Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 196: 587-595, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36780721

RESUMO

Shikonin is a red naphthoquinone natural product from plants with high economical and medical values. The para-hydroxybenzoic acid geranyltransferase (PGT) catalyzes the key regulatory step of shikonin biosynthesis. PGTs from Lithospermum erythrorhizon have been well-characterized and used in industrial shikonin production. However, its perennial medicinal plant Arnebia euchroma accumulates much more pigment and the underlying mechanism remains obscure. Here, we discovered and characterized the different isoforms of AePGTs. Phylogenetic study and structure modeling suggested that the N-terminal of AePGT6 contributed to its highest activity among 7 AePGTs. Indeed, AePGT2 and AePGT3 fused with 60 amino acids from the N-terminal of AePGT6 showed even higher activity than AePGT6, while native AePGT2 and AePGT3 don't have catalytic activity. Our result not only provided a mechanistic explanation of high shikonin contents in Arnebia euchroma but also engineered a best-performing PGT to achieve the highest-to-date production of 3-geranyl-4-hydroxybenzoate acid, an intermedium of shikonin.


Assuntos
Boraginaceae , Naftoquinonas , Filogenia , Boraginaceae/genética , Boraginaceae/metabolismo , Naftoquinonas/química , Naftoquinonas/metabolismo , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 47(4): 897-905, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35285188

RESUMO

Monoterpenes are widely used in cosmetics, food, medicine, agriculture and other fields. With the development of synthetic biology, it is considered as a potential way to create microbial cell factories to produce monoterpenes. Engineering Saccharomyces cerevisiae to produce monoterpenes has been a research hotspot in synthetic biology. In S. cerevisiae, the production of geranyl pyrophosphate(GPP) and farnesyl pyrophosphate(FPP) is catalyzed by a bifunctional enzyme farnesyl pyrophosphate synthetase(encoded by ERG20 gene) which is inclined to synthesize FPP essential for yeast growth. Therefore, reasonable control of FPP synthesis is the basis for efficient monoterpene synthesis in yeast cell factories. In order to achieve dynamic control from GPP to FPP biosynthesis in S. cerevisiae, we obtained a novel chassis strain HP001-pERG1-ERG20 by replacing the ERG20 promoter of the chassis strain HP001 with the promoter of cyclosqualene cyclase(ERG1) gene. Further, we reconstructed the metabolic pathway by using GPP and neryl diphosphate(NPP), cis-GPP as substrates in HP001-pERG1-ERG20. The yield of GPP-derived linalool increased by 42.5% to 7.6 mg·L~(-1), and that of NPP-derived nerol increased by 1 436.4% to 8.3 mg·L~(-1). This study provides a basis for the production of monoterpenes by microbial fermentation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fermentação , Geraniltranstransferase/genética , Monoterpenos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 47(2): 412-418, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35178983

RESUMO

Farnesyl diphosphate synthase(FPPS) is a key enzyme at the branch point of the sesquiterpene biosynthetic pathway, but there are no reports on the transcriptional regulation of FPPS promoter in Pogostemon cabin. In the early stage of this study, we obtained the binding protein PcFBA-1 of FPPS gene promoter in P. cabin. In order to explore the possible mechanism of PcFBA-1 involved in the regulation of patchouli alcohol biosynthesis, this study performed PCR-based cloning and sequencing analysis of PcFBA-1, analyzed the expression patterns of PcFBA-1 in different tissues by fluorescence quantitative PCR and its subcellular localization using the protoplast transformation system, detected the binding of PcFBA-1 protein to the FPPS promoter in vitro with the yeast one-hybrid system, and verified its transcriptional regulatory function by dual-luciferase reporter gene assay. The findings demonstrated that the cloned PcFBA-1 had an open reading frame(ORF) of 1 131 bp, encoding a protein of 376 amino acids, containing two conserved domains named F-box-like superfamily and FBA-1 superfamily, and belonging to the F-box family. Moreover, neither signal peptide nor transmembrane domain was contained, implying that it was an unstable hydrophilic protein. In addition, as revealed by fluorescence quantitative PCR results, PcFBA-1 had the highest expression in leaves, and there was no significant difference in expression in roots or stems. PcFBA-1 protein was proved mainly located in the cytoplasm. Furthermore, yeast one-hybrid screening and dual-luciferase reporter gene assay showed that PcFBA-1 was able to bind to FPPS promoter both in vitro and in vivo to enhance the activity of FPPS promoter. In summary, this study identifies a new transcription factor PcFBA-1 in P. cabin, which directly binds to the FPPS gene promoter to enhance the promoter activity. This had laid a foundation for the biosynthesis of patchouli alcohol and other active ingre-dients and provided a basis for metabolic engineering and genetic improvement of P. cabin.


Assuntos
Pogostemon , Sequência de Aminoácidos , Clonagem Molecular , Geraniltranstransferase/genética , Fatores de Transcrição/genética
4.
Int J Med Mushrooms ; 22(2): 133-144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32479002

RESUMO

Total phenolics, flavonoids, and polysaccharides, and individual ganoderic acid (GA) contents, antioxidant capacity, and transcription levels of key enzyme genes involved in GA biosynthesis in pileus and stipes of Ganoderma lucidum fruiting body at different growth stages were investigated in this study. Results showed that the highest total phenolics and total flavonoids contents were determined in stipes at spore maturity stage, resulting in high antioxidant activity, while the highest total polysaccharide content was found in pileus at the same stage. The pileus contained more GA than the stipes, and higher contents of ganoderic acid A and D were found at fruiting body mature stage while that of ganoderic acid B, C2, and G were found at bud elongation stage. Results from quantitative real-time PCR indicated that higher gene transcription levels of hydroxyl methylglutaryl-CoA reductase (hmgr), farnesyl pyrophosphate synthase (fps), squalene synthase (sqs), and oxidosqualene cyclase (osc) were found in pileus at bud elongation stage. Our findings will be helpful for understanding the biosynthesis of bioactive components and determining the harvest time for the desired G. lucidum fruiting bodies.


Assuntos
Antioxidantes/análise , Carpóforos/química , Proteínas Fúngicas/genética , Reishi/química , Triterpenos/metabolismo , Antioxidantes/metabolismo , Farnesil-Difosfato Farnesiltransferase/genética , Flavonoides/metabolismo , Carpóforos/enzimologia , Carpóforos/genética , Carpóforos/crescimento & desenvolvimento , Geraniltranstransferase/genética , Hidroxibenzoatos/metabolismo , Hidroximetilglutaril-CoA Redutases/genética , Transferases Intramoleculares/genética , Polissacarídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reishi/enzimologia , Reishi/genética , Reishi/crescimento & desenvolvimento , Triterpenos/análise
5.
Bioorg Chem ; 98: 103449, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32057422

RESUMO

Farnesyl pyrophosphate synthase (FPPS) is a crucial enzyme for the synthesis of isoprenoids and the key target of nitrogen-containing bisphosphonates (N-BPs). N-BPs are potent and selective FPPS inhibitors that are used in the treatment of bone-related diseases, but have poor pharmacokinetic properties. Given the key role played by FPPS in many cancer-related pathways and the pharmacokinetic limits of N-BPs, hundreds of molecules have been screened to identify new FPPS inhibitors characterized by improved drug-like properties that are useful for broader therapeutic applications in solid, non-skeletal tumours. We have previously shown that N6-isopentenyladenosine (i6A) and its related compound N6-benzyladenosine (2) exert anti-glioma activity by interfering with the mevalonate pathway and inhibiting FPPS. Here, we report the design and synthesis of a panel of N6-benzyladenosine derivatives (compounds 2a-m) incorporating different chemical moieties on the benzyl ring. Compounds 2a-m show in vitro antiproliferative activity in U87MG glioma cells and, analogous to the bisphosphonate FPPS inhibitors, exhibit immunogenic properties in ex vivo γδ T cells from stimulated peripheral blood mononuclear cells (PBMCs). Using saturation transfer difference (STD) and quantitative 1H nuclear magnetic resonance (NMR) experiments, we found that 2f, the N6-benzyladenosine analogue that includes a tertbutyl moiety in the para position of the benzyl ring, is endowed with increased FPPS binding and inhibition compared to the parent compounds i6A and 2. N6-benzyladenosine derivatives, characterized by structural features that are significantly different from those of N-BPs, have been confirmed to be promising chemical scaffolds for the development of non N-BP FPPS inhibitors, exerting combined cytotoxic and immunostimulatory activities.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Geraniltranstransferase/antagonistas & inibidores , Ressonância Magnética Nuclear Biomolecular , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
6.
Zhongguo Zhong Yao Za Zhi ; 45(23): 5677-5685, 2020 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-33496107

RESUMO

As a secondary metabolite, sesquiterpenes are not only have important functions in plant defense and signaling, but also play potential roles in basic materials for pharmaceuticals, cosmetic and flavor. As a traditional Chinese herbal medicine, Senecio scandens exhibits effects of anti-inflammatory and immunosuppressive, as well as invigorating the blood and removing extravasated blood. Over 600 sesquiterpenes with diverse structures were isolated from S. scandens and related species in the same genus. To characterize sesquiterpenes synthesis, two FPS genes(SsFPS1 and SsFPS2) were identified in S. scandens through transcriptomic analysis. Bioinformatic analysis showed that both SsFPSs have conserved motifs for FPS function. Both SsFPSs exhibited constitutive gene expression in S. scandens tissues and SsFPS2 accumulated higher transcript in leaves and roots than SsFPS1. Meanwhile consistent with constitutive sesquiterpene accumulation in S.scandens tissues, most of these sesquiterpenes were detected in leaves and roots more than stems and flowers. Recombinant expression through Escherichia coli metabolic engineering, SsFPS1 or SsFPS2 was co-transformed with ZmTPS11(maize ß-macrocarpene synthase) into BL21 competent cells. The results showed that the content of ß-macrocarpene was increased by co-transformation with SsFPSs. It is demonstrated that SsFPS1 and SsFPS2 catalyzed E,E-FPP formation and provided FPP precursor for downstream sesquiterpene synthases. Characterization of SsFPSs provided the foundation for the exploration of biosynthesis of sesquiterpenoid with diverse structures and potential pharmaceutical values in S.scandens, and provide an important theoretical basis for the development of S. scandens abundant resources.


Assuntos
Senécio , Sesquiterpenos , Clonagem Molecular , Perfilação da Expressão Gênica , Geraniltranstransferase , Medicina Tradicional Chinesa , Senécio/genética
7.
Eur J Med Chem ; 186: 111905, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31785819

RESUMO

Farnesyl pyrophosphate synthase (FPPS) is known to participate in a variety of disease-related cell signaling pathway and bisphosphonates (BPs) are served as FPPS inhibitors. However, the high polarity of BPs often induces a series of side effects, limiting their applications. In the present study, novel non-BP FPPS inhibitors were discovered by in silico screening and experimental validation. From the structure-based virtual screening (SBVS) strategy combining molecular docking, pharmacophore and binding affinity prediction, 10 hits with novel scaffolds were filtered. The inhibition activity of hits against FPPS was identified and 7 hits showed comparable or higher inhibition activity than Zoledronate. The hit VS-4 with higher lipophilicity (XlogP = 1.81) and binding affinity (KD = 14.3 ± 2.63 µM) to FPPS was selected for further study on cancer cells with different FPPS expression level. Experimental results revealed that VS-4 could better target the FPPS high-expressing colon LoVo and HCT116 cancer cell lines with IC50 of 51.772 ± 0.473 and 43.553 ± 1.027 µM, respectively, whereas the IC50 value against FPPS low expressing MDA-MB-231 cells was >100 µM. The mechanism of VS-4 against colon cancer cells was investigated by flow cytometry and the results indicated that VS-4 induced cell apoptosis by increasing the intracellular reactive oxygen species (ROS) level. Taken together, the SBVS strategy could be used to discover promising non-BP FPPS inhibitors and the lead compound VS-4 might shed a light on designing more potent inhibitors as novel anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Geraniltranstransferase/antagonistas & inibidores , Piperazinas/farmacologia , Sulfonamidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Geraniltranstransferase/metabolismo , Células HCT116 , Humanos , Células MCF-7 , Estrutura Molecular , Piperazinas/líquido cefalorraquidiano , Piperazinas/síntese química , Piperazinas/química , Relação Estrutura-Atividade , Sulfonamidas/líquido cefalorraquidiano , Sulfonamidas/síntese química , Sulfonamidas/química , Células Tumorais Cultivadas
8.
Artigo em Chinês | WPRIM | ID: wpr-878829

RESUMO

As a secondary metabolite, sesquiterpenes are not only have important functions in plant defense and signaling, but also play potential roles in basic materials for pharmaceuticals, cosmetic and flavor. As a traditional Chinese herbal medicine, Senecio scandens exhibits effects of anti-inflammatory and immunosuppressive, as well as invigorating the blood and removing extravasated blood. Over 600 sesquiterpenes with diverse structures were isolated from S. scandens and related species in the same genus. To characterize sesquiterpenes synthesis, two FPS genes(SsFPS1 and SsFPS2) were identified in S. scandens through transcriptomic analysis. Bioinformatic analysis showed that both SsFPSs have conserved motifs for FPS function. Both SsFPSs exhibited constitutive gene expression in S. scandens tissues and SsFPS2 accumulated higher transcript in leaves and roots than SsFPS1. Meanwhile consistent with constitutive sesquiterpene accumulation in S.scandens tissues, most of these sesquiterpenes were detected in leaves and roots more than stems and flowers. Recombinant expression through Escherichia coli metabolic engineering, SsFPS1 or SsFPS2 was co-transformed with ZmTPS11(maize β-macrocarpene synthase) into BL21 competent cells. The results showed that the content of β-macrocarpene was increased by co-transformation with SsFPSs. It is demonstrated that SsFPS1 and SsFPS2 catalyzed E,E-FPP formation and provided FPP precursor for downstream sesquiterpene synthases. Characterization of SsFPSs provided the foundation for the exploration of biosynthesis of sesquiterpenoid with diverse structures and potential pharmaceutical values in S.scandens, and provide an important theoretical basis for the development of S. scandens abundant resources.


Assuntos
Clonagem Molecular , Perfilação da Expressão Gênica , Geraniltranstransferase , Medicina Tradicional Chinesa , Senécio/genética , Sesquiterpenos
9.
Zhongguo Zhong Yao Za Zhi ; 44(5): 942-947, 2019 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-30989853

RESUMO

To research the correlation between accumulation of triterpenoids and expression of key enzymes genes in triterpenoid biosynthesis of Alisma orientale,the study utilized UPLC-MS/MS method to detect eight triterpenoids content in the tuber of A. orientale from different growth stages,including alisol A,alisol A 24 acetate,alisol B,alisol B 23 acetate,alisol C 23 acetate,alisol F,alisol F 24 acetate and alisol G,and then the Real time quantitative PCR was used to analyze the expression of key enzymes genes HMGR and FPPS in triterpenoid biosynthesis. Correlation analysis showed that there was a significant positive relation between the total growth of these eight triterpenoids and the average relative expression of HMGR and FPPS(HMGR: r = 0. 998,P<0. 01; FPPS: r = 0. 957,P<0. 05),respectively. Therefore,the study preliminarily determined that HMGR and FPPS genes could regulate the biosynthesis of triterpenoids in A. orientale,which laid a foundation for further research on the biosynthesis and regulation mechanism of triterpenoids in A. orientale.


Assuntos
Alisma/química , Alisma/genética , Geraniltranstransferase/genética , Triterpenos/análise , Cromatografia Líquida , Hidroximetilglutaril-CoA-Redutases NADP-Dependentes/genética , Compostos Fitoquímicos/análise , Extratos Vegetais , Proteínas de Plantas/genética , Tubérculos/química , Espectrometria de Massas em Tandem
10.
Crit Rev Biochem Mol Biol ; 54(1): 41-60, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30773935

RESUMO

Dysregulation of isoprenoid biosynthesis is implicated in numerous biochemical disorders that play a role in the onset and/or progression of age-related diseases, such as hypercholesterolemia, osteoporosis, various cancers, and neurodegeneration. The mevalonate metabolic pathway is responsible for the biosynthesis of the two key isoprenoid metabolites, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). Post-translational prenylation of various proteins, including the small GTP-binding proteins (GTPases), with either FPP or GGPP is vital for proper localization and activation of these proteins. Prenylated GTPases play a critical role in cell signaling, proliferation, cellular plasticity, oncogenesis, and cancer metastasis. Pre-clinical and clinical studies strongly suggest that inhibition of protein prenylation can be an effective treatment for non-skeletal cancers. In this review, we summarize the most recent drug discovery efforts focusing on blocking protein farnesylation and/or geranylgeranylation and the biochemical and structural data available in guiding the current on-going studies in drug discovery. Furthermore, we provide a summary on the biochemical association between disruption of protein prenylation, endoplasmic reticulum (ER) stress, unfolded protein response (UPR) signaling, and cancer.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Geraniltranstransferase/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Descoberta de Drogas , Inibidores Enzimáticos/uso terapêutico , Farnesiltranstransferase/metabolismo , Geraniltranstransferase/metabolismo , Humanos , Ácido Mevalônico/metabolismo , Modelos Moleculares , Neoplasias/metabolismo , Fosfatos de Poli-Isoprenil/antagonistas & inibidores , Fosfatos de Poli-Isoprenil/metabolismo , Prenilação de Proteína/efeitos dos fármacos , Sesquiterpenos/antagonistas & inibidores , Sesquiterpenos/metabolismo
11.
Artigo em Chinês | WPRIM | ID: wpr-777534

RESUMO

To research the correlation between accumulation of triterpenoids and expression of key enzymes genes in triterpenoid biosynthesis of Alisma orientale,the study utilized UPLC-MS/MS method to detect eight triterpenoids content in the tuber of A. orientale from different growth stages,including alisol A,alisol A 24 acetate,alisol B,alisol B 23 acetate,alisol C 23 acetate,alisol F,alisol F 24 acetate and alisol G,and then the Real time quantitative PCR was used to analyze the expression of key enzymes genes HMGR and FPPS in triterpenoid biosynthesis. Correlation analysis showed that there was a significant positive relation between the total growth of these eight triterpenoids and the average relative expression of HMGR and FPPS(HMGR: r = 0. 998,P<0. 01; FPPS: r = 0. 957,P<0. 05),respectively. Therefore,the study preliminarily determined that HMGR and FPPS genes could regulate the biosynthesis of triterpenoids in A. orientale,which laid a foundation for further research on the biosynthesis and regulation mechanism of triterpenoids in A. orientale.


Assuntos
Alisma , Química , Genética , Cromatografia Líquida , Geraniltranstransferase , Genética , Hidroximetilglutaril-CoA-Redutases NADP-Dependentes , Genética , Compostos Fitoquímicos , Extratos Vegetais , Proteínas de Plantas , Genética , Tubérculos , Química , Espectrometria de Massas em Tandem , Triterpenos
12.
J Ind Microbiol Biotechnol ; 45(4): 239-251, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29396745

RESUMO

For recombinant production of squalene, which is a triterpenoid compound with increasing industrial applications, in microorganisms generally recognized as safe, we screened Saccharomyces cerevisiae strains to determine their suitability. A strong strain dependence was observed in squalene productivity among Saccharomyces cerevisiae strains upon overexpression of genes important for isoprenoid biosynthesis. In particular, a high level of squalene production (400 ± 45 mg/L) was obtained in shake flasks with the Y2805 strain overexpressing genes encoding a bacterial farnesyl diphosphate synthase (ispA) and a truncated form of hydroxyl-3-methylglutaryl-CoA reductase (tHMG1). Partial inhibition of squalene epoxidase by terbinafine further increased squalene production by up to 1.9-fold (756 ± 36 mg/L). Furthermore, squalene production of 2011 ± 75 or 1026 ± 37 mg/L was obtained from 5-L fed-batch fermentations in the presence or absence of terbinafine supplementation, respectively. These results suggest that the Y2805 strain has potential as a new alternative source of squalene production.


Assuntos
Fermentação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esqualeno/metabolismo , Ergosterol/química , Geraniltranstransferase/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Microbiologia Industrial , Engenharia Metabólica , Plasmídeos/metabolismo , Terbinafina/química
14.
Nat Prod Res ; 32(15): 1858-1862, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29172688

RESUMO

Thymoquinone is the most important secondary metabolite in black Cumin, which has several pharmaceutical applications. In this study, effect of TiO2 and SiO2 nanoparticles as new elicitors, on expression of Geranyl diphosphate synthase gene (GPPS gene), as a key gene involved in thymoquione biosynthesis pathway was investigated in two Iranian accessions. Plants were treatment in the early flowering stage and after 24 h of 50 and 100 mg/L of each nanoparticle, separately. After RNA extraction, GPPS gene expression was analysed by qRT-PCR method. The results showed that the TiO2 and SiO2 nanoparticles, generally stimulates the GPPS expression. The TiO2 nanoparticles were more effective than SiO2 for the induction of GPPS expression. Also, 100 mg/L treatment of nanoparticles raised gene expression more than 50 mg/L concentration. It can be concluded these nanoparticles can be used as robust elicitors to enhance the production of Thymoquinone in black cumin through up-regulation of related metabolic pathway genes.


Assuntos
Benzoquinonas/metabolismo , Geraniltranstransferase/genética , Nanopartículas , Nigella sativa/efeitos dos fármacos , Nigella sativa/genética , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Geraniltranstransferase/metabolismo , Irã (Geográfico) , Nigella sativa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Titânio/química , Titânio/farmacologia
15.
Plant J ; 93(3): 417-430, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29206320

RESUMO

Multiple independent and overlapping pollen rejection pathways contribute to unilateral interspecific incompatibility (UI). In crosses between tomato species, pollen rejection usually occurs when the female parent is self-incompatible (SI) and the male parent self-compatible (SC) (the 'SI × SC rule'). Additional, as yet unknown, UI mechanisms are independent of self-incompatibility and contribute to UI between SC species or populations. We identified a major quantitative trait locus on chromosome 10 (ui10.1) which affects pollen-side UI responses in crosses between cultivated tomato, Solanum lycopersicum, and Solanum pennelliiLA0716, both of which are SC and lack S-RNase, the pistil determinant of S-specificity in Solanaceae. Here we show that ui10.1 is a farnesyl pyrophosphate synthase gene (FPS2) expressed in pollen. Expression is about 18-fold higher in pollen of S. pennellii than in S. lycopersicum. Pollen with the hypomorphic S. lycopersicum allele is selectively eliminated on pistils of the F1 hybrid, leading to transmission ratio distortion in the F2 progeny. CRISPR/Cas9-generated knockout mutants (fps2) in S. pennelliiLA0716 are self-sterile due to pollen rejection, but mutant pollen is fully functional on pistils of S. lycopersicum. F2 progeny of S. lycopersicum × S. pennellii (fps2) show reversed transmission ratio distortion due to selective elimination of pollen bearing the knockout allele. Overexpression of FPS2 in S. lycopersicum pollen rescues the pollen elimination phenotype. FPS2-based pollen selectivity does not involve S-RNase and has not been previously linked to UI. Our results point to an entirely new mechanism of interspecific pollen rejection in plants.


Assuntos
Geraniltranstransferase/genética , Proteínas de Plantas/genética , Pólen/genética , Autoincompatibilidade em Angiospermas/genética , Solanum lycopersicum/fisiologia , Mapeamento Cromossômico , Cromossomos de Plantas , Flores/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Geraniltranstransferase/metabolismo , Mutação com Perda de Função , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ribonucleases/genética , Ribonucleases/metabolismo
16.
J Am Chem Soc ; 139(41): 14556-14567, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28926242

RESUMO

The amino acid sequences of farnesyl diphosphate synthase (FPPase) and chrysanthemyl diphosphate synthase (CPPase) from Artemisia tridentata ssp. Spiciformis, minus their chloroplast targeting regions, are 71% identical and 90% similar. FPPase efficiently and selectively synthesizes the "regular" sesquiterpenoid farnesyl diphosphate (FPP) by coupling isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP) and then to geranyl diphosphate (GPP). In contrast, CPPase is an inefficient promiscuous enzyme, which synthesizes the "irregular" monoterpenes chrysanthemyl diphosphate (CPP), lavandulyl diphosphate (LPP), and trace quantities of maconelliyl diphosphate (MPP) from two molecules of DMAPP, and couples IPP to DMAPP to give GPP. A. tridentata FPPase and CPPase belong to the chain elongation protein family (PF00348), a subgroup of the terpenoid synthase superfamily (CL0613) whose members have a characteristic α terpene synthase α-helical fold. The active sites of A. tridentata FPPase and CPPase are located within a six-helix bundle containing amino acids 53 to 241. The two enzymes were metamorphosed into one another by sequentially replacing the loops and helices of the six-helix bundle from enzyme with those from the other. Chain elongation was the dominant activity during the N-terminal to C-terminal metamorphosis of FPPase to CPPase, with product selectivity gradually switching from FPP to GPP, until replacement of the final α-helix, whereupon cyclopropanation and branching activity competed with chain elongation. During the corresponding metamorphosis of CPPase to FPPase, cyclopropanation and branching activities were lost upon replacement of the first helix in the six-helix bundle. Mutations of active site residues in CPPase to the corresponding amino acids in FPPase enhanced chain-elongation activity, while similar mutations in the active site of FPPase failed to significantly promote formation of significant amounts of irregular monoterpenes. Our results indicate that CPPase, a promiscuous enzyme, is more plastic toward acquiring new activities, whereas FPPase is more resistant. Mutations of residues outside of the α terpene synthase fold are important for acquisition of FPPase activity for synthesis of CPP, LPP, and MPP.


Assuntos
Artemisia/enzimologia , Difosfatos/metabolismo , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo , Morfogênese , Mutagênese Sítio-Dirigida , Sequência de Aminoácidos , Artemisia/genética , Geraniltranstransferase/genética , Mutação , Relação Estrutura-Atividade
17.
Zhongguo Zhong Yao Za Zhi ; 42(2): 220-225, 2017 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-28948723

RESUMO

Based on the transcriptome data, the study cloned full-length cDNA of TwGPPS1 and TwGPPS2 genes from Tripterygium wilfordii suspension cells and then analyzed the bioinformation of the sequence and protein expression. The cloned TwGPPS1 has a 1 278 bp open reading frame (ORF) encoding a polypeptide of 425 amino acids. The deduced isoelectric point (pI) was 6.68, a calculated molecular weight was about 47.189 kDa. The full-length cDNA of the TwGPPS2 contains a 1 269 bp open reading frame (ORF) encoding a polypeptide of 422 amino acids. The deduced isoelectric point (pI) was 6.71, a calculated molecular weight was about 46.774 kDa.The entire reading frame of TwGPPS1,2 was cloned into the pET-32a(+) vector and expressed in E. coli BL21 (DE3) cells to obtain the TwGPPS protein, which laid a basis for further study on the regulation of terpenoid secondary metabolism and biological synthesis.


Assuntos
Difosfatos/metabolismo , Diterpenos/metabolismo , Geraniltranstransferase/genética , Proteínas de Plantas/genética , Tripterygium/enzimologia , Clonagem Molecular , DNA Complementar , Filogenia , Metabolismo Secundário , Tripterygium/genética
18.
FEMS Yeast Res ; 17(7)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28934417

RESUMO

Shikonin and its derivatives are the main active components in the medicinal plant Arnebia euchroma and possess extensive pharmaceutical properties. In this study, we developed an optimized yeast system to obtain high-level production of 3-geranyl-4-hydroxybenzoate acid (GBA), an important intermediate involved in shikonin biosynthesis pathway. For host selection, recombinant expression of p-hydroxybenzoate:geranyltransferase (PGT) derived from A. euchroma was performed in Saccharomyces cerevisiae WAT11U strain and high yield monoterpene strain. In shake flask culture with 1 mM p-hydroxybenzoate acid (PHBA), they could yield GBA at 0.1567 and 20.8624 mg L-1, respectively. Additionally, AePGT6 showed higher enzymatic activity than its homologs. Moreover, by combining improvement in the homologous mevalonate pathway with reconstruction in the heterologous shikimic pathway, a de novo GBA synthesis pathway was constructed in StHP6tHC with co-overexpressed SctHMG1, optimized EcUbiC and AePGT6. A high titer of 179.29 mg L-1 GBA was achieved in StHP6tHC under shake flask fermentation with 1 mM PHBA. These results suggest that yeast could be engineered systematically to enable an efficient monoterpene-quinone or naphthoquinone production.


Assuntos
Vias Biossintéticas , Fermentação , Naftoquinonas/metabolismo , Parabenos/metabolismo , Leveduras/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão , Ativação Enzimática , Expressão Gênica , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-28559264

RESUMO

Bisphosphonates are widely used for the treatment of bone disorders. These drugs also inhibit the growth of a variety of protozoan parasites, such as Toxoplasma gondii, the etiologic agent of toxoplasmosis. The target of the most potent bisphosphonates is the isoprenoid biosynthesis pathway enzyme farnesyl diphosphate synthase (FPPS). Based on our previous work on the inhibitory effect of sulfur-containing linear bisphosphonates against T. gondii, we investigated the potential synergistic interaction between one of these derivatives, 1-[(n-heptylthio)ethyl]-1,1-bisphosphonate (C7S), and statins, which are potent inhibitors of the host 3-hydroxy-3-methyl glutaryl-coenzyme A reductase (3-HMG-CoA reductase). C7S showed high activity against the T. gondii bifunctional farnesyl diphosphate (FPP)/geranylgeranyl diphosphate (GGPP) synthase (TgFPPS), which catalyzes the formation of FPP and GGPP (50% inhibitory concentration [IC50] = 31 ± 0.01 nM [mean ± standard deviation]), and modest effect against the human FPPS (IC50 = 1.3 ± 0.5 µM). We tested combinations of C7S with statins against the in vitro replication of T. gondii We also treated mice infected with a lethal dose of T. gondii with similar combinations. We found strong synergistic activities when using low doses of C7S, which were stronger in vivo than when tested in vitro We also investigated the synergism of several commercially available bisphosphonates with statins both in vitro and in vivo Our results provide evidence that it is possible to develop drug combinations that act synergistically by inhibiting host and parasite enzymes in vitro and in vivo.


Assuntos
Antiprotozoários/uso terapêutico , Atorvastatina/uso terapêutico , Difosfonatos/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Imidazóis/uso terapêutico , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico , Acil Coenzima A/metabolismo , Animais , Linhagem Celular , Difosfonatos/farmacologia , Geranil-Geranildifosfato Geranil-Geraniltransferase/antagonistas & inibidores , Geraniltranstransferase/antagonistas & inibidores , Geraniltranstransferase/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Camundongos , Fosfatos de Poli-Isoprenil/biossíntese , Sesquiterpenos , Toxoplasma/crescimento & desenvolvimento , Ácido Zoledrônico
20.
J Ind Microbiol Biotechnol ; 44(7): 1065-1072, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28547322

RESUMO

Beta-elemene, a sesquiterpene and the major component of the medicinal herb Curcuma wenyujin, has antitumor activity against various types of cancer and could potentially serve as a potent antineoplastic drug. However, its current mode of production through extraction from plants has been inefficient and suffers from limited natural resources. Here, we engineered a yeast cell factory for the sustainable production of germacrene A, which can be transformed to beta-elemene by a one-step chemical reaction in vitro. Two heterologous germacrene A synthases (GASs) converting farnesyl pyrophosphate (FPP) to germacrene A were evaluated in yeast for their ability to produce germacrene A. Thereafter, several metabolic engineering strategies were used to improve the production level. Overexpression of truncated 3-hydroxyl-3-methylglutaryl-CoA reductase and fusion of FPP synthase with GAS, led to a sixfold increase in germacrene A production in shake-flask culture. Finally, 190.7 mg/l of germacrene A was achieved. The results reported in this study represent the highest titer of germacrene A reported to date. These results provide a basis for creating an efficient route for further industrial application re-placing the traditional extraction of beta-elemene from plant sources.


Assuntos
Regulação Fúngica da Expressão Gênica , Engenharia Metabólica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sesquiterpenos de Germacrano/biossíntese , Sesquiterpenos/metabolismo , Técnicas de Cultura Celular por Lotes , Meios de Cultura/química , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Fosfatos de Poli-Isoprenil , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA