, this is the first molecular analysis which confirmed the prevalence of APEC strains in poultry sector in Nepal. These finding suggest the need of surveillance and intervention system to control misuse of antibiotics and APEC outbreak in the poultry farm.


Assuntos
Antibacterianos/uso terapêutico , Infecções por Escherichia coli/veterinária , Escherichia coli/efeitos dos fármacos , Doenças das Aves Domésticas/tratamento farmacológico , Animais , Galinhas/virologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Genes Virais/genética , Testes de Sensibilidade Microbiana/veterinária , Nepal/epidemiologia , Doenças das Aves Domésticas/microbiologia , Prevalência , Virulência/genética
16.
Viruses ; 10(3)2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29522425

RESUMO

The San Wu Huangqin Decoction (SWHD), a traditional Chinese medicine formula, is used to treat colds caused by exposure to wind-pathogen, hyperpyrexia, infectious diseases and cancer; moreover, it is used for detoxification. The individual herbs of SWHD, such as Sophora flavescens and Scutellaria baicalensis, exhibit a wide spectrum of antiviral, anti-inflammatory, antibacterial, anticancer and other properties. The Chinese compound formula of SWHD is composed of S. flavescens, S. baicalensis and Rehmannia glutinosa. However, the effect of SWHD on the influenza virus (IFV) and its mechanism remain unknown. The aim of this study was to evaluate, for the first time, whether SWHD could be used to treat influenza. Results showed that SWHD could effectively inhibit influenza A/PR/8/34 (H1N1) virus at different stages of viral replication (confirmed through antiviral effect assay, penetration assay, attachment assay and internalization assay) in vitro. It could reduce the infection of the virus in a dose- and time-dependent manner, as confirmed by observing the cell cytopathic effect and calculating the cell viability (p < 0.05). SWHD demonstrated better antiviral activity than oseltamivir in the evaluation of antiviral prophylaxis on influenza (p < 0.05). The antiviral activity of SWHD may be related to its regulation ability on the immune system. Western blot, real-time polymerase chain reaction and indirect immunofluorescence assay showed that the expression of the four target viral proteins of the IFV (namely, haemagglutinin (HA), neuraminidase (NA), nucleoprotein (NP) and matrix-2 (M2)) reduced significantly (p < 0.05). Moreover, SWHD (23.40 and 11.70 g/kg) significantly alleviated the clinical signs, reduced the mortality and increased the survival time of infected mice (p < 0.05). The lung index, virus titres, pathological changes in lung tissues and the expression of key proteins of the IFV in mice also decreased (p < 0.05). In conclusion, SWHD possessed anti-influenza activity. This work provided a new view of complementary therapy and drug discovery for clinical treatment.


Assuntos
Antivirais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções Respiratórias/prevenção & controle , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Antivirais/química , Núcleo Celular/metabolismo , Efeito Citopatogênico Viral/efeitos dos fármacos , Cães , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/química , Genes Virais/genética , Pulmão/patologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos , Estrutura Molecular , Nucleoproteínas/metabolismo , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia , Análise de Sobrevida , Transcrição Gênica/efeitos dos fármacos , Carga Viral/efeitos dos fármacos
17.
J Hepatol ; 66(6): 1149-1157, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28213165

RESUMO

BACKGROUND & AIMS: Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) persists as a stable episome in infected hepatocytes and serves as a template for the transcription of all viral genes. Due to the narrow host range of HBV, the development of a robust mouse model that supports cccDNA-dependent viral replication is a key hurdle in the development of novel HBV therapeutics. This study aimed to develop a novel tool to investigate HBV cccDNA. METHODS: Through minicircle technology, HBVcircle, a recombinant cccDNA, was easily generated and extracted from a genetically engineered E. coli strain. We characterized the performance of HBVcircle in cell culture by transfection and in immunocompetent mice by hydrodynamic injection (HDI). RESULTS: We demonstrated that HBVcircle formed authentic cccDNA-like molecules in vitro in transiently transfected hepatic cells and in vivo in mouse liver after HDI. HBVcircle supported high levels and persistent HBV replication. In addition, we investigated different factors affecting HBV in vivo replication and persistence, including the host genetic background, vector design and dosage, viral genes and genotypes, and immune activation status. Furthermore, different classes of anti-HBV drugs were also assessed with the HBVcircle system. CONCLUSION: Compared with previous reported HBV mouse models which employ other viral vectors to introduce overlength HBV genomes, viral gene expression and associated phenotypes are entirely driven by cccDNA-like viral genomes in the HBVcircle mouse model. Therefore, the HBVcircle is a close mimic of cccDNA, and it represents a novel tool for addressing HBV cccDNA related biological questions and for anti-HBV drug discovery. LAY SUMMARY: To establish a mouse model that supports cccDNA-dependent transcription, a novel tool named HBVcircle, was developed with minicircle technology. HBVcircle formed authentic cccDNA-like molecules in hepatocytes, and supported high levels and persistent HBV replication in vivo. The HBVcircle is a close mimic of cccDNA, and it represents a novel tool for addressing HBV cccDNA related biological questions and for anti-HBV drug discovery.


Assuntos
DNA Circular/genética , DNA Viral/genética , Técnicas Genéticas , Vírus da Hepatite B/genética , Imunidade Adaptativa , Animais , Linhagem Celular , DNA Circular/biossíntese , DNA Circular/imunologia , DNA Viral/biossíntese , DNA Viral/imunologia , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Genes Virais , Engenharia Genética , Células Hep G2 , Hepatite B/tratamento farmacológico , Hepatite B/virologia , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/fisiologia , Hepatócitos/virologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Modelos Genéticos , Transcrição Gênica , Transfecção , Replicação Viral/genética
18.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077637

RESUMO

Yin Yang 1 (YY1) is a multifunctional zinc finger transcription factor that regulates many key cellular processes. In this study, we report the cloning of YY1 from Litopenaeus vannamei shrimp (LvYY1). This study shows that LvYY1 is ubiquitously expressed in shrimp tissues, and knockdown of LvYY1 expression by double-stranded RNA (dsRNA) injection in white spot syndrome virus (WSSV)-infected shrimp reduced both mRNA levels of the WSSV immediate early gene ie1 as well as overall copy numbers of the WSSV genome. The cumulative mortality rate of infected shrimp also declined with LvYY1 dsRNA injection. Using an insect cell model, we observed that LvYY1 activates ie1 expression, and a mutation introduced into the ie1 promoter subsequently repressed this capability. Moreover, reporter assay results suggested that LvYY1 is involved in basal transcriptional regulation via an interaction with L. vannamei TATA-binding protein (LvTBP). Electrophoretic mobility shift assay (EMSA) results further indicated that LvYY1 binds to a YY1-binding site in the region between positions -119 and -126 in the ie1 promoter. Chromatin immunoprecipitation analysis also confirmed that LvYY1 binds to the ie1 promoter in WSSV-infected shrimp. Taken together, these results indicate that WSSV uses host LvYY1 to enhance ie1 expression via a YY1-binding site and the TATA box in the ie1 promoter, thereby facilitating lytic activation and viral replication.IMPORTANCE WSSV has long been a scourge of the shrimp industry and remains a serious global threat. Thus, there is a pressing need to understand how the interactions between WSSV and its host drive infection, lytic development, pathogenesis, and mortality. Our successful cloning of L. vannamei YY1 (LvYY1) led to the elucidation of a critical virus-host interaction between LvYY1 and the WSSV immediate early gene ie1 We observed that LvYY1 regulates ie1 expression via a consensus YY1-binding site and TATA box. LvYY1 was also found to interact with L. vannamei TATA-binding protein (LvTBP), which may have an effect on basal transcription. Knockdown of LvYY1 expression inhibited ie1 transcription and subsequently reduced viral DNA replication and decreased cumulative mortality rates of WSSV-infected shrimp. These findings are expected to contribute to future studies involving WSSV-host interactions.


Assuntos
Regulação Viral da Expressão Gênica , Genes Precoces , Interações Hospedeiro-Patógeno , Penaeidae/virologia , Replicação Viral , Vírus da Síndrome da Mancha Branca 1/fisiologia , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Clonagem Molecular , DNA Viral/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Virais , Insetos , Regiões Promotoras Genéticas , Ligação Proteica , Vírus da Síndrome da Mancha Branca 1/genética , Fator de Transcrição YY1/genética
19.
Cell Cycle ; 15(24): 3482-3489, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27830988

RESUMO

The cell cycle-associated neuronal death hypothesis, which has been proposed as a common mechanism for most neurodegenerative diseases, is notably supported by evidencing cell cycle effectors in neurons. However, in naturally occurring nervous system diseases, these markers are not expressed in neuron nuclei but in cytoplasmic compartments. In other respects, the Feline Panleukopenia Virus (FPV) is able to complete its cycle in mature brain neurons in the feline species. As a parvovirus, the FPV is strictly dependent on its host cell reaching the cell cycle S phase to start its multiplication. In this retrospective study on the whole brain of 12 cats with naturally-occurring, FPV-associated cerebellar atrophy, VP2 capsid protein expression was detected by immunostaining not only in some brain neuronal nuclei but also in neuronal cytoplasm in 2 cats, suggesting that viral mRNA translation was still occurring. In these cats, double immunostainings demonstrated the expression of cell cycle S phase markers cyclin A, cdk2 and PCNA in neuronal nuclei. Parvoviruses are able to maintain their host cells in S phase by triggering the DNA damage response. S139 phospho H2A1, a key player in the cell cycle arrest, was detected in some neuronal nuclei, supporting that infected neurons were also blocked into the S phase. PCR studies did not support a co-infection with an adeno or herpes virus. ERK1/2 nuclear accumulation was observed in some neurons suggesting that the ERK signaling pathway might be involved as a mechanism driving these neurons far into the cell cycle.


Assuntos
Biomarcadores/metabolismo , Núcleo Celular/metabolismo , Cérebro/patologia , Vírus da Panleucopenia Felina/fisiologia , Panleucopenia Felina/patologia , Panleucopenia Felina/virologia , Neurônios/patologia , Fase S , Animais , Anticorpos Antivirais/metabolismo , Especificidade de Anticorpos , Pareamento de Bases , Proteínas do Capsídeo/metabolismo , Gatos , Núcleo Celular/enzimologia , DNA Viral/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Vírus da Panleucopenia Felina/genética , Feminino , Genes Virais , Células HEK293 , Humanos , Imuno-Histoquímica , Masculino , Neurônios/virologia , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Tálamo/metabolismo
20.
Kaohsiung J Med Sci ; 31(6): 293-302, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26043408

RESUMO

Enterovirus 71 (EV71) can cause central nervous system infections with mortality and neurologic sequelae. At present, there is no effective therapeutic modality for EV71 infection. The infection is more common in families with poor socioeconomic status. Therefore, finding a readily available, cost-effective therapeutic modality would be very helpful to these socioeconomically disadvantaged families. Yakammaoto is a cheap and readily available traditional prescription that is proven to have antiviral activity against coxsackievirus B4 (CVB4). CVB4 and EV71 are enteroviruses. In this study, we evaluated the antiviral activity of hot water extract of yakammaoto against EV71. The results of plaque reduction assay and flow cytometry demonstrated that yakammaoto dose dependently inhibited EV71 infection. In addition, reverse transcription-polymerase chain reaction (RT-PCR) and quantitative RT-PCR results showed that yakammaoto reduced viral replication. Western blotting analysis showed that yakammaoto can inhibit viral protein production. Thus, our results suggest that yakammaoto should be considered to manage EV71 infection in the future.


Assuntos
Antivirais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Enterovirus Humano A/fisiologia , Avaliação Pré-Clínica de Medicamentos , Enterovirus Humano A/efeitos dos fármacos , Genes Virais , Células Hep G2 , Humanos , Biossíntese de Proteínas , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Ligação Viral , Internalização do Vírus , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA