Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 627(8002): 182-188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267579

RESUMO

The origins of treponemal diseases have long remained unknown, especially considering the sudden onset of the first syphilis epidemic in the late 15th century in Europe and its hypothesized arrival from the Americas with Columbus' expeditions1,2. Recently, ancient DNA evidence has revealed various treponemal infections circulating in early modern Europe and colonial-era Mexico3-6. However, there has been to our knowledge no genomic evidence of treponematosis recovered from either the Americas or the Old World that can be reliably dated to the time before the first trans-Atlantic contacts. Here, we present treponemal genomes from nearly 2,000-year-old human remains from Brazil. We reconstruct four ancient genomes of a prehistoric treponemal pathogen, most closely related to the bejel-causing agent Treponema pallidum endemicum. Contradicting the modern day geographical niche of bejel in the arid regions of the world, the results call into question the previous palaeopathological characterization of treponeme subspecies and showcase their adaptive potential. A high-coverage genome is used to improve molecular clock date estimations, placing the divergence of modern T. pallidum subspecies firmly in pre-Columbian times. Overall, our study demonstrates the opportunities within archaeogenetics to uncover key events in pathogen evolution and emergence, paving the way to new hypotheses on the origin and spread of treponematoses.


Assuntos
Evolução Molecular , Genoma Bacteriano , Treponema pallidum , Infecções por Treponema , Humanos , Brasil/epidemiologia , Brasil/etnologia , Europa (Continente)/epidemiologia , Genoma Bacteriano/genética , História do Século XV , História Antiga , Sífilis/epidemiologia , Sífilis/história , Sífilis/microbiologia , Sífilis/transmissão , Treponema pallidum/classificação , Treponema pallidum/genética , Treponema pallidum/isolamento & purificação , Infecções por Treponema/epidemiologia , Infecções por Treponema/história , Infecções por Treponema/microbiologia , Infecções por Treponema/transmissão
2.
Metab Eng ; 77: 219-230, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031949

RESUMO

Malonyl-CoA is a central precursor for biosynthesis of a wide range of complex secondary metabolites. The development of platform strains with increased malonyl-CoA supply can contribute to the efficient production of secondary metabolites, especially if such strains exhibit high tolerance towards these chemicals. In this study, Pseudomonas taiwanensis VLB120 was engineered for increased malonyl-CoA availability to produce bacterial and plant-derived polyketides. A multi-target metabolic engineering strategy focusing on decreasing the malonyl-CoA drain and increasing malonyl-CoA precursor availability, led to an increased production of various malonyl-CoA-derived products, including pinosylvin, resveratrol and flaviolin. The production of flaviolin, a molecule deriving from five malonyl-CoA molecules, was doubled compared to the parental strain by this malonyl-CoA increasing strategy. Additionally, the engineered platform strain enabled production of up to 84 mg L-1 resveratrol from supplemented p-coumarate. One key finding of this study was that acetyl-CoA carboxylase overexpression majorly contributed to an increased malonyl-CoA availability for polyketide production in dependence on the used strain-background and whether downstream fatty acid synthesis was impaired, reflecting its complexity in metabolism. Hence, malonyl-CoA availability is primarily determined by competition of the production pathway with downstream fatty acid synthesis, while supply reactions are of secondary importance for compounds that derive directly from malonyl-CoA in Pseudomonas.


Assuntos
Malonil Coenzima A , Policetídeos , Pseudomonas , Ácidos Graxos/metabolismo , Malonil Coenzima A/metabolismo , Policetídeos/metabolismo , Pseudomonas/classificação , Pseudomonas/genética , Pseudomonas/metabolismo , Resveratrol/metabolismo , Metabolismo Secundário , Estilbenos/metabolismo , Ácidos Cumáricos/metabolismo , Fenilalanina/metabolismo , Genoma Bacteriano/genética , Deleção de Sequência , Acetilcoenzima A/metabolismo , Citrato (si)-Sintase/metabolismo , Ácido Pirúvico/metabolismo , Fitoalexinas/metabolismo , Naftoquinonas/metabolismo
3.
Microbiol Spectr ; 9(3): e0073921, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937180

RESUMO

Antimicrobial resistance (AMR) has become a serious public and economic threat. The rate of bacteria acquiring AMR surpasses the rate of new antibiotics discovery, projecting more deadly AMR infections in the future. The Pathogen Box is an open-source library of drug-like compounds that can be screened for antibiotic activity. We have screened molecules of the Pathogen Box against Vibrio cholerae, the cholera-causing pathogen, and successfully identified two compounds, MMV687807 and MMV675968, that inhibit growth. RNA-seq analyses of V. cholerae after incubation with each compound revealed that both compounds affect cellular functions on multiple levels including carbon metabolism, iron homeostasis, and biofilm formation. In addition, whole-genome sequencing analysis of spontaneous resistance mutants identified an efflux system that confers resistance to MMV687807. We also identified that the dihydrofolate reductase is the likely target of MMV675968 suggesting it acts as an analog of trimethoprim but with a MIC 14-fold lower than trimethoprim in molar concentration. In summary, these two compounds that effectively inhibit V. cholerae and other bacteria may lead to the development of new antibiotics for better treatment of the cholera disease. IMPORTANCE Cholera is a serious infectious disease in tropical regions causing millions of infections annually. Vibrio cholerae, the causative agent of cholera, has gained multi-antibiotic resistance over the years, posing greater threat to public health and current treatment strategies. Here we report two compounds that effectively target the growth of V. cholerae and have the potential to control cholera infection.


Assuntos
Antibacterianos/farmacologia , Cólera/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Antagonistas do Ácido Fólico/farmacologia , Vibrio cholerae/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/análogos & derivados , Trimetoprima/farmacologia , Vibrio cholerae/genética , Vibrio cholerae/crescimento & desenvolvimento , Sequenciamento Completo do Genoma
4.
Microbiol Spectr ; 9(3): e0074321, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34908461

RESUMO

Although glutathione (GSH) has been shown to influence the antimicrobial effects of many kinds of antibiotics, little is known about its role in relation to trimethoprim (TMP), a widely used antifolate. In this study, several genes related to glutathione metabolism were deleted in different Escherichia coli strains (i.e., O157:H7 and ATCC 25922), and their effects on susceptibility to TMP were tested. The results showed that deleting gshA, gshB, grxA, and cydD caused TMP resistance, and deleting cydD also caused resistance to other drugs. Meanwhile, deleting gshA, grxA, and cydD resulted in a significant decrease of the periplasmic glutathione content. Supplementing exogenous GSH or further deleting glutathione importer genes (gsiB and ggt) restored TMP sensitivity to ΔcydD. Subsequently, the results of quantitative-reverse transcription PCR experiments showed that expression levels of acrA, acrB, and tolC were significantly upregulated in both ΔgrxA and ΔcydD. Correspondingly, deleting cydD led to a decreased accumulation of TMP within bacterial cells, and further deleting acrA, acrB, or tolC restored TMP sensitivity to ΔcydD. Inactivation of CpxR and SoxS, two transcriptional factors that modulate the transcription of acrAB-tolC, restored TMP sensitivity to ΔcydD. Furthermore, mutations of gshA, gshB, grxA, cydC, and cydD are highly prevalent in E. coli clinical strains. Collectively, these data suggest that reducing the periplasmic glutathione content of E. coli leads to increased expression of acrAB-tolC with the involvement of CpxR and SoxS, ultimately causing drug resistance. To the best of our knowledge, this is the first report showing a linkage between periplasmic GSH and drug resistance in bacteria. IMPORTANCE After being used extensively for decades, trimethoprim still remains one of the key accessible antimicrobials recommended by the World Health Organization. A better understanding of the mechanisms of resistance would be beneficial for the future utilization of this drug. It has been shown that the AcrAB-TolC efflux pump is associated with trimethoprim resistance in E. coli clinical strains. In this study, we show that E. coli can sense the periplasmic glutathione content with the involvement of the CpxAR two-component system. As a result, reducing the periplasmic glutathione content leads to increased expression of acrA, acrB, and tolC via CpxR and SoxS, causing resistance to antimicrobials, including trimethoprim. Meanwhile, mutations in the genes responsible for periplasmic glutathione content maintenance are highly prevalent in E. coli clinical isolates, indicating a potential correlation of the periplasmic glutathione content and clinical antimicrobial resistance, which merits further investigation.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Glutationa/metabolismo , Periplasma/química , Trimetoprima/farmacologia , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Deleção de Genes , Genoma Bacteriano/genética , Humanos
5.
Microbiol Spectr ; 9(3): e0145521, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34762519

RESUMO

The bacterial pathogen Acinetobacter baumannii has emerged as an urgent threat to health care systems. The prevalence of multidrug resistance in this critical human pathogen is closely associated with difficulties in its eradication from the hospital environment and its recalcitrance to treatment during infection. The development of resistance in A. baumannii is in part due to substantial plasticity of its genome, facilitating spontaneous genomic evolution. Many studies have investigated selective pressures imposed by antibiotics on genomic evolution, but the influence of high-abundance bioactive molecules at the host-pathogen interface on mutation and rates of evolution is poorly understood. Here, we studied the roles of host fatty acids in the gain in resistance to common antibiotics. We defined the impact of the polyunsaturated fatty acids arachidonic acid and docosahexaenoic acid on the development of resistance to erythromycin in A. baumannii strain AB5075_UW using a microevolutionary approach. We employed whole-genome sequencing and various phenotypic analyses to characterize microbe-lipid-antibiotic interactions. Cells exposed to erythromycin in the presence of the fatty acids displayed significantly lower rates of development of resistance to erythromycin and, importantly, tetracycline. Subsequent analyses defined diverse means by which host fatty acids influence the mutation rates. This work has highlighted the critical need to consider the roles of host fatty acids in A. baumannii physiology and antimicrobial resistance. Collectively, we have identified a novel means to curb the development of resistance in this critical human pathogen. IMPORTANCE The global distribution of multidrug resistance in A. baumannii has necessitated seeking not only alternative therapeutic approaches but also the means to limit the development of resistance in clinical settings. Highly abundant host bioactive compounds, such as polyunsaturated fatty acids, are readily acquired by A. baumannii during infection and have been illustrated to impact the bacterium's membrane composition and antibiotic resistance. In this work, we show that in vitro supplementation with host polyunsaturated fatty acids reduces the rate at which A. baumannii gains resistance to erythromycin and tetracycline. Furthermore, we discover that the impact on resistance development is closely associated with the primary antimicrobial efflux systems of A. baumannii, which represent one of the major drivers of clinical resistance. Overall, this study emphasizes the potential of host macromolecules in novel approaches to circumvent the difficulties of multidrug resistance during A. baumannii treatment, with fatty acid supplements such as fish oil providing safe and cost-effective ways to enhance host tolerance to bacterial infections.


Assuntos
Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Ácido Araquidônico/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Eritromicina/farmacologia , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/crescimento & desenvolvimento , Membrana Celular/química , Genoma Bacteriano/genética , Humanos , Testes de Sensibilidade Microbiana , Taxa de Mutação , Seleção Genética/genética , Tetraciclinas/farmacologia , Sequenciamento Completo do Genoma
6.
Microbiol Spectr ; 9(2): e0026221, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34612702

RESUMO

Mycoplasma bovis causes many health and welfare problems in cattle. Due to the absence of clear insights regarding transmission dynamics and the lack of a registered vaccine in Europe, control of an outbreak depends mainly on antimicrobial therapy. Unfortunately, antimicrobial susceptibility testing (AST) is usually not performed, because it is time-consuming and no standard protocol or clinical breakpoints are available. Fast identification of genetic markers associated with acquired resistance may at least partly resolve former issues. Therefore, the aims of this study were to implement a first genome-wide association study (GWAS) approach to identify genetic markers linked to antimicrobial resistance (AMR) in M. bovis using rapid long-read sequencing and to evaluate different epidemiological cutoff (ECOFF) thresholds. High-quality genomes of 100 M. bovis isolates were generated by Nanopore sequencing, and isolates were categorized as wild-type or non-wild-type isolates based on MIC testing results. Subsequently, a k-mer-based GWAS analysis was performed to link genotypes with phenotypes based on different ECOFF thresholds. This resulted in potential genetic markers for macrolides (gamithromycin and tylosin) (23S rRNA gene and 50S ribosomal unit) and enrofloxacin (GyrA and ParC). Also, for tilmicosin and the tetracyclines, previously described mutations in both 23S rRNA alleles and in one or both 16S rRNA alleles were observed. In addition, two new 16S rRNA mutations were possibly associated with gentamicin resistance. In conclusion, this study shows the potential of quick high-quality Nanopore sequencing and GWAS analysis in the evaluation of phenotypic ECOFF thresholds and the rapid identification of M. bovis strains with acquired resistance. IMPORTANCE Mycoplasma bovis is a leading cause of pneumonia but also causes other clinical signs in cattle. Since no effective vaccine is available, current M. bovis outbreak treatment relies primarily on the use of antimicrobials. However, M. bovis is naturally resistant to different antimicrobials, and acquired resistance against macrolides and fluoroquinolones is frequently described. Therefore, AST is important to provide appropriate and rapid antimicrobial treatment in the framework of AMR and to prevent the disease from spreading and/or becoming chronic. Unfortunately, phenotypic AST is time-consuming and, due to the lack of clinical breakpoints, the interpretation of AST in M. bovis is limited to the use of ECOFF values. Therefore, the objective of this study was to identify known and potentially new genetic markers linked to AMR phenotypes of M. bovis isolates, exploiting the power of a GWAS approach. For this, we used high-quality and complete Nanopore-sequenced M. bovis genomes of 100 isolates.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Mycoplasma bovis/efeitos dos fármacos , Mycoplasma bovis/genética , Animais , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/microbiologia , Enrofloxacina/uso terapêutico , Marcadores Genéticos/genética , Genoma Bacteriano/genética , Estudo de Associação Genômica Ampla , Gentamicinas/uso terapêutico , Macrolídeos/uso terapêutico , Testes de Sensibilidade Microbiana , Mycoplasma bovis/isolamento & purificação , Tetraciclinas/uso terapêutico , Tilosina/análogos & derivados , Tilosina/uso terapêutico
7.
Int J Antimicrob Agents ; 58(6): 106450, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34644604

RESUMO

Few studies have assessed the clinical and bacterial characteristics of Pseudomonas aeruginosa (PA) bacteraemic pneumonia (BP) episodes. This study analysed all non-duplicate PA-BP episodes from a tertiary hospital in 2013-2017. Epidemiology, clinical data, antimicrobial therapy and outcomes were recorded. Whole-genome sequencing was performed on PA blood isolates. The impact on early and late overall mortality of host, antimicrobial treatment and pathogen factors was assessed by multivariate logistic regression analysis. Of 55 PA-BP episodes, 32 (58.2%) were caused by extensively drug-resistant (XDR) PA. ST175 (32.7%) and ST235 (25.5%) were the most frequent high-risk clones. ß-Lactamases/carbapenemases were detected in 29 isolates, including blaVIM-2 (27.2%) and blaGES type (25.5%) [blaGES-5 (20.0%), blaGES-1 (3.6%) and blaGES-20 (1.8%)]. The most prevalent O-antigen serotypes were O4 (34.5%) and O11 (30.9%). Overall, an extensive virulome was identified in all isolates. Early mortality (56.4%) was independently associated with severe neutropenia (aOR = 4.64, 95% CI 1.11-19.33; P = 0.035) and inappropriate empirical antimicrobial therapy (aOR = 5.71, 95% CI 1.41-22.98; P = 0.014). Additionally, late mortality (67.3%) was influenced by septic shock (aOR = 8.85, 95% CI 2.00-39.16; P = 0.004) and XDR phenotype (aOR = 5.46, 95% CI 1.25-23.85; P = 0.024). Moreover, specific genetic backgrounds [ST235, blaGES, gyrA (T83I), parC (S87L), exoU and O11 serotype] showed significant differences in patient outcomes. Our results confirm the high mortality associated with PA-BP. Besides relevant clinical characteristics and inappropriate empirical therapy, bacteria-specific genetics factors, such as XDR phenotype, adversely affect the outcome of PA-BP.


Assuntos
Antibacterianos/uso terapêutico , Bacteriemia/mortalidade , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/mortalidade , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/epidemiologia , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Genoma Bacteriano/genética , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Epidemiologia Molecular , Antígenos O/genética , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/mortalidade , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Centros de Atenção Terciária , Sequenciamento Completo do Genoma , beta-Lactamases/genética
8.
Microbiol Res ; 253: 126882, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34619415

RESUMO

Sustainable treatment of petroleum oil sludge still remains as a major challenge to petroleum refineries. Bioremediation is the promising technology involving bacteria for simultaneous production of biosurfactant and followed by degradation of petroleum compounds. Complete genomic knowledge on such potential microbes could accentuate its successful exploitation. The present study discusses the genomic characteristics of novel biosurfactant producing petrophilic/ petroleum hydrocarbon degrading strain, Enterobacter xiangfangensis STP-3, isolated from petroleum refinery oil sludge contaminated soil. The genome has 4,584,462 bp and 4372 protein coding sequences. Functional analysis using the RAST and KEGG databases revealed the presence of biosynthetic gene clusters linked to glycolipid and lipopeptide production and multiple key candidate genes linked with the degradation pathway of petroleum hydrocarbons. Orthology study revealed diversity in gene clusters associated to membrane transport, carbohydrate, amino acid metabolism, virulence and defence mechanisms, and nucleoside and nucleotide synthesis. The comparative analysis with 27 other genomes predicted that the core genome contributes to its inherent bioremediation potential, whereas the accessory genome influences its environmental adaptability in unconventional environmental conditions. Further, experimental results showed that E. xiangfangensis STP-3 was able to degrade PHCs by 82 % in 14 days during the bioremediation of real time petroleum oil sludge with the concomitant production of biosurfactant and metabolic enzymes, To the best of our knowledge, no comprehensive genomic study has been previously reported on the biotechnological prospective of this species.


Assuntos
Biodegradação Ambiental , Enterobacter , Genoma Bacteriano , Petróleo , Enterobacter/genética , Genoma Bacteriano/genética , Genômica , Petróleo/microbiologia , Estudos Prospectivos
9.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34465619

RESUMO

The second plague pandemic started in Europe with the Black Death in 1346 and lasted until the 19th century. Based on ancient DNA studies, there is a scientific disagreement over whether the bacterium, Yersinia pestis, came into Europe once (Hypothesis 1) or repeatedly over the following four centuries (Hypothesis 2). Here, we synthesize the most updated phylogeny together with historical, archeological, evolutionary, and ecological information. On the basis of this holistic view, we conclude that Hypothesis 2 is the most plausible. We also suggest that Y. pestis lineages might have developed attenuated virulence during transmission, which can explain the convergent evolutionary signals, including pla decay, that appeared at the end of the pandemics.


Assuntos
Peste/epidemiologia , Peste/etiologia , Peste/genética , DNA Bacteriano/genética , Europa (Continente) , Genoma Bacteriano/genética , Genômica/métodos , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Pandemias/história , Filogenia , Virulência/genética , Yersinia pestis/genética , Yersinia pestis/patogenicidade
10.
Diagn Microbiol Infect Dis ; 101(4): 115511, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34418822
11.
Int J Antimicrob Agents ; 58(4): 106402, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34293453

RESUMO

Dual resistance to colistin and carbapenems is a milestone reached by certain extensively-drug resistant (XDR) Gram-negative bacteria. This study describes the first outbreak of XDR colistin- and carbapenem-resistant OXA-23-/NDM-1-producing Acinetobacter baumannii (CCRAB) in the European overseas territory of Reunion Island (France, Indian Ocean). Between April 2019 and June 2020, 13 patients admitted to the University Hospital of Reunion Island were involved in the outbreak, of whom eight were infected and six died. The first case was traced to a medical evacuation from Mayotte Island (Comoros archipelago). An epidemiological link could be established for 11 patients. All of the collected CCRAB isolates showed the same resistance profile and co-produced intrinsic ß-lactamases OXA-69 and ADC-191, together with acquired carbapenem-hydrolysing ß-lactamases OXA-23 and NDM-1. A mutation likely involved in colistin resistance was detected in the two-component system PmrAB (D82N in PmrA). All of the isolates were found to belong to STPas1/STOx231 clonal complex and were phylogenetically indistinguishable. Their further characterization by whole-genome sequence analyses (whole-genome multi-locus sequence typing, single nucleotide polymorphisms) provided hints about the transmission pathways. This study pleads for strict application of control and prevention measures in institutions where the risk of imported XDR bacteria is high.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/epidemiologia , Acinetobacter baumannii/efeitos dos fármacos , Colistina/uso terapêutico , beta-Lactamases/genética , Infecções por Acinetobacter/genética , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Adulto , Idoso , Antibacterianos/uso terapêutico , Carbapenêmicos/uso terapêutico , Comores/epidemiologia , Surtos de Doenças , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Genoma Bacteriano/genética , Humanos , Oceano Índico/epidemiologia , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Reunião/epidemiologia , Sequenciamento Completo do Genoma , Adulto Jovem
12.
Int J Antimicrob Agents ; 58(4): 106401, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289403

RESUMO

Genomic-based surveillance on the occurrence of drug resistance and its transmission dynamics has emerged as a powerful tool for the control of tuberculosis (TB). A whole-genome sequencing approach, phenotypic testing and clinical-epidemiological investigation were used to undertake a retrospective population-based study on drug-resistant (DR)-TB in Rio Grande do Sul, the largest state in Southern Brazil. The analysis included 305 resistant Mycobacterium tuberculosis strains sampled statewide from 2011 to 2014, and covered 75.7% of all DR-TB cases identified in this period. Lineage 4 was found to be predominant (99.3%), with high sublineage-level diversity composed mainly of 4.3.4.2 [Latin American and Mediterranean (LAM)/RD174], 4.3.3 (LAM/RD115) and 4.1.2.1 (Haarlem/RD182) sublineages. Genomic diversity was also reflected in resistance of the variants to first-line drugs. A large number of distinct resistance-conferring mutations, including variants that have not been reported previously in any other setting worldwide, and 22 isoniazid-monoresistant strains with mutations described as disputed in the rpoB gene but causing rifampicin resistance generally missed by automated phenotypic tests as BACTEC MGIT. Using a cut-off of five single nucleotide polymorphisms, the estimated recent transmission rate was 55.1%, with 168 strains grouped into 28 genomic clusters. The most worrying fact concerns multi-drug-resistant (MDR) strains, of which 73.4% were clustered. Different resistance profiles and acquisition of novel mutations intraclusters revealed important amplification of resistance in the region. This study described the diversity of M. tuberculosis strains, the basis of drug resistance, and ongoing transmission dynamics across the largest state in Southern Brazil, stressing the urgent need for MDR-TB transmission control state-wide.


Assuntos
Antibióticos Antituberculose/uso terapêutico , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/transmissão , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antituberculosos/uso terapêutico , Brasil/epidemiologia , Perfilação da Expressão Gênica , Genoma Bacteriano/genética , Humanos , Isoniazida/uso terapêutico , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleotídeo Único/genética , Estudos Retrospectivos , Rifampina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sequenciamento Completo do Genoma , Adulto Jovem
13.
Biotechnol Lett ; 43(8): 1637-1648, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33999363

RESUMO

OBJECTIVES: This study aimed to screen, characterize, and annotate the genome along with the comparison of GABA synthesis genes presented in lactic acid bacteria (LAB). RESULTS: Thirty-five LAB isolates from fermented foods were screened for GABA production using thin-layer chromatography (TLC). Fifteen isolates produced GABA ranging from 0.07 to 22.94 g/L. Based on their GTG5 profiles, phenotypic, and genotypic characteristics, isolates LSI1-1, LSI1-5, LSI2-1, LSI2-2, LSI2-3, LSI2-5, and LSM3-1-4 were identified as Lactobacillus plantarum subsp. plantarum; isolate LSM1-4 was Lactobacillus argentoratensis; isolates CAB1-2, CAB1-5, CAB1-7, and LSI1-4 were Lactobacillus pentosus; and CAB1-1, LSM3-1-1 and LSM3-2-3 were Lactobacillus fermentum. Strains LSI2-1 and CAB1-7 from pickled vegetables were selected for genome analysis. The gadA gene (1410 bp, 470aa) was encountered in GABA production of both strains and no other glutamate decarboxylase (GAD) genes were found in the genomes when compared with other LAB strains. The presence of gadA is evidence for GABA production. Strains LSI2-1 and CAB1-7 produced 22.94 g/L and 11.59 g/L of GABA in GYP broth supplemented with 3% (w/v) MSG at 30 °C for 72 h, respectively. CONCLUSIONS: Our report highlights the characterization of LAB and GABA production of L. plantarum LSI2-1 strain with its GABA synthesis gene. GABA production of strains LSI2-1 and CAB1-7 in GYP broth with 3% (w/v) MSG and comparative GAD genes.


Assuntos
Alimentos Fermentados/microbiologia , Lactobacillales , Ácido gama-Aminobutírico/metabolismo , Proteínas de Bactérias/genética , Genoma Bacteriano/genética , Genômica , Glutamato Descarboxilase/genética , Lactobacillales/genética , Lactobacillales/metabolismo , Tailândia
14.
Future Microbiol ; 16: 341-368, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33754804

RESUMO

The development of a 'smart' drug capable of distinguishing tumor from host cells has been sought for centuries, but the microenvironment of solid tumors continues to confound therapeutics. Solid tumors present several challenges for current oncotherapeutics, including aberrant vascularization, hypoxia, necrosis, abnormally high pH and local immune suppression. While traditional chemotherapeutics are limited by such an environment, oncolytic microbes are drawn to it - having an innate ability to selectively infect, colonize and eradicate solid tumors. Development of an oncolytic species would represent a shift in the cancer therapeutic paradigm, with ramifications reaching from the medical into the socio-economic. Modern genetic engineering techniques could be implemented to customize 'Frankenstein' bacteria with advantageous characteristics from several species.


Lay abstract Side effects of chemotherapeutics are thought to often be a reflection of our inability to target these toxic substances to only cancer cells; hence, scientists have spent centuries searching for alternative treatments that would confine their actions to tumor cells, sparing healthy tissue. Unfortunately, the dense nature of tumor tissue along with altered blood vessels, that lead to diminished tumor tissue oxygenation, altered tissue pH and cellular metabolic inactivity or even cell death have proven challenging. Importantly, these barriers have contributed to local and even sometimes systemic suppression of the patient's immune system that can allow the tumor to grow and progress unchecked. While most non-cancer cells are inhibited by the local tumor environment, certain microbes, including some bacteria and viruses, are drawn to it, possessing a natural ability to selectively infect, colonize and eradicate solid tumors. These microbes may also restore the patient's immune balance. However, use of these microbes is not without its own problems; nevertheless, modern genetic engineering techniques could be implemented to develop customized, safe, effective bacteria with advantageous characteristics. The development and clinical translation of cancer-fighting bacteria would represent a shift in cancer therapeutics and would have ramifications that reach beyond medical efficacy into the realm of socioeconomics. This review seeks to marry the current field of oncolytic bacteria with the expanding field of modern bacterial genetic engineering techniques in prospect of such a therapeutic.


Assuntos
Bactérias , Terapia Biológica , Engenharia Genética , Neoplasias/terapia , Animais , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Genoma Bacteriano/genética , Interações entre Hospedeiro e Microrganismos , Humanos , Neoplasias/microbiologia , Microambiente Tumoral
15.
Int J Antimicrob Agents ; 57(4): 106304, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33588015

RESUMO

Tigecycline (TGC) resistance remains rare in Staphylococcus aureus worldwide. In this study, 12 TGC-resistant S. aureus mutants (TRSAm) were obtained displaying an increase in efflux activity. The isolates belonged to seven different genetic lineages, with a predominance of clonal complex 5 (CC5). Diverse genetic changes in mepA and mepR genes were found producing alterations in the amino acid sequences of the corresponding proteins (MepA and MepR, respectively). The most frequent amino acid change in MepA was Glu287Gly. All of the TRSAm exhibited different single nucleotide polymorphisms (SNPs) or insertions/deletions (InDels) in mepR causing premature stop codons or amino acid changes in MepR. Expression of mepA was significantly increased in TRSAm with different mutations in mepA and mepR. Of the 12 TRSAm, 6 also harboured mutations in rpsJ that resulted in amino acid changes in the S10 ribosomal protein, with Lys57 being the most frequently mutated site. Our findings demonstrate that these acquired mechanisms of TGC resistance are not restricted to a single type of genotypic background and that different lineages might have the same plasticity to develop TGC resistance. The impact of TGC selective pressure assessed by whole-genome sequencing in four selected strain pairs revealed mutations in other singular genes and IS256 mobilisation.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Proteínas de Membrana Transportadoras/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Tigeciclina/uso terapêutico , Sequência de Aminoácidos/genética , DNA Bacteriano/genética , Genoma Bacteriano/genética , Humanos , Testes de Sensibilidade Microbiana , Polimorfismo de Nucleotídeo Único/genética , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/isolamento & purificação
16.
Arch Microbiol ; 203(4): 1375-1382, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33386866

RESUMO

An aerobic, Gram-staining-positive, rod-shaped, endospore-forming and motile bacterial strain, designated SJY2T, was isolated from the rhizosphere soil of tea plants (Camellia sinensis var. assamica) collected in the organic tea garden of the Jingmai Pu-erh tea district in Pu'er city, Yunnan, southwest China. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate belonged to the genus Paenibacillus. The closest phylogenetic relative was Paenibacillus filicis DSM 23916T (98.1% similarity). The major fatty acids (> 10% of the total fatty acids) were anteiso-C15:0 and isoC16:0. The major respiratory quinone was MK-7 and the major polar lipid was diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine. The peptidoglycan contained glutamic acid, serine, alanine and meso-diaminopimelic acid. Genome sequencing revealed a genome size of 6.71 Mbp and a G + C content of 53.1%. Pairwise determined whole genome average nucleotide identity (gANI) values and digital DNA-DNA hybridization (dDDH) values suggested that strain SJY2T represents a new species, for which we propose the name Paenibacillus puerhi sp. nov. with the type strain SJY2T (= CGMCC 1.17156T = KCTC 43242T).


Assuntos
Camellia sinensis/microbiologia , Paenibacillus/classificação , Rizosfera , Microbiologia do Solo , Benzoquinonas/análise , China , DNA Bacteriano/genética , Ácidos Graxos/análise , Genoma Bacteriano/genética , Paenibacillus/química , Paenibacillus/genética , Paenibacillus/fisiologia , Peptidoglicano/análise , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
17.
Arch Microbiol ; 203(4): 1731-1742, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33459813

RESUMO

Study of carbohydrate-active enzymes (CAZymes) can reveal information about the lifestyle and behavior of an organism. Rhodococcus species is well known for xenobiotic metabolism; however, their carbohydrate utilization ability has been less discussed till date. This study aimed to present the CAZyme analysis of two Rhodococcus strains, PAMC28705 and PAMC28707, isolated from lichens in Antarctica, and compare them with other Rhodococcus, Mycobacterium, and Corynebacterium strains. Genome-wide computational analysis was performed using various tools. Results showed similarities in CAZymes across all the studied genera. All three genera showed potential for significant polysaccharide utilization, including starch, cellulose, and pectin referring their biotechnological potential. Keeping in mind the pathogenic strains listed across all three genera, CAZymes associated to pathogenicity were analyzed too. Cutinase enzyme, which has been associated with phytopathogenicity, was abundant in all the studied organisms. CAZyme gene cluster of Rhodococcus sp. PAMC28705 and Rhodococcus sp. PAMC28707 showed the insertion of cutinase in the cluster, further supporting their possible phytopathogenic properties.


Assuntos
Celulose/metabolismo , Genoma Bacteriano/genética , Polissacarídeos/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Regiões Antárticas , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Líquens/microbiologia , Pectinas/metabolismo , Rhodococcus/isolamento & purificação , Sequenciamento Completo do Genoma
19.
Mol Plant Microbe Interact ; 34(1): 39-48, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33030393

RESUMO

The genus Streptomyces includes several phytopathogenic species that cause common scab, a devastating disease of tuber and root crops, in particular potato. The diversity of species that cause common scab is unknown. Likewise, the genomic context necessary for bacteria to incite common scab symptom development is not fully characterized. Here, we phenotyped and sequenced the genomes of five strains from a poorly studied Streptomyces lineage. These strains form a new species-level group. When genome sequences within just these five strains are compared, there are no polymorphisms of loci implicated in virulence. Each genome contains the pathogenicity island that encodes for the production of thaxtomin A, a phytotoxin necessary for common scab. Yet, not all sequenced strains produced thaxtomin A. Strains varied from nonpathogenic to highly virulent on two hosts. Unexpectedly, one strain that produced thaxtomin A and was pathogenic on radish was not aggressively pathogenic on potato. Therefore, while thaxtomin A biosynthetic genes and production of thaxtomin A are necessary, they are not sufficient for causing common scab of potato. Additionally, results show that even within a species-level group of Streptomyces strains, there can be aggressively pathogenic and nonpathogenic strains despite conservation of virulence genes.


Assuntos
Produtos Agrícolas , Doenças das Plantas , Streptomyces , Virulência , Produtos Agrícolas/microbiologia , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Tubérculos/microbiologia , Solanum tuberosum/microbiologia , Streptomyces/classificação , Streptomyces/genética , Streptomyces/patogenicidade , Virulência/genética
20.
Phytopathology ; 111(4): 611-616, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32997607

RESUMO

Xanthomonas theicola is the causal agent of bacterial canker on tea plants. There is no complete genome sequence available for X. theicola, a close relative of the species X. translucens and X. hyacinthi, thus limiting basic research for this group of pathogens. Here, we release a high-quality complete genome sequence for the X. theicola type strain, CFBP 4691T. Single-molecule real-time sequencing with a mean coverage of 264× revealed two contigs of 4,744,641 bp (chromosome) and 40,955 bp (plasmid) in size. Genome mining revealed the presence of nonribosomal peptide synthases, two CRISPR systems, the Xps type 2 secretion system, and the Hrp type 3 secretion system. Surprisingly, this strain encodes an additional type 2 secretion system and a novel type 3 secretion system with enigmatic function, hitherto undescribed for xanthomonads. Four type 3 effector genes were found on complete or partial transposons, suggesting a role of transposons in effector gene evolution and spread. This genome sequence fills an important gap to better understand the biology and evolution of the early-branching xanthomonads, also known as clade-1 xanthomonads.


Assuntos
Genoma Bacteriano , Xanthomonas , Genoma Bacteriano/genética , Filogenia , Doenças das Plantas , Chá , Xanthomonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA