Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.315
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
PeerJ ; 12: e17183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560476

RESUMO

Background: PEBP (phosphatidyl ethanolamine-binding protein) is widely found in eukaryotes including plants, animals and microorganisms. In plants, the PEBP family plays vital roles in regulating flowering time and morphogenesis and is highly associated to agronomic traits and yields of crops, which has been identified and characterized in many plant species but not well studied in Tartary buckwheat (Fagopyrum tataricum Gaertn.), an important coarse food grain with medicinal value. Methods: Genome-wide analysis of FtPEBP gene family members in Tartary buckwheat was performed using bioinformatic tools. Subcellular localization analysis was performed by confocal microscopy. The expression levels of these genes in leaf and inflorescence samples were analyzed using qRT-PCR. Results: Fourteen Fagopyrum tataricum PEBP (FtPEBP) genes were identified and divided into three sub-clades according to their phylogenetic relationships. Subcellular localization analysis of the FtPEBP proteins in tobacco leaves indicated that FT- and TFL-GFP fusion proteins were localized in both the nucleus and cytoplasm. Gene structure analysis showed that most FtPEBP genes contain four exons and three introns. FtPEBP genes are unevenly distributed in Tartary buckwheat chromosomes. Three tandem repeats were found among FtFT5/FtFT6, FtMFT1/FtMFT2 and FtTFL4/FtTFL5. Five orthologous gene pairs were detected between F. tataricum and F. esculentum. Seven light-responsive, nine hormone-related and four stress-responsive elements were detected in FtPEBPs promoters. We used real-time PCR to investigate the expression levels of FtPEBPs among two flowering-type cultivars at floral transition time. We found FtFT1/FtFT3 were highly expressed in leaf and young inflorescence of early-flowering type, whereas they were expressed at very low levels in late-flowering type cultivars. Thus, we deduced that FtFT1/FtFT3 may be positive regulators for flowering and yield of Tartary buckwheat. These results lay an important foundation for further studies on the functions of FtPEBP genes which may be utilized for yield improvement.


Assuntos
Fagopyrum , Filogenia , Fagopyrum/genética , Proteínas de Plantas/genética , Genoma de Planta , Etanolaminas/metabolismo
2.
Sci Data ; 11(1): 342, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580686

RESUMO

Silybum marianum (L.) Gaertn., commonly known as milk thistle, is a medicinal plant belonging to the Asteraceae family. This plant has been recognized for its medicinal properties for over 2,000 years. However, the genome of this plant remains largely undiscovered, having no reference genome at a chromosomal level. Here, we assembled the chromosome-level genome of S. marianum, allowing for the annotation of 53,552 genes and the identification of transposable elements comprising 58% of the genome. The genome assembly from this study showed 99.1% completeness as determined by BUSCO assessment, while the previous assembly (ASM154182v1) showed 36.7%. Functional annotation of the predicted genes showed 50,329 genes (94% of total genes) with known protein functions in public databases. Comparative genome analysis among Asteraceae plants revealed a striking conservation of collinearity between S. marianum and C. cardunculus. The genomic information generated from this study will be a valuable resource for milk thistle breeding and for use by the larger research community.


Assuntos
Genoma de Planta , Silybum marianum , Melhoramento Vegetal , Plantas Medicinais/genética , Silybum marianum/genética , Cromossomos de Plantas
3.
BMC Plant Biol ; 24(1): 229, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561653

RESUMO

BACKGROUND: BAHD acyltransferases are among the largest metabolic protein domain families in the genomes of terrestrial plants and play important roles in plant growth and development, aroma formation, and biotic and abiotic stress responses. Little is known about the BAHDs in the tea plant, a cash crop rich in secondary metabolites. RESULTS: In this study, 112 BAHD genes (CsBAHD01-CsBAHD112) were identified from the tea plant genome, with 85% (98/112) unevenly distributed across the 15 chromosomes. The number of BAHD gene family members has significantly expanded from wild tea plants to the assamica type to the sinensis type. Phylogenetic analysis showed that they could be classified into seven subgroups. Promoter cis-acting element analysis revealed that they contain a large number of light, phytohormones, and stress-responsive elements. Many members displayed tissue-specific expression patterns. CsBAHD05 was expressed at more than 500-fold higher levels in purple tea leaves than in green tea leaves. The genes exhibiting the most significant response to MeJA treatment and feeding by herbivorous pests were primarily concentrated in subgroups 5 and 6. The expression of 23 members of these two subgroups at different time points after feeding by tea green leafhoppers and tea geometrids was examined via qPCR, and the results revealed that the expression of CsBAHD93, CsBAHD94 and CsBAHD95 was significantly induced after the tea plants were subjected to feeding by both pricking and chewing pests. Moreover, based on the transcriptome data for tea plants being fed on by these two pests, a transcriptional regulatory network of different transcription factor genes coexpressed with these 23 members was constructed. CONCLUSIONS: Our study provides new insights into the role of BAHDs in the defense response of tea plants, and will facilitate in-depth studies of the molecular function of BAHDs in resistance to herbivorous pests.


Assuntos
Aminas , Camellia sinensis , Dissulfetos , Camellia sinensis/metabolismo , Filogenia , Genoma de Planta , Chá/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Nat Genet ; 56(4): 721-731, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622339

RESUMO

Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.


Assuntos
Coffea , Coffea/genética , Café , Genoma de Planta/genética , Metagenômica , Melhoramento Vegetal
5.
Plant Mol Biol ; 114(3): 47, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632206

RESUMO

Natural Antisense Transcripts (NATs) are a kind of complex regulatory RNAs that play crucial roles in gene expression and regulation. However, the NATs in Cannabis Sativa L., a widely economic and medicinal plant rich in cannabinoids remain unknown. In this study, we comprehensively predicted C. sativa NATs genome-wide using strand-specific RNA sequencing (ssRNA-Seq) data, and validated the expression profiles by strand-specific quantitative reverse transcription PCR (ssRT-qPCR). Consequently, a total of 307 NATs were predicted in C. sativa, including 104 cis- and 203 trans- NATs. Functional enrichment analysis demonstrated the potential involvement of the C. sativa NATs in DNA polymerase activity, RNA-DNA hybrid ribonuclease activity, and nucleic acid binding. Finally, 18 cis- and 376 trans- NAT-ST pairs were predicted to produce 621 cis- and 5,679 trans- small interfering RNA (nat-siRNAs), respectively. These nat-siRNAs were potentially involved in the biosynthesis of cannabinoids and cellulose. All these results will shed light on the regulation of NATs and nat-siRNAs in C. sativa.


Assuntos
Canabinoides , Cannabis , RNA Antissenso/análise , RNA Antissenso/genética , RNA Antissenso/metabolismo , Cannabis/genética , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Genoma de Planta
6.
DNA Res ; 31(3)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38600880

RESUMO

We report the complete telomere-to-telomere genome assembly of Oldenlandia diffusa which renowned in traditional Chinese medicine, comprising 16 chromosomes and spanning 499.7 Mb. The assembly showcases 28 telomeres and minimal gaps, with a total of only five. Repeat sequences constitute 46.41% of the genome, and 49,701 potential protein-coding genes have been predicted. Compared with O. corymbosa, O. diffusa exhibits chromosome duplication and fusion events, diverging 20.34 million years ago. Additionally, a total of 11 clusters of terpene synthase have been identified. The comprehensive genome sequence, gene catalog, and terpene synthase clusters of O. diffusa detailed in this study will significantly contribute to advancing research in this species' genetic, genomic, and pharmacological aspects.


Assuntos
Genoma de Planta , Telômero , Telômero/genética , Alquil e Aril Transferases/genética , Duplicação Cromossômica
7.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542215

RESUMO

The market value of tea is largely dependent on the tea species and cultivar. Therefore, it is important to develop efficient molecular markers covering the entire tea genome that can be used for the identification of tea varieties, marker-assisted breeding, and mapping important quantitative trait loci for beneficial traits. In this study, genome-wide molecular markers based on intron length polymorphism (ILP) were developed for tea trees. A total of 479, 1393, and 1342 tea ILP markers were identified using the PCR method in silico from the 'Shuchazao' scaffold genome, the chromosome-level genome of 'Longjing 43', and the ancient tea DASZ chromosome-level genome, respectively. A total of 230 tea ILP markers were used to amplify six tea tree species. Among these, 213 pairs of primers successfully characterize products in all six species, with 112 primer pairs exhibiting polymorphism. The polymorphism rate of primer pairs increased with the improvement in reference genome assembly quality level. The cross-species transferability analysis of 35 primer pairs of tea ILP markers showed an average amplification rate of 85.17% through 11 species in 6 families, with high transferability in Camellia reticulata and tobacco. We also used 40 pairs of tea ILP primers to evaluate the genetic diversity and population structure of C. tetracocca with 176 plants from Puan County, Guizhou Province, China. These genome-wide markers will be a valuable resource for genetic diversity analysis, marker-assisted breeding, and variety identification in tea, providing important information for the tea industry.


Assuntos
Camellia sinensis , Humanos , Íntrons/genética , Camellia sinensis/genética , Marcadores Genéticos , Genoma de Planta , Melhoramento Vegetal , Chá
8.
Int J Biol Macromol ; 264(Pt 2): 130735, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471611

RESUMO

Drought is the stressor with a significant adverse impact on the yield stability of tea plants. HD-ZIP III transcription factors (TFs) play important regulatory roles in plant growth, development, and stress responses. However, whether and how HD-ZIP III TFs are involved in drought response and tolerance in tea plants remains unclear. Here, we identified seven HD-ZIP III genes (CsHDZ3-1 to CsHDZ3-7) in tea plant genome. The evolutionary analysis demonstrated that CsHDZ3 members were subjected to purify selection. Subcellular localization analysis revealed that all seven CsHDZ3s located in the nucleus. Yeast self-activation and dual-luciferase reporter assays demonstrated that CsHDZ3-1 to CsHDZ3-4 have trans-activation ability whereas CsHDZ3-5 to CsHDZ3-7 served as transcriptional inhibitors. The qRT-PCR assay showed that all seven CsHDZ3 genes could respond to simulated natural drought stress and polyethylene glycol treatment. Further assays verified that all CsHDZ3 genes can be cleaved by csn-miR166. Overexpression of csn-miR166 inhibited the expression of seven CsHDZ3 genes and weakened drought tolerance of tea leaves. In contrast, suppression of csn-miR166 promoted the expression of seven CsHDZ3 genes and enhanced drought tolerance of tea leaves. These findings established the foundation for further understanding the mechanism of CsHDZ3-miR166 modules' participation in drought responses and tolerance.


Assuntos
Camellia sinensis , Resistência à Seca , Camellia sinensis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genoma de Planta , Chá/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Plant Sci ; 341: 112022, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311250

RESUMO

Ginseng is a perennial herb of the genus Panax in the family Araliaceae as one of the most important traditional medicine. Genomic studies of ginseng assist in the systematic discovery of genes related to bioactive ginsenosides biosynthesis and resistance to stress, which are of great significance in the conservation of genetic resources and variety improvement. The transcriptome reflects the difference and consistency of gene expression, and transcriptomics studies of ginseng assist in screening ginseng differentially expressed genes to further explore the powerful gene source of ginseng. Protein is the ultimate bearer of ginseng life activities, and proteomic studies of ginseng assist in exploring the biosynthesis and regulation of secondary metabolites like ginsenosides and the molecular mechanism of ginseng adversity adaptation at the overall level. In this review, we summarize the current status of ginseng research in genomics, transcriptomics and proteomics, respectively. We also discuss and look forward to the development of ginseng genome allele mapping, ginseng spatiotemporal, single-cell transcriptome, as well as ginseng post-translational modification proteome. We hope that this review will contribute to the in-depth study of ginseng and provide a reference for future analysis of ginseng from a systems biology perspective.


Assuntos
Ginsenosídeos , Panax , Panax/genética , Proteômica , Perfilação da Expressão Gênica , Genoma de Planta , Raízes de Plantas/metabolismo
10.
Sci Data ; 11(1): 161, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307894

RESUMO

Anisodus tanguticus is a medicinal herb that belongs to the Anisodus genus of the Solanaceae family. This endangered herb is mainly distributed in Qinghai-Tibet Plateau. In this study, we combined the Illumina short-read, Nanopore long-read and high-throughput chromosome conformation capture (Hi-C) sequencing technologies to de novo assemble the A. tanguticus genome. A high-quality chromosomal-level genome assembly was obtained with a genome size of 1.26 Gb and a contig N50 of 25.07 Mb. Of the draft genome sequences, 97.47% were anchored to 24 pseudochromosomes with a scaffold N50 of 51.28 Mb. In addition, 842.14 Mb of transposable elements occupying 66.70% of the genome assembly were identified and 44,252 protein-coding genes were predicted. The genome assembly of A. tanguticus will provide genetic repertoire to understand the adaptation strategy of Anisodus species in the plateau, which will further promote the conservation of endangered A. tanguticus resources.


Assuntos
Genoma de Planta , Plantas Medicinais , Solanaceae , Anotação de Sequência Molecular , Filogenia , Plantas Medicinais/genética , Solanaceae/genética , Tibet , Cromossomos de Plantas
11.
BMC Genomics ; 25(1): 83, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245685

RESUMO

BACKGROUND: Protein phosphatases type 2C (PP2C) are heavily involved in plant growth and development, hormone-related signaling pathways and the response of various biotic and abiotic stresses. However, a comprehensive report identifying the genome-scale of PP2C gene family in ginger is yet to be published. RESULTS: In this study, 97 ZoPP2C genes were identified based on the ginger genome. These genes were classified into 15 branches (A-O) according to the phylogenetic analysis and distributed unevenly on 11 ginger chromosomes. The proteins mainly functioned in the nucleus. Similar motif patterns and exon/intron arrangement structures were identified in the same subfamily of ZoPP2Cs. Collinearity analysis indicated that ZoPP2Cs had 33 pairs of fragment duplicated events uniformly distributed on the corresponding chromosomes. Furthermore, ZoPP2Cs showed greater evolutionary proximity to banana's PP2Cs. The forecast of cis-regulatory elements and transcription factor binding sites demonstrated that ZoPP2Cs participate in ginger growth, development, and responses to hormones and stresses. ZoERFs have plenty of binding sites of ZoPP2Cs, suggesting a potential synergistic contribution between ZoERFs and ZoPP2Cs towards regulating growth/development and adverse conditions. The protein-protein interaction network displayed that five ZoPP2Cs (9/23/26/49/92) proteins have robust interaction relationship and potential function as hub proteins. Furthermore, the RNA-Seq and qRT-PCR analyses have shown that ZoPP2Cs exhibit various expression patterns during ginger maturation and responses to environmental stresses such as chilling, drought, flooding, salt, and Fusarium solani. Notably, exogenous application of melatonin led to notable up-regulation of ZoPP2Cs (17/59/11/72/43) under chilling stress. CONCLUSIONS: Taken together, our investigation provides significant insights of the ginger PP2C gene family and establishes the groundwork for its functional validation and genetic engineering applications.


Assuntos
Zingiber officinale , Zingiber officinale/genética , Filogenia , Perfilação da Expressão Gênica , Fosfoproteínas Fosfatases/genética , Genoma de Planta , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Sci Data ; 11(1): 55, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195564

RESUMO

Chinese motherwort (Leonurus japonicus), a member of Lamiaceae family, is a commonly used medicinal herb for treating obstetrical and gynecological diseases, producing over 280 officinal natural products. Due to limited genomic resources, little progress has been made in deciphering the biosynthetic pathway of valuable natural products in L. japonicus. Here, we de novo assembled the L. japonicus genome using high-coverage ONT long reads and Hi-C reads. The chromosome-level genome assembly contained ten chromosomes representing 99.29% of 489.34 Mb genomic sequence with a contig and scaffold N50 of 7.27 Mb and 50.86 Mb, respectively. Genome validations revealed BUSCO and LAI score of 99.2% and 21.99, respectively, suggesting high quality of genome assembly. Using transcriptomic data from various tissues, 22,531 protein-coding genes were annotated. Phylogenomic analysis of 13 angiosperm plants suggested L. japonicus had 58 expanded gene families functionally enriched in specialized metabolism such as diterpenoid biosynthesis. The genome assembly, annotation, and sequencing data provide resources for the elucidation of biosynthetic pathways behind natural products of pharmaceutical applications in L. japonicus.


Assuntos
Genoma de Planta , Leonurus , Produtos Biológicos , China , Perfilação da Expressão Gênica , Genômica , Leonurus/genética
13.
Plant J ; 118(3): 731-752, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38226777

RESUMO

Prunella vulgaris is one of the bestselling and widely used medicinal herbs. It is recorded as an ace medicine for cleansing and protecting the liver in Chinese Pharmacopoeia and has been used as the main constitutions of many herbal tea formulas in China for centuries. It is also a traditional folk medicine in Europe and other countries of Asia. Pentacyclic triterpenoids are a major class of bioactive compounds produced in P. vulgaris. However, their biosynthetic mechanism remains to be elucidated. Here, we report a chromosome-level reference genome of P. vulgaris using an approach combining Illumina, ONT, and Hi-C technologies. It is 671.95 Mb in size with a scaffold N50 of 49.10 Mb and a complete BUSCO of 98.45%. About 98.31% of the sequence was anchored into 14 pseudochromosomes. Comparative genome analysis revealed a recent WGD in P. vulgaris. Genome-wide analysis identified 35 932 protein-coding genes (PCGs), of which 59 encode enzymes involved in 2,3-oxidosqualene biosynthesis. In addition, 10 PvOSC, 358 PvCYP, and 177 PvUGT genes were identified, of which five PvOSCs, 25 PvCYPs, and 9 PvUGTs were predicted to be involved in the biosynthesis of pentacyclic triterpenoids. Biochemical activity assay of PvOSC2, PvOSC4, and PvOSC6 recombinant proteins showed that they were mixed amyrin synthase (MAS), lupeol synthase (LUS), and ß-amyrin synthase (BAS), respectively. The results provide a solid foundation for further elucidating the biosynthetic mechanism of pentacyclic triterpenoids in P. vulgaris.


Assuntos
Cromossomos de Plantas , Genoma de Planta , Triterpenos Pentacíclicos , Prunella , Prunella/genética , Prunella/metabolismo , Triterpenos Pentacíclicos/metabolismo , Genoma de Planta/genética , Cromossomos de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Triterpenos/metabolismo
14.
Nucleic Acids Res ; 52(D1): D1661-D1667, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37650644

RESUMO

The genus Camellia consists of about 200 species, which include many economically important species widely used for making tea, ornamental flowers and edible oil. Here, we present an updated tea plant information archive for Camellia genomics (TPIA2; http://tpia.teaplants.cn) by integrating more novel large-scale genomic, transcriptomic, metabolic and genetic variation datasets as well as a variety of useful tools. Specifically, TPIA2 hosts all currently available and well assembled 10 Camellia genomes and their comprehensive annotations from three major sections of Camellia. A collection of 15 million SNPs and 950 950 small indels from large-scale genome resequencing of 350 diverse tea accessions were newly incorporated, followed by the implementation of a novel 'Variation' module to facilitate data retrieval and analysis of the functionally annotated variome. Moreover, 116 Camellia transcriptomes were newly assembled and added, leading to a significant extension of expression profiles of Camellia genes to 13 developmental stages and eight abiotic/biotic treatments. An updated 'Expression' function has also been implemented to provide a comprehensive gene expression atlas for Camellia. Two novel analytic tools (e.g. Gene ID Convert and Population Genetic Analysis) were specifically designed to facilitate the data exchange and population genomics in Camellia. Collectively, TPIA2 provides diverse updated valuable genomic resources and powerful functions, and will continue to be an important gateway for functional genomics and population genetic studies in Camellia.


Assuntos
Camellia , Bases de Dados Genéticas , Camellia/genética , Camellia sinensis/genética , Camellia sinensis/metabolismo , Genoma de Planta , Genômica , Chá/metabolismo
15.
Sci China Life Sci ; 67(2): 258-273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37837531

RESUMO

Advancements in genomics have dramatically accelerated the research on medicinal plants, and the development of herbgenomics has promoted the "Project of 1K Medicinal Plant Genome" to decipher their genetic code. However, it is difficult to obtain their high-quality whole genomes because of the prevalence of polyploidy and/or high genomic heterozygosity. Whole genomes of 123 medicinal plants were published until September 2022. These published genome sequences were investigated in this review, covering their classification, research teams, ploidy, medicinal functions, and sequencing strategies. More than 1,000 institutes or universities around the world and 50 countries are conducting research on medicinal plant genomes. Diploid species account for a majority of sequenced medicinal plants. The whole genomes of plants in the Poaceae family are the most studied. Almost 40% of the published papers studied species with tonifying, replenishing, and heat-cleaning medicinal effects. Medicinal plants are still in the process of domestication as compared with crops, thereby resulting in unclear genetic backgrounds and the lack of pure lines, thus making their genomes more difficult to complete. In addition, there is still no clear routine framework for a medicinal plant to obtain a high-quality whole genome. Herein, a clear and complete strategy has been originally proposed for creating a high-quality whole genome of medicinal plants. Moreover, whole genome-based biological studies of medicinal plants, including breeding and biosynthesis, were reviewed. We also advocate that a research platform of model medicinal plants should be established to promote the genomics research of medicinal plants.


Assuntos
Plantas Medicinais , Plantas Medicinais/genética , Melhoramento Vegetal , Genômica/métodos , Sequenciamento Completo do Genoma , Produtos Agrícolas/genética , Genoma de Planta/genética
16.
Sci Data ; 10(1): 873, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057329

RESUMO

Lithocarpus, with >320 species, is the second largest genus of Fagaceae. However, the lack of a reference genome limits the molecular biology and functional study of Lithocarpus species. Here, we report the chromosome-scale genome assembly of sweet tea (Lithocarpus polystachyus Rehder), the first Lithocarpus species to be sequenced to date. Sweet tea has a 952-Mb genome, with a 21.4-Mb contig N50 value and 98.6% complete BUSCO score. In addition, the per-base consensus accuracy and completeness of the genome were estimated at 60.6 and 81.4, respectively. Genome annotation predicted 37,396 protein-coding genes, with repetitive sequences accounting for 64.2% of the genome. The genome did not undergo whole-genome duplication after the gamma (γ) hexaploidy event. Phylogenetic analysis showed that sweet tea diverged from the genus Quercus approximately at 59 million years ago. The high-quality genome assembly and gene annotation resources enrich the genomics of sweet tea, and will facilitate functional genomic studies in sweet tea and other Fagaceae species.


Assuntos
Genoma de Planta , Quercus , Cromossomos , Anotação de Sequência Molecular , Filogenia , Quercus/genética , Chá
17.
Sci Data ; 10(1): 921, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129455

RESUMO

Santalum album is a well-known aromatic and medicinal plant that is highly valued for the essential oil (EO) extracted from its heartwood. In this study, we present a high-quality chromosome-level genome assembly of S. album after integrating PacBio Sequel, Illumina HiSeq paired-end and high-throughput chromosome conformation capture sequencing technologies. The assembled genome size is 207.39 M with a contig N50 of 7.33 M and scaffold N50 size of 18.31 M. Compared with three previously published sandalwood genomes, the N50 length of the genome assembly was longer. In total, 94.26% of the assembly was assigned to 10 pseudo-chromosomes, and the anchor rate far exceeded that of a recently released value. BUSCO analysis yielded a completeness score of 94.91%. In addition, we predicted 23,283 protein-coding genes, 89.68% of which were functionally annotated. This high-quality genome will provide a foundation for sandalwood functional genomics studies, and also for elucidating the genetic basis of EO biosynthesis in S. album.


Assuntos
Genoma de Planta , Óleos Voláteis , Santalum , Sesquiterpenos , Cromossomos , Genômica , Filogenia , Santalum/genética
18.
Sci Data ; 10(1): 901, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102170

RESUMO

Microcos paniculata is a shrub used traditionally as folk medicine and to make herbal teas. Previous research into this species has mainly focused on its chemical composition and medicinal value. However, the lack of a reference genome limits the study of the molecular mechanisms of active compounds in this species. Here, we assembled a haplotype-resolved chromosome-level genome of M. paniculata based on PacBio HiFi and Hi-C data. The assembly contains two haploid genomes with sizes 399.43 Mb and 393.10 Mb, with contig N50 lengths of 43.44 Mb and 30.17 Mb, respectively. About 99.93% of the assembled sequences could be anchored to 18 pseudo-chromosomes. Additionally, a total of 482 Mb repeat sequences were identified, accounting for 60.76% of the genome. A total of 49,439 protein-coding genes were identified, of which 48,979 (99%) were functionally annotated. This haplotype-resolved chromosome-level assembly and annotation of M. paniculata will serve as a valuable resource for investigating the biosynthesis and genetic basis of active compounds in this species, as well as advancing evolutionary phylogenomic studies in Malvales.


Assuntos
Cromossomos de Plantas , Genoma de Planta , Evolução Biológica , Haploidia , Haplótipos , Anotação de Sequência Molecular , Filogenia
19.
Sci Data ; 10(1): 803, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968303

RESUMO

Knoxia roxburghii is a well-known medicinal plant that is widely distributed in southern China and Southeast Asia. Its dried roots, known as hongdaji in traditional Chinese medicine, are used to treat a range of diseases, including cancers, carbuncles, and ascites. In this study, we report a de novo chromosome-level genome sequence for this diploid plant, which has a length of approximately 446.30 Mb with a contig N50 size of 42.26 Mb and scaffold N50 size of 44.38 Mb. Approximately 99.78% of the assembled sequences were anchored to 10 pseudochromosomes and 3 gapless assembled chromosomes were included in this assembly. A total of 24,507 genes were annotated, along with 68.92% of repetitive elements. Overall, our results will facilitate further active component biosynthesis for K. roxburghii and provide insights for future functional genomic studies and DNA-informed breeding.


Assuntos
Genoma de Planta , Rubiaceae , Cromossomos , Genômica/métodos , Filogenia , Melhoramento Vegetal , Rubiaceae/genética
20.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894996

RESUMO

CRISPR/Cas9 is an efficient genome-editing tool, and the identification of editing sites and potential influences in the Camellia sinensis genome have not been investigated. In this study, bioinformatics methods were used to characterise the Camellia sinensis genome including editing sites, simple sequence repeats (SSRs), G-quadruplexes (GQ), gene density, and their relationships. A total of 248,134,838 potential editing sites were identified in the genome, and five PAM types, AGG, TGG, CGG, GGG, and NGG, were observed, of which 66,665,912 were found to be specific, and they were present in all structural elements of the genes. The characteristic region of high GC content, GQ density, and PAM density in contrast to low gene density and SSR density was identified in the chromosomes in the joint analysis, and it was associated with secondary metabolites and amino acid biosynthesis pathways. CRISPR/Cas9, as a technology to drive crop improvement, with the identified editing sites and effector elements, provides valuable tools for functional studies and molecular breeding in Camellia sinensis.


Assuntos
Sistemas CRISPR-Cas , Camellia sinensis , Sistemas CRISPR-Cas/genética , Camellia sinensis/genética , Genoma de Planta , Edição de Genes/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA