Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 394
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 207, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395740

RESUMO

BACKGROUND: Darjeeling tea is a globally renowned beverage, which faces numerous obstacles in sexual reproduction, such as self-incompatibility, poor seed germination, and viability, as well as issues with vegetative propagation. Somatic embryogenesis (SE) is a valuable method for rapid clonal propagation of Darjeeling tea. However, the metabolic regulatory mechanisms underlying SE in Darjeeling tea remain largely unknown. To address this, we conducted an integrated metabolomics and transcriptomics analysis of embryogenic callus (EC), globular embryo (GE), and heart-shaped embryo (HE). RESULTS: The integrated analyses showed that various genes and metabolites involved in the phenylpropanoid pathway, auxin biosynthesis pathway, gibberellin, brassinosteroid and amino acids biosynthesis pathways were differentially enriched in EC, GE, and HE. Our results revealed that despite highly up-regulated auxin biosynthesis genes YUC1, TAR1 and AAO1 in EC, endogenous indole-3-acetic acid (IAA) was significantly lower in EC than GE and HE. However, bioactive Gibberellin A4 displayed higher accumulation in EC. We also found higher BABY BOOM (BBM) and Leafy cotyledon1 (LEC1) gene expression in GE along with high accumulation of castasterone, a brassinosteroid. Total flavonoids and phenolics levels were elevated in GE and HE compared to EC, especially the phenolic compound chlorogenic acid was highly accumulated in GE. CONCLUSIONS: Integrated metabolome and transcriptome analysis revealed enriched metabolic pathways, including auxin biosynthesis and signal transduction, brassinosteroid, gibberellin, phenylpropanoid biosynthesis, amino acids metabolism, and transcription factors (TFs) during SE in Darjeeling tea. Notably, EC displayed lower endogenous IAA levels, conducive to maintaining differentiation, while higher IAA concentration in GE and HE was crucial for preserving embryo identity. Additionally, a negative correlation between bioactive gibberellin A4 (GA4) and IAA was observed, impacting callus growth in EC. The high accumulation of chlorogenic acid, a phenolic compound, might contribute to the low success rate in GE and HE formation in Darjeeling tea. TFs such as BBM1, LEC1, FUS3, LEA, WOX3, and WOX11 appeared to regulate gene expression, influencing SE in Darjeeling tea.


Assuntos
Brassinosteroides , Giberelinas , Ácido Clorogênico , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Chá , Desenvolvimento Embrionário , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Zhongguo Zhong Yao Za Zhi ; 49(2): 354-360, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403311

RESUMO

This study aimed to examine the morphological, physiological, and biochemical alterations occurring in Notopterygium incisum seeds throughout their developmental stages, with the objective of establishing a theoretical foundation for the cultivation of superior quality seeds. The experimental materials utilized in this study were the seeds of N. incisum at various stages of development following anthesis. Through the employment of morphological observation and plant physiology techniques, the external morphology, nutrients, enzyme activity, and endogenous hormones of the seeds were assessed. The results revealed a transition in seed coat color from light green to brown during the growth and development of N. incisum seeds. Additionally, as the seeds matured, a decrease in water content was observed. Conversely, starch content exhibited a progressive increase, while sucrose content displayed fluctuations. At 7 days after anthesis, the soluble sugar content attained its highest level of 4.52 mg·g~(-1), whereas the soluble protein content reached its maximum of 6.00 mg·g~(-1) at 14 days after anthesis and its minimum of 4.94 mg·g~(-1) at 42 days after anthesis. The activity of superoxide dismutase(SOD) exhibited an initial increase, followed by a decrease, and eventually reached a stable state. Conversely, the activities of catalase(CAT) and peroxidase(POD) demonstrated a decrease initially, followed by an increase, and then another decrease. The levels of the four endogenous hormones, namely gibberellin(GA_3), zeatin riboside(ZR), auxin(IAA), and abscisic acid(ABA), in the seeds displayed significant variations, with IAA and ABA exhibiting considerably higher levels compared to the other hormones. The levels of plant growth-promoting hormones, represented by IAA, generally displayed a pattern of initial increase followed by a subsequent decrease during seed development, while the plant growth-inhibiting hormone ABA showed the opposite trend. The findings indicate that the alterations in nutrient composition, antioxidant enzyme activity, and endogenous hormone levels vary throughout the maturation process of N. incisum seeds. These observations hold relevance for the cultivation of N. incisum seeds.


Assuntos
Giberelinas , Reguladores de Crescimento de Plantas , Ácido Abscísico , Sementes , Hormônios/metabolismo , Germinação/fisiologia
3.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255910

RESUMO

Nuclear factor Y (NF-Y) is a class of transcription factors consisting of NF-YA, NF-YB and NF-YC subunits, which are widely distributed in eukaryotes. The NF-YC subunit regulates plant growth and development and plays an important role in the response to stresses. However, there are few reports on this gene subfamily in tea plants. In this study, nine CsNF-YC genes were identified in the genome of 'Longjing 43'. Their phylogeny, gene structure, promoter cis-acting elements, motifs and chromosomal localization of these gene were analyzed. Tissue expression characterization revealed that most of the CsNF-YCs were expressed at low levels in the terminal buds and at relatively high levels in the flowers and roots. CsNF-YC genes responded significantly to gibberellic acid (GA) and abscisic acid (ABA) treatments. We further focused on CsNF-YC6 because it may be involved in the growth and development of tea plants and the regulation of response to abiotic stresses. The CsNF-YC6 protein is localized in the nucleus. Arabidopsis that overexpressed CsNF-YC6 (CsNF-YC6-OE) showed increased seed germination and increased root length under ABA and GA treatments. In addition, the number of cauline leaves, stem lengths and silique numbers were significantly higher in overexpressing Arabidopsis lines than wild type under long-day growth conditions, and CsNF-YC6 promoted primary root growth and increased flowering in Arabidopsis. qPCR analysis showed that in CsNF-YC6-OE lines, flowering pathway-related genes were transcribed at higher levels than wild type. The investigation of the CsNF-YC gene has unveiled that CsNF-YC6 plays a pivotal role in plant growth, root and flower development, as well as responses to abiotic stress.


Assuntos
Arabidopsis , Camellia sinensis , Giberelinas , Camellia sinensis/genética , Ácido Abscísico/farmacologia , Chá
4.
Pestic Biochem Physiol ; 198: 105725, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225080

RESUMO

This study aimed to examine the effects of gibberellic acid (GBA) on growth, hemato-biochemical parameters related to liver functions, digestive enzymes, and immunological response in Oreochromis niloticus. Besides, the probable underlying mechanisms were explored by assessing antioxidant, apoptotic, and immune-related gene expression. Furthermore, the likelihood of restoration following alpha-lipoic acid (LIP) dietary supplementation was explored. The fish (average initial weight 30.75 ± 0.46) were equally classified into four groups: the control group, the LIP group (fed on a basal diet plus 600 mg/kg of LIP), the GBA group (exposed to 150 mg GBA/L), and the GBA + LIP group (exposed to 150 mg GBA/L and fed a diet containing LIP and GBA) for 60 days. The study findings showed that LIP supplementation significantly reduced GBA's harmful effects on survival rate, growth, feed intake, digestive enzymes, and antioxidant balance. Moreover, the GBA exposure significantly increased liver enzymes, stress markers, cholesterol, and triglyceride levels, all of which were effectively mitigated by the supplementation of LIP. Additionally, LIP addition to fish diets significantly minimized the histopathological alterations in the livers of GBA-treated fish, including fatty change, sharply clear cytoplasm with nuclear displacement to the cell periphery, single-cell necrosis, vascular congestion, and intralobular hemorrhages. The GBA-induced reduction in lysozyme activity, complement C3, and nitric oxide levels, together with the downregulation of antioxidant genes (cat and sod), was significantly restored by dietary LIP. Meanwhile, adding LIP to the GBA-exposed fish diets significantly corrected the aberrant expression of hsp70, caspase- 3, P53, pcna, tnf-a, and il-1ß in O. niloticus liver. Conclusively, dietary LIP supplementation could mitigate the harmful effects of GBA exposure on fish growth and performance, physiological conditions, innate immunity, antioxidant capability, inflammatory response, and cell apoptosis.


Assuntos
Ciclídeos , Giberelinas , Ácido Tióctico , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Suplementos Nutricionais , Ácido Tióctico/farmacologia , Ácido Tióctico/metabolismo , Ciclídeos/genética , Estresse Oxidativo , Expressão Gênica
5.
Plant Sci ; 341: 111996, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272070

RESUMO

During the sunflower seed production process, the role of artificial shading treatment (ST) in seed development and subsequent seed germination remains largely unknown. In the present study, sunflower mother plants were artificially shaded during 1-34 (full period-ST, FST), 1-22 (early period-ST, EST), and 22-34 (late period-ST, LST) days after pollination (DAP), to examine the effects of parental shading on subsequent seed germination. Both FST and EST significantly reduced the photosynthetic efficiency of sunflower, manifested as decreased seed dry weight and unfavorable seed germination. On the contrary, LST remarkably increased seed dry weight and promoted subsequent seed germination and seedling establishment. LST enhanced the activities of several key enzymes involved in triglyceride anabolism and corresponding-genes expression, which in turn increased the total fatty acid contents and altered the fatty acid composition. During early germination, the key enzyme activities involved in triglyceride disintegration and corresponding-gene expressions in LST seeds were apparently higher than those in seeds without the shading treatment (WST). Consistently, LST seeds had significant higher contents of ATP and soluble sugar. Moreover, enzyme activities related to abscisic acid (ABA) biosynthesis and corresponding gene expressions decreased within LST seeds, whereas the enzyme activities and corresponding gene expressions associated with gibberellin (GA) biosynthesis were increased. These results were also evidenced by the reduced ABA content but elevated GA level within LST seeds, giving rise to higher GA/ABA ratio. Our findings suggested that LST could promote sunflower seed development and subsequent seed germination as well as seedling establishment through modulating the dynamic metabolism of triglycerides, fatty acid and GA/ABA balance.


Assuntos
Helianthus , Plântula , Germinação/genética , Helianthus/genética , Helianthus/metabolismo , Ácido Abscísico/metabolismo , Sementes/metabolismo , Giberelinas/metabolismo , Ácidos Graxos/metabolismo , Triglicerídeos/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139361

RESUMO

In potatoes, tuber secondary growth, especially sprouting, deforms the tubers and severely lowers their commercial value. Tuber sprouting is induced by signal substances, such as gibberellin (GA), which are transported to the tuber from the plant body. The molecular mechanism underlying GA-induced sprouting remains ambiguous. Here, we tried to recreate tuber secondary growth using in vitro stemmed microtubers (MTs) (with the nodal stem attached) and MT halves (with the nodal stem entirely removed). Our experiments showed that GA alone could initiate the sprouting of stemmed microtubers; however, GA failed to initiate MT halves unless 6-benzyladenine, a synthetic cytokinin CK, was co-applied. Here, we analyzed the transcriptional profiles of sprouting buds using these in vitro MTs. RNA-seq analysis revealed a downregulation of cytokinin-activated signaling but an upregulation of the "Zeatin biosynthesis" pathway, as shown by increased expression of CYP735A, CISZOG, and UGT85A1 in sprouting buds; additionally, the upregulation of genes, such as IAA15, IAA22, and SAUR50, associated with auxin-activated signaling and one abscisic acid (ABA) negative regulator, PLY4, plays a vital role during sprouting growth. Our findings indicate that the role of the nodal stem is synonymous with CK in sprouting growth, suggesting that CK signaling and homeostasis are critical to supporting GA-induced sprouting. To effectively control tuber sprouting, more effort is required to be devoted to these critical genes.


Assuntos
Citocininas , Solanum tuberosum , Citocininas/metabolismo , Solanum tuberosum/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Perfilação da Expressão Gênica , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Tubérculos/metabolismo
7.
PeerJ ; 11: e16449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025721

RESUMO

The 2-Oxoglutatrate-dependent dioxygenases (2OGDs) comprise the 2-Oxoglutatrate and Fe(II)-dependent dioxygenases (2ODD) enzyme families that facilitate the biosynthesis of various compounds like gibberellin, ethylene, etc. The 2OGDs are also involved in various catabolism pathways, such as auxin and salicylic acid catabolism. Despite their important roles, 2ODDs have not been studied in potato, which is the third most important crop globally. In this study, a comprehensive genome wide analysis was done to identify all 2ODDs in potatoes, and the putative genes were analysed for the presence of the signature 2OG-FeII_Oxy (PF03171) domain and the conserved DIOX_N (PF14226) domain. A total of 205 St2ODDs were identified and classified into eight groups based on their function. The physiochemical properties, gene structures, and motifs were analysed, and gene duplication events were also searched for St2ODDs. The active amino acid residues responsible for binding with 2-oxoglutarate and Fe (II) were conserved throughout the St2ODDs. The three-dimensional (3D) structures of the representative members of flavanol synthase (FNS), 1-aminocyclopropane-1-carboxylic acid oxidases (ACOs), and gibberellin oxidases (GAOXs) were made and docked with their respective substrates, and the potential interactions were visualised. The expression patterns of the St2ODDs under abiotic stressors such as heat, salt, and drought were also analysed. We found altered expression levels of St2ODDs under abiotic stress conditions, which was further confirmed for drought and salt stress using qRT-PCR. The expression levels of St2ODD115, St2ODD34, and St2ODD99 were found to be upregulated in drought stress with 2.2, 1.8, and 2.6 fold changes, respectively. After rewatering, the expression levels were normal. In salt stress, the expression levels of St2ODD151, St2ODD76, St2ODD91, and St2ODD34 were found to be upregulated after 24 hours (h), 48 hours (h), 72 hours (h), and 96 hours (h). Altogether, the elevated expression levels suggest the importance of St2ODDs under abiotic stresses, i.e., drought and salt. Overall, our study provided a knowledge base for the 2ODD gene family in potato, which can be used further to study the important roles of 2ODDs in potato plants.


Assuntos
Dioxigenases , Solanum tuberosum , Solanum tuberosum/genética , Ácidos Cetoglutáricos , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Secas , Giberelinas , Dioxigenases/genética , Estresse Salino
8.
Yi Chuan ; 45(9): 845-855, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731238

RESUMO

Gibberellin (GA) is an important hormone, which is involved in regulating various growth and development. GA biosynthesis pathway and synthetase have been basically clarified. Gibberellin 3ß hydroxylase (GA3ox) is the key enzyme for the synthesis of various active GA. There are two GA3ox genes (OsGA3ox1 and OsGA3ox2) in rice, and their physiological functions have been preliminarily studied. However, it is not clear how they work together to synthesize active GA to regulate rice development. In this study, the knockout mutants ga3ox1 and ga3ox2 were obtained by CRISPR/Cas9 technology. The pollen fertility of ga3ox1 decreased significantly, while the plant height of ga3ox2 decreased significantly. It shows that OsGA3ox1 is necessary for normal pollen development, while OsGA3ox2 is necessary for stem and leaf elongation. Tissue expression analysis showed that OsGA3ox1 was mainly expressed in unopened flowers, while OsGA3ox2 was mainly expressed in unexpanded leaves. The GA in different tissues of wild type (WT), and two ga3ox mutants were detected. It was found that pollen fertility is most closely related to the content of GA7, and plant height is most closely related to the content of GA1. It was found that OsGA3ox1 catalyzes GA9 to GA7 in flowers, which is closely related to pollen fertility; OsGA3ox2 catalyzes the GA20 to GA1 in unexpanded leaves, thereby regulating plant height; OsGA3ox1 catalyzes the GA19 to GA20 in roots, regulating the generation of GA3. OsGA3ox1 and OsGA3ox2 respond to developmental and environmental signals, and cooperate to synthesize endogenous GA in different tissues to regulate rice development. This study provides a reference for clarifying its role in GA biosynthesis pathway and further understanding the function of OsGA3ox.


Assuntos
Oryza , Oryza/genética , Giberelinas , Pólen , Fertilidade/genética , Flores/genética
9.
Plant Physiol ; 193(4): 2555-2572, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37691396

RESUMO

Phased short-interfering RNAs (phasiRNAs) fine tune various stages of growth, development, and stress responses in plants. Potato (Solanum tuberosum) tuberization is a complex process, wherein a belowground modified stem (stolon) passes through developmental stages like swollen stolon and minituber before it matures to a potato. Previously, we identified several phasiRNA-producing loci (PHAS) from stolon-to-tuber transition stages. However, whether phasiRNAs mediate tuber development remains unknown. Here, we show that a gene encoding NB-ARC DOMAIN-CONTAINING DISEASE RESISTANCE PROTEIN (StRGA4; a PHAS locus) is targeted by Stu-microRNA482c to generate phasiRNAs. Interestingly, we observed that one of the phasiRNAs, referred as short-interfering RNA D29(-), i.e. siRD29(-), targets the gibberellin (GA) biosynthesis gene GIBBERELLIN 3-OXIDASE 3 (StGA3ox3). Since regulation of bioactive GA levels in stolons controls tuber development, we hypothesized that a gene regulatory module, Stu-miR482c-StRGA4-siRD29(-)-StGA3ox3, could govern tuber development. Through transient expression assays and small RNA sequencing, generation of siRD29(-) and its phase was confirmed in planta. Notably, the expression of StGA3ox3 was higher in swollen stolon compared to stolon, whereas siRD29(-) showed a negative association with StGA3ox3 expression. Antisense (AS) lines of StGA3ox3 produced more tubers compared to wild type. As expected, StRGA4 overexpression (OE) lines had high levels of siRD29(-) and mimicked the phenotypes of StGA3ox3-AS lines, indicating the functionality of this module in potato. In vitro tuberization assays (with or without a GA inhibitor) using StGA3ox3 antisense lines and overexpression lines of StGA3ox3 or StRGA4 revealed that StGA3ox3 controls the tuber stalk development. Taken together, our findings suggest that a phasiRNA, siRD29(-), mediates the regulation of StGA3ox3 during stolon-to-tuber transitions in potato.


Assuntos
Giberelinas , Solanum tuberosum , Giberelinas/metabolismo , RNA Interferente Pequeno/metabolismo , Solanum tuberosum/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos , Regulação da Expressão Gênica de Plantas
10.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3149-3155, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381997

RESUMO

This study explored the preservation effect of strigolactone analogs on Gastrodia elata tubers and screened out the suitable preservation measures of G. elata to provide a safer and more effective method for its storage and preservation. Fresh G. elata tubers were treated with 7FGR24, 2,4-D isooctyl ester, and maleic hydrazide, respectively. The growth of flower buds, the activities of CAT, and MDA, and the content of gastrodin and p-hydroxybenzyl alcohol were measured to compare the effects of different compounds on the storage and preservation of G. elata. The effects of different storage temperatures on the preservation of 7FGR24 were compared and analyzed. The gibberellin signal transduction receptor gene GeGID1 was cloned, and the effect of 7FGR24 on the expression level of GeGID1 was analyzed by quantitative polymerase chain reaction(qPCR). The toxicity of the G. elata preservative 7FGR24 was analyzed by intragastric administration in mice to evaluate its safety. The results showed that compared with 2,4-D isooctyl ester and maleic hydrazide, 7FGR24 treatment had a significant inhibitory effect on the growth of G. elata flower buds, and the CAT enzyme activity of G. elata was the highest, indicating that its preservation effect was stronger. Different storage temperatures had different effects on the preservation of G. elata, and the preservation effect was the strongest at 5 ℃. The open reading frame(ORF) of GeGID1 gene was 936 bp in length, and its expression level was significantly down-regulated after 7FGR24 treatment, indicating that 7FGR24 may inhibit the growth of flower buds by inhibiting the gibberellin signal of G. elata, thereby exerting a fresh-keeping effect. Feeding preservative 7FGR24 had no significant effect on the behavior and physiology of mice, indicating that it had no obvious toxicity. This study explored the application of the strigolactone analog 7FGR24 in the storage and preservation of G. elata and preliminarily established a method for the storage and preservation of G. elata, laying a foundation for the molecular mechanism of 7FGR24 in the storage and preservation of G. elata.


Assuntos
Gastrodia , Hidrazida Maleica , Animais , Camundongos , Giberelinas , Ésteres
11.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982639

RESUMO

With far-red-light supplementation (3 W·m-2, and 6 W·m-2), the flower budding rate, plant height, internode length, plant display, and stem diameter of Chinese kale were largely elevated, as well as the leaf morphology such as leaf length, leaf width, petiole length, and leaf area. Consequently, the fresh weight and dry weight of the edible parts of Chinese kale were markedly increased. The photosynthetic traits were enhanced, and the mineral elements were accumulated. To further explore the mechanism that far-red light simultaneously promoted the vegetative growth and reproductive growth of Chinese kale, this study used RNA sequencing to gain a global perspective on the transcriptional regulation, combining it with an analysis of composition and content of phytohormones. A total of 1409 differentially expressed genes were identified, involved mainly in pathways related to photosynthesis, plant circadian rhythm, plant hormone biosynthesis, and signal transduction. The gibberellins GA9, GA19, and GA20 and the auxin ME-IAA were strongly accumulated under far-red light. However, the contents of the gibberellins GA4 and GA24, the cytokinins IP and cZ, and the jasmonate JA were significantly reduced by far-red light. The results indicated that the supplementary far-red light can be a useful tool to regulate the vegetative architecture, elevate the density of cultivation, enhance the photosynthesis, increase the mineral accumulation, accelerate the growth, and obtain a significantly higher yield of Chinese kale.


Assuntos
Brassica , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Brassica/metabolismo , Transcriptoma , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo
12.
BMC Plant Biol ; 23(1): 93, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782128

RESUMO

BACKGROUND: Gibberellins (GAs) are widely involved in plant growth and development. DELLA proteins are key regulators of plant development and a negative regulatory factor of GA. Dendrobium officinale is a valuable traditional Chinese medicine, but little is known about D. officinale DELLA proteins. Assessing the function of D. officinale DELLA proteins would provide an understanding of their roles in this orchid's development. RESULTS: In this study, the D. officinale DELLA gene family was identified. The function of DoDELLA1 was analyzed in detail. qRT-PCR analysis showed that the expression levels of all DoDELLA genes were significantly up-regulated in multiple shoots and GA3-treated leaves. DoDELLA1 and DoDELLA3 were significantly up-regulated in response to salt stress but were significantly down-regulated under drought stress. DoDELLA1 was localized in the nucleus. A strong interaction was observed between DoDELLA1 and DoMYB39 or DoMYB308, but a weak interaction with DoWAT1. CONCLUSIONS: In D. officinale, a developmental regulatory network involves a close link between DELLA and other key proteins in this orchid's life cycle. DELLA plays a crucial role in D. officinale development.


Assuntos
Dendrobium , Dendrobium/genética , Dendrobium/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Sci Rep ; 12(1): 17779, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273038

RESUMO

In this current research, the left-over residues collected from the dark fermentation-microbial electrolysis cells (DF-MEC) integrated system solely biocatalyzed by activated sludge during the bioconversion of the agricultural straw wastes into hydrogen energy, was investigated for its feasibility to be used as a potential alternative biofertilizer to the commonly costly inorganic ones. The results revealed that the electrohydrogenesis left-over residues enriched various plant growth-promoting microbial communities including Enterobacter (8.57%), Paenibacillus (1.18%), Mycobacterium (0.77%), Pseudomonas (0.65%), Bradyrhizobium (0.12%), Azospirillum (0.11%), and Mesorhizobium (0.1%) that are generally known for their ability to produce different essential phytohormones such as indole-3-acetic acid/indole acetic acid (IAA) and Gibberellins for plant growth. Moreover, they also contain both phosphate-solubilizing and nitrogen-fixing microbial communities that remarkably provide an adequate amount of assimilable phosphorus and nitrogen required for enhanced plants or crop growth. Furthermore, macro-, and micronutrients (including N, P, K, etc.) were all analyzed from the residues and detected adequate appreciate concentrations required for plant growth promotions. The direct application of MEC-effluent as fertilizer in this current study conspicuously promoted plant growth (Solanum lycopersicum L. (tomato), Capsicum annuum L. (chilli), and Solanum melongena L. (brinjal)) and speeded up flowering and fruit-generating processes. Based on these findings, electrohydrogenesis residues could undoubtedly be considered as a potential biofertilizer. Thus, this technology provides a new approach to agricultural residue control and concomitantly provides a sustainable, cheap, and eco-friendly biofertilizer that could replace the chemical costly fertilizers.


Assuntos
Fertilizantes , Solanum lycopersicum , Fertilizantes/microbiologia , Solo/química , Esgotos/química , Reguladores de Crescimento de Plantas , Giberelinas , Nitrogênio , Microbiologia do Solo , Fósforo , Fosfatos , Micronutrientes , Hidrogênio
14.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142343

RESUMO

S-RNase plays vital roles in the process of self-incompatibility (SI) in Rutaceae plants. Data have shown that the rejection phenomenon during self-pollination is due to the degradation of pollen tube RNA by S-RNase. The cytoskeleton microfilaments of pollen tubes are destroyed, and other components cannot extend downwards from the stigma and, ultimately, cannot reach the ovary to complete fertilisation. In this study, four S-RNase gene sequences were identified from the 'XiangShui' lemon genome and ubiquitome. Sequence analysis revealed that the conserved RNase T2 domains within S-RNases in 'XiangShui' lemon are the same as those within other species. Expression pattern analysis revealed that S3-RNase and S4-RNase are specifically expressed in the pistils, and spatiotemporal expression analysis showed that the S3-RNase expression levels in the stigmas, styles and ovaries were significantly higher after self-pollination than after cross-pollination. Subcellular localisation analysis showed that the S1-RNase, S2-RNase, S3-RNase and S4-RNase were found to be expressed in the nucleus according to laser confocal microscopy. In addition, yeast two-hybrid (Y2H) assays showed that S3-RNase interacted with F-box, Bifunctional fucokinase/fucose pyrophosphorylase (FKGP), aspartic proteinase A1, RRP46, pectinesterase/pectinesterase inhibitor 51 (PME51), phospholipid:diacylglycerol acyltransferase 1 (PDAT1), gibberellin receptor GID1B, GDT1-like protein 4, putative invertase inhibitor, tRNA ligase, PAP15, PAE8, TIM14-2, PGIP1 and p24beta2. Moreover, S3-RNase interacted with TOPP4. Therefore, S3-RNase may play an important role in the SI of 'XiangShui' lemon.


Assuntos
Ácido Aspártico Proteases , Citrus , Autoincompatibilidade em Angiospermas , Citrus/metabolismo , Diacilglicerol O-Aciltransferase , Endorribonucleases , Fucose , Giberelinas , Fosfolipídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , RNA , RNA Ligase (ATP) , Ribonucleases/genética , Ribonucleases/metabolismo , Autoincompatibilidade em Angiospermas/genética , beta-Frutofuranosidase
15.
Plant Sci ; 324: 111447, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36041563

RESUMO

Male reproductive development in higher plants experienced a series of complex biological processes, which can be regulated by Gibberellins (GA). The transcriptional factor GAMYB is a crucial component of GA signaling in anther development. However, the mechanism of GAMYB in wheat male reproduction is less understood. Here, we found that the thermo-sensitive genic male sterilitywheat line YanZhan 4110S displayed delayed tapetum programmed cell death and pollen abortive under the hot temperature stress. Combined with RNA-Sequencing data analysis, TaGAMYB associated with fertility conversion was isolated, which was located in the nucleus and highly expressed in fertility anthers. The silencing of TaGAMYB in wheat displayed fertility decline, defects in tapetum, pollen and exine formation, where the abortion characteristics were the same as YanZhan 4110S. In addition, either hot temperature or GA3 treatment in YanZhan 4110S caused the downregulation of TaGAMYB at binucleate stage and trinucleate stage, as well as fertility decrease. Further, the transcription factor TaWRKY2 significantly changed under GA3-treatment and directly interacted with the TaGAMYB promoter by W-box cis-element. Therefore, we suggested that TaGAMYB may be essential for anther development and male fertility, and GA3 activates TaGAMYB by TaWRKY2 to regulate fertility in wheat.


Assuntos
Fenômenos Biológicos , Oryza , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Oryza/genética , Pólen , RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/genética , Triticum/metabolismo
16.
Theor Appl Genet ; 135(10): 3497-3510, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35962210

RESUMO

KEY MESSAGE: A novel mutation in the BnaA03.IAA7 protein reduces plant height and enhances gibberellin signaling in Brassica napus L. Rapeseed (Brassica napus) is an excellent and important source for vegetable oil production, but its production is severely affected by lodging. Lodging hinders mechanization and decreases yield, and an ideal solution is semidwarf breeding. Limited by germplasm resources, semidwarf breeding developed slowly in rapeseed. In the current study, a mutant called sdA03 was isolated from EMS-mutagenized lines of Zhongshuang 11 (ZS11). The inheritance analysis showed that phenotypes of sdA03 were controlled by a single semidominant gene. Genetic mapping, RNA-seq and candidate gene analysis identified BnaA03.IAA7 as a candidate gene, and a function test confirmed that the mutated BnaA03.iaa7 regulates plant architecture in a dose-dependent manner. Yeast two-hybrid and transient expression experiments illustrated the P87L substitution in the GWPPV/I degron motif of BnaA03.iaa7 impaired the interaction between BnaA03.IAA7 and TIR1 proteins, and BnaA03.iaa7 prevented ARF from activating the auxin signaling pathway.The gibberellin (GA) content was higher in sdA03 hypocotyls than in those of ZS11. Further expression analysis showed more active gibberellin signaling in hypocotyl and richer expression of GA synthetic genes in root and cotyledon of sdA03 seedlings. Finally, a marker was developed based on the SNP found in BnaA03.iaa7 and used in molecular breeding. The study enriched our understanding of the architectural regulation of rapeseed and provided germplasm resources for breeding.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Brassica rapa/genética , Perfilação da Expressão Gênica , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Melhoramento Vegetal , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética
17.
New Phytol ; 236(2): 525-537, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35811428

RESUMO

Both sugar and the hormone gibberellin (GA) are essential for anther-enclosed pollen development and thus for plant productivity in flowering plants. Arabidopsis (Arabidopsis thaliana) AtSWEET13 and AtSWEET14, which are expressed in anthers and associated with seed yield, transport both sucrose and GA. However, it is still unclear which substrate transported by them directly affects anther development and seed yield. Histochemical staining, cross-sectioning and microscopy imaging techniques were used to investigate and interpret the phenotypes of the atsweet13;14 double mutant during anther development. Genetic complementation of atsweet13;14 using AtSWEET9, which transports sucrose but not GA, and the GA transporter AtNPF3.1, respectively, was conducted to test the substrate preference relevant to the biological process. The loss of both AtSWEET13 and AtSWEET14 resulted in reduced pollen viability and therefore decreased pollen germination. AtSWEET9 fully rescued the defects in pollen viability and germination of atsweet13;14, whereas AtNPF3.1 failed to do so, indicating that AtSWEET13/14-mediated sucrose rather than GA is essential for pollen fertility. AtSWEET13 and AtSWEET14 function mainly at the anther wall during late anther development stages, and they probably are responsible for sucrose efflux into locules to support pollen development to maturation, which is vital for subsequent pollen viability and germination.


Assuntos
Arabidopsis , Giberelinas , Arabidopsis/genética , Flores , Regulação da Expressão Gênica de Plantas , Hormônios , Pólen/genética , Sacarose
18.
Planta ; 256(1): 4, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648276

RESUMO

MAIN CONCLUSION: Overexpression of a novel geranylgeranyl pyrophosphate synthase gene (WsGGPPS) in planta resulted in increased levels of gibberellic acid and decrease in withanolide content. Withania somnifera (L.) Dunal, the herb from family Solanaceae is one of the most treasured medicinal plant used in traditional medicinal systems owing to its unique stockpile of pharmaceutically active secondary metabolites. Phytochemical and pharmacological studies in this plant were well established, but the genes affecting the regulation of biosynthesis of major metabolites were not well elucidated. In this study cloning and functional characterization of a key enzyme in terpenoid biosynthetic pathway viz. geranylgeranyl pyrophosphate synthase (EC 2.5.1.29) gene from Withania somnifera was performed. The full length WsGGPPS gene contained 1,104 base pairs that encode a polypeptide of 365 amino acids. The quantitative expression analysis suggested that WsGGPPS transcripts were expressed maximally in flower tissues followed by berry tissues. The expression levels of WsGGPPS were found to be regulated by methyl jasmonate (MeJA) and salicylic acid (SA). Amino acid sequence alignment and phylogenetic studies suggested that WsGGPPS had close similarities with GGPPS of Solanum tuberosum and Solanum pennellii. The structural analysis provided basic information about three dimensional features and physicochemical parameters of WsGGPPS protein. Overexpression of WsGGPPS in planta for its functional characterization suggested that the WsGGPPS was involved in gibberellic acid biosynthesis.


Assuntos
Withania , Vitanolídeos , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Giberelinas , Filogenia , Withania/genética , Vitanolídeos/metabolismo
19.
Environ Sci Pollut Res Int ; 29(43): 64999-65011, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35482243

RESUMO

Different maize varieties respond differentially to cadmium (Cd) stress. However, the physiological mechanisms that determine the response are not well defined. Antioxidant systems and sucrose metabolism help plants to cope with abiotic stresses, including Cd stress. The relationship of these two systems in the response to Cd stress is unclear. Seed is sensitive to Cd stress during germination. In this study, we investigated changes in the antioxidant system, sucrose metabolism, and abscisic acid and gibberellin concentrations in two maize varieties with low (FY9) or high (SY33) sensitivities to Cd under exposure to CdCl2 (20 mg L-1) at different stages of germination (3, 6, and 9 days).The seed germination and seedling growth were inhibited under Cd stress. The superoxide, malondialdehyde, and proline concentrations, and the superoxide dismutase, peroxidase, catalase, and lipoxygenase activities increased compared with those of the control (CK; without Cd). The expression levels of three genes (ZmOPR2, ZmOPR5, and ZmPP2C6) responsive to oxidative stress increased differentially in the two varieties under Cd stress. The activity of the antioxidant system and the transcript levels of oxidative stress-responsive genes were higher in the Cd-tolerant variety, FY9, than in the sensitive variety, SY33. Sucrose metabolism was increased under Cd stress compared with that of the CK and was more active in the Cd-sensitive variety, SY33. These results suggest that the antioxidant system is the first response to Cd stress in maize, and that sucrose metabolism is cooperative and complementary under exposure to Cd.


Assuntos
Antioxidantes , Cádmio , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Cádmio/metabolismo , Catalase/metabolismo , Giberelinas/metabolismo , Lipoxigenases/metabolismo , Malondialdeído/metabolismo , Peroxidases/metabolismo , Prolina/metabolismo , Sacarose , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Zea mays
20.
Cells ; 11(7)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35406664

RESUMO

Onion (Allium cepa L.) is an important bulb crop grown worldwide. Dormancy in bulbous plants is an important physiological state mainly regulated by a complex gene network that determines a stop of vegetative growth during unfavorable seasons. Limited knowledge on the molecular mechanisms that regulate dormancy in onion were available until now. Here, a comparison between uninfected and onion yellow dwarf virus (OYDV)-infected onion bulbs highlighted an altered dormancy in the virus-infected plants, causing several symptoms, such as leaf striping, growth reduction, early bulb sprouting and rooting, as well as a lower abscisic acid (ABA) level at the start of dormancy. Furthermore, by comparing three dormancy stages, almost five thousand four hundred (5390) differentially expressed genes (DEGs) were found in uninfected bulbs, while the number of DEGs was significantly reduced (1322) in OYDV-infected bulbs. Genes involved in cell wall modification, proteolysis, and hormone signaling, such as ABA, gibberellins (GAs), indole-3-acetic acid (IAA), and brassinosteroids (BRs), that have already been reported as key dormancy-related pathways, were the most enriched ones in the healthy plants. Interestingly, several transcription factors (TFs) were up-regulated in the uninfected bulbs, among them three genes belonging to the WRKY family, for the first time characterized in onion, were identified during dormancy release. The involvement of specific WRKY genes in breaking dormancy in onion was confirmed by GO enrichment and network analysis, highlighting a correlation between AcWRKY32 and genes driving plant development, cell wall modification, and division via gibberellin and auxin homeostasis, two key processes in dormancy release. Overall, we present, for the first time, a detailed molecular analysis of the dormancy process, a description of the WRKY-TF family in onion, providing a better understanding of the role played by AcWRKY32 in the bulb dormancy release. The TF co-expressed genes may represent targets for controlling the early sprouting in onion, laying the foundations for novel breeding programs to improve shelf life and reduce postharvest.


Assuntos
Regulação da Expressão Gênica de Plantas , Cebolas , Ácido Abscísico/metabolismo , Redes Reguladoras de Genes , Giberelinas/metabolismo , Cebolas/genética , Cebolas/metabolismo , Potyvirus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA