Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-37741055

RESUMO

Ginkgo biloba L., an ancient relict plant known as a 'living fossil', has a high medicinal and nutritional value in its kernels and leaves. Ginkgolides are unique diterpene lactone compounds in G. biloba, with favorable therapeutic effects on cardiovascular and cerebrovascular diseases. Thus, it is essential to study the biosynthesis and regulatory mechanism of ginkgolide, which will contribute to quality improvement and medication requirements. In this study, the regulatory roles of the JAZ gene family and GbCOI1/GbJAZs/GbMYC2 module in ginkgolide biosynthesis were explored based on genome and methyl jasmonate-induced transcriptome. Firstly, 18 JAZ proteins were identified from G. biloba, and the gene characteristics and expansion patterns along with evolutionary relationships of these GbJAZs were analyzed systematically. Expression patterns analysis indicated that most GbJAZs expressed highly in the fibrous root and were induced significantly by methyl jasmonate. Mechanistically, yeast two-hybrid assays suggested that GbJAZ3/11 interacted with both GbMYC2 and GbCOI1, and several GbJAZ proteins could form homodimers or heterodimers between the GbJAZ family. Moreover, GbMYC2 is directly bound to the G-box element in the promoter of GbLPS, to regulate the biosynthesis of ginkgolide. Collectively, these results systematically characterized the JAZ gene family in G. biloba and demonstrated that the GbCOI1/GbJAZs/GbMYC2 module could regulate ginkgolides biosynthesis, which provides a novel insight for studying the mechanism of JA regulating ginkgolide biosynthesis.


Assuntos
Acetatos , Ginkgo biloba , Ginkgolídeos , Oxilipinas , Ginkgo biloba/genética , Ginkgo biloba/metabolismo , Ginkgolídeos/metabolismo , Extratos Vegetais/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo
2.
Am J Chin Med ; 50(6): 1565-1597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35902245

RESUMO

Currently, therapies for ischemic stroke are limited. Ginkgolides, unique Folium Ginkgo components, have potential benefits for ischemic stroke patients, but there is little evidence that ginkgolides improve neurological function in these patients. Clinical studies have confirmed the neurological improvement efficacy of diterpene ginkgolides meglumine injection (DGMI), an extract of Ginkgo biloba containing ginkgolides A (GA), B (GB), and K (GK), in ischemic stroke patients. In the present study, we performed transcriptome analyses using RNA-seq and explored the potential mechanism of ginkgolides in seven in vitro cell models that mimic pathological stroke processes. Transcriptome analyses revealed that the ginkgolides had potential antiplatelet properties and neuroprotective activities in the nervous system. Specifically, human umbilical vein endothelial cells (HUVEC-T1 cells) showed the strongest response to DGMI and U251 human glioma cells ranked next. The results of pathway enrichment analysis via gene set enrichment analysis (GSEA) showed that the neuroprotective activities of DGMI and its monomers in the U251 cell model were related to their regulation of the sphingolipid and neurotrophin signaling pathways. We next verified these in vitro findings in an in vivo cuprizone (CPZ, bis(cyclohexanone)oxaldihydrazone)-induced model. GB and GK protected against demyelination in the corpus callosum (CC) and promoted oligodendrocyte regeneration in CPZ-fed mice. Moreover, GB and GK antagonized platelet-activating factor (PAF) receptor (PAFR) expression in astrocytes, inhibited PAF-induced inflammatory responses, and promoted brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) secretion, supporting remyelination. These findings are critical for developing therapies that promote remyelination and prevent stroke progression.


Assuntos
Doenças Desmielinizantes , Diterpenos , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Astrócitos/metabolismo , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Células Endoteliais , Ginkgo biloba , Ginkgolídeos/metabolismo , Ginkgolídeos/farmacologia , Ginkgolídeos/uso terapêutico , Humanos , Lactonas/farmacologia , Camundongos , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/genética
3.
Curr Microbiol ; 73(2): 280-6, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27155842

RESUMO

For screening bilobalide (BB)-producing endophytic fungi from medicinal plant Ginkgo biloba, a total of 57 fungal isolates were isolated from the internal stem, root, leaf, and bark of the plant G. biloba. Fermentation processes using BB-producing fungi other than G. biloba may become a novel way to produce BB, which is a terpene trilactones exhibiting neuroprotective effects. In this study, a BB-producing endophytic fungal strain GZUYX13 was isolated from the leaves of G. biloba grown in the campus of Guizhou University, Guiyang city, Guizhou province, China. The strain produced BB when grown in potato dextrose liquid medium. The amount of BB produced by this endophytic fungus was quantified to be 106 µg/L via high-performance liquid chromatography (HPLC), substantially lower than that produced by the host tissue. The fungal BB which was analyzed by thin layer chromatography (TLC) and HPLC was proven to be identical to authentic BB. The strain GZUYX13 was identified as Pestalotiopsis uvicola via morphology and ITS rDNA phylogeny. To the best of our knowledge, this is the first report concerning the isolation and identification of endophytic BB-producing Pestalotiopsis spp. from the host plant, which further proved that endophytic fungi have the potential to produce bioactive compounds.


Assuntos
Ciclopentanos/metabolismo , Endófitos/metabolismo , Furanos/metabolismo , Ginkgo biloba/microbiologia , Ginkgolídeos/metabolismo , Plantas Medicinais/microbiologia , Xylariales/metabolismo , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Folhas de Planta/microbiologia , Xylariales/classificação , Xylariales/genética , Xylariales/isolamento & purificação
4.
BMC Biotechnol ; 15: 17, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25887229

RESUMO

BACKGROUND: As the strongest antagonist of the platelet activating factor, ginkgolide B (GB) possesses anti-ischemic, anti-oxidant and anti-convulsant properties, and it is used for the treatment of thrombosis in clinical practice. Till now, GB is usually obtained from extraction of Ginkgo biloba leaves through column chromatography with an extremely low yield and high cost, which can not meet clinical requirement. Therefore, it is urgent to find a new method to prepare GB. RESULTS: In the current study, we studied the ability and mechanism to transform multi-component ginkgolide into GB by Coprinus comatus in order to enhance the GB yield. Except for ginkgolide A (GA) and GB, all the other ginkgolides in the extract were transformed by the strain. In the case of culture medium containing 20 g/L glucose, the transformation product was identified as 12% GA and 88% GB by high performance liquid chromatography-Mass spectrometry (HPLC-MS), two stage mass spectrometry (MS/MS) and nuclear magnetic resonance (NMR). Partial GA was also transformed into GB according to the yield (76%) and the content of GA in the raw ginkgolide (28.5%). Glucose was the key factor to transform ginkgolides. When glucose concentration in medium was higher than 40 g/L, all ginkgolides were transformed into the GB. Proteomic analysis showed that C. comatus transformed ginkgolide into GB by producing 5 aldo/keto reductases and catalases, and enhancing the metabolism of glucose, including Embden-Meyerhof pathway (EMP), hexose monophophate pathway (HMP) and tricarboxylic acid (TCA). CONCLUSIONS: C. comatus could transform ginkgolides into GB when the medium contained 40 g/L glucose. When the strain transformed ginkgolides, the glucose metabolism was enhanced and the strain synthesized more aldo/keto reductases and catalases. Our current study laid the groundwork for industrial production of GB.


Assuntos
Coprinus/metabolismo , Ginkgo biloba/química , Ginkgolídeos/química , Ginkgolídeos/metabolismo , Lactonas/química , Lactonas/metabolismo , Extratos Vegetais/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão , Coprinus/química , Coprinus/enzimologia , Eletroforese em Gel Bidimensional , Extratos Vegetais/química , Proteômica
5.
Life Sci ; 114(2): 93-101, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25139831

RESUMO

AIMS: In this report, the transport of ginkgolides with different lipophilicities was investigated using an hCMEC/D3 cell monolayer as a blood-brain barrier (BBB) cell model in vitro in an attempt to explain ginkgolide transport path mediated by lipophilicity. MAIN METHODS: The log P values of ginkgolides were determined by measuring the distribution of the molecule between oil and water. Additionally, the cytotoxicity of ginkgolides on hCMEC/D3 cells was assayed with the MTT method. Ginkgolide contents were determined with an ultra performance liquid chromatograph equipped with an evaporative light scattering detector (ULPC-ELSD) method. Apparent permeability coefficients (Papp) and efflux ratios (PappBL→AP/PappAP→BL) were then calculated to describe the transport characteristics of ginkgolide. KEY FINDINGS: The transport of ginkgolide A, ginkgolide B, ginkgolide C, and ginkgolide J across the hCMEC/D3 cell monolayer was non-directional. Additionally, ginkgolide C transport on the cell monolayer was time- and concentration-dependent in the paracellular pathway controlled by cytochalasin D (a tight junction modulator). The transport of ginkgolide N, ginkgolide L, and ginkgolide K across the cell monolayer displayed clear directionality at low ginkgolide concentrations. This behavior indicated that the transport of ginkgolide N, ginkgolide L, and ginkgolide K was influenced by the transcellular pathway containing an efflux protein accompanied by the paracellular pathway for passive diffusion. Additionally, the transport of ginkgolide K was increased significantly by co-culturing with a P-gp inhibitor. SIGNIFICANCE: These findings provide important information for elucidating ginkgolide transport pathways and may be beneficial for the design of ginkgolide molecules with high neuroprotective effects.


Assuntos
Barreira Hematoencefálica/fisiologia , Ginkgo biloba/química , Ginkgolídeos/metabolismo , Extratos Vegetais/metabolismo , Análise de Variância , Transporte Biológico , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Ginkgolídeos/química , Ginkgolídeos/toxicidade , Humanos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Sais de Tetrazólio , Tiazóis
6.
Fitoterapia ; 83(5): 913-20, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22537641

RESUMO

To screen the presence of ginkgolide B-producing endophytic fungi from the root bark of Ginkgo biloba, a total of 27 fungal isolates, belonging to 6 different genus, were isolated from the internal root bark of the plant Ginkgo biloba. The fungal isolates were fermented on solid media and their metabolites were analyzed by TLC. The obtained potential ginkgolides-producing fungus, the isolate SYP0056 which was identified as Fusarium oxysporum, was successively cultured in the liquid fermentation media, and its metabolite was analyzed by HPLC. The ginkgolide B was successfully isolated from the metabolite and identified by HPLC/ESI-MS and (13)C-NMR. The current research provides a new method to produce ginkgolide B by fungal fermentation, which could overcome the natural resource limitation of isolating from the leaves and barks of the plant Ginkgo biloba.


Assuntos
Produtos Biológicos/química , Fusarium/metabolismo , Ginkgo biloba/química , Ginkgolídeos/isolamento & purificação , Lactonas/isolamento & purificação , Endófitos/metabolismo , Fermentação , Ginkgo biloba/microbiologia , Ginkgolídeos/metabolismo , Lactonas/metabolismo , Casca de Planta , Raízes de Plantas
7.
Neuropharmacology ; 60(2-3): 488-95, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21059362

RESUMO

Extracts from the Ginkgo biloba tree are widely used as herbal medicines, and include bilobalide (BB) and ginkgolides A and B (GA and GB). Here we examine their effects on human 5-HT(3)A and 5-HT(3)AB receptors, and compare these to the effects of the structurally related compounds picrotin (PTN) and picrotoxinin (PXN), the two components of picrotoxin (PTX), a known channel blocker of 5-HT(3), nACh and GABA(A) receptors. The compounds inhibited 5-HT-induced responses of 5-HT(3) receptors expressed in Xenopus oocytes, with IC(50) values of 470 µM (BB), 730 µM (GB), 470 µM (PTN), 11 µM (PXN) and >1mM (GA) in 5-HT(3)A receptors, and 3.1mM (BB), 3.9 mM (GB), 2.7 mM (PTN), 62 µM (PXN) and >1mM (GA) in 5-HT(3)AB receptors. Radioligand binding on receptors expressed in HEK 293 cells showed none of the compounds displaced the specific 5-HT(3) receptor antagonist [(3)H]granisetron, confirming that they do not act at the agonist binding site. Inhibition by GB at 5-HT(3)A receptors is weakly use-dependent, and recovery is activity dependent, indicating channel block. To further probe their site of action at 5-HT(3)A receptors, BB and GB were applied alone or in combination with PXN, and the results fitted to a mathematical model; the data revealed partially overlapping sites of action. We conclude that BB and GB block the channel of the 5-HT(3)A receptor. Thus these compounds have comparable, although less potent, behaviour than at some other Cys-loop receptors, demonstrating their actions are conserved across the family.


Assuntos
Ciclopentanos/metabolismo , Furanos/metabolismo , Ginkgolídeos/metabolismo , Lactonas/metabolismo , Picrotoxina/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Ciclopentanos/farmacologia , Relação Dose-Resposta a Droga , Feminino , Furanos/farmacologia , Ginkgolídeos/farmacologia , Células HEK293 , Humanos , Lactonas/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Antagonistas do Receptor 5-HT3 de Serotonina/isolamento & purificação , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Xenopus laevis
8.
J Pharmacol Exp Ther ; 335(3): 771-80, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20739453

RESUMO

Ginkgo biloba extract activates pregnane X receptor (PXR), but how this occurs is not known. Therefore, we investigated the mechanism of PXR activation by the extract and the role of five individual terpene trilactones in the activation. In a cell-based reporter gene assay, G. biloba extract activated human PXR (hPXR), and at a concentration present in the extract, ginkgolide A, but not ginkgolide B, ginkgolide C, ginkgolide J, or bilobalide was partially responsible for the increase in hPXR activity of the extract. Likewise, in cultured human hepatocytes, only ginkgolide A contributed to the increase in hPXR target gene expression (CYP3A4 mRNA and CYP3A-mediated testosterone 6ß-hydroxylation). The extract, but none of the terpene trilactones, bound to hPXR ligand-binding domain, as analyzed by a time-resolved fluorescence resonance energy transfer competitive binding assay. Only the extract and ginkgolide A recruited steroid receptor coactivator-1, as determined by a mammalian two-hybrid assay. Compared with hPXR, rat PXR (rPXR) was activated to a lesser extent by G. biloba extract. Similar to hPXR, only ginkgolide A contributed to rPXR activation by the extract. In contrast to the effect of G. biloba extract on PXR function, it did not affect hPXR expression. Overall, the main conclusions are that G. biloba extract is an hPXR agonist, and among the five terpene trilactones investigated, only ginkgolide A contributes to the actions of the extract. Our findings provide insights into the biological and chemical mechanisms of hPXR activation by G. biloba extract.


Assuntos
Ginkgo biloba/química , Ginkgolídeos/farmacologia , Extratos Vegetais/farmacologia , Receptores de Esteroides/agonistas , Idoso , Animais , Sítios de Ligação/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Genes Reporter/genética , Ginkgolídeos/metabolismo , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Lactonas/metabolismo , Lactonas/farmacologia , Masculino , Pessoa de Meia-Idade , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Extratos Vegetais/metabolismo , Receptor de Pregnano X , Carbonitrila de Pregnenolona/farmacologia , Ratos , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Rifampina/farmacologia , Esteroide Hidroxilases/metabolismo , Testosterona/metabolismo , Transfecção
9.
Mol Biol Rep ; 37(2): 973-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19728152

RESUMO

Diterpene trilactone ginkgolides, one of the major constituents of Ginkgo biloba extract, have shown interesting bioactivities including platelet-activating factor antagonistic activity. 1-Hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (HDS), converting 2-C-methyl-d-erythritol-2,4-cyclodiphosphate into 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate, is the penultimate enzyme of the seven-step 2-C-methyl-d-erythritol 4-phosphate pathway that supplies building blocks for plant isoprenoids of plastid origin such as ginkgolides and carotenoids. Here, we report on the isolation and characterization of the full-length cDNA encoding HDS (GbHDS, GenBank accession number: DQ251630) from G. biloba. Full-length cDNA of GbHDS, 2,763 bp long, contained an ORF of 2,226 bp encoding a protein composed of 741 amino acids. The theoretical molecular weight and pI of the deduced mature GbHDS of 679 amino acid residues are 75.6 kDa and 5.5, respectively. From 2 weeks after initiation of the culture onward, transcription level of this gene in the ginkgo embryo roots increased to about two times higher than that in the leaves. GbHDS was predicted to possess chloroplast transit peptide of 62 amino acid residues, suggesting its putative localization in the plastids. The transient gene expression in Arabidopsis protoplasts confirmed that the transit peptide was capable of delivering the GbHDS protein from the cytosol into the chloroplasts. The isolation and characterization of GbHDS gene enabled us to further understand the role of GbHDS in the terpenoid biosynthesis in G. biloba.


Assuntos
Enzimas/genética , Ginkgo biloba/genética , Clonagem Molecular , DNA Complementar/isolamento & purificação , Enzimas/isolamento & purificação , Enzimas/metabolismo , Evolução Molecular , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ginkgo biloba/metabolismo , Ginkgolídeos/metabolismo , Modelos Biológicos , Filogenia , Análise de Sequência de DNA
10.
J Agric Food Chem ; 56(13): 5366-73, 2008 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-18540626

RESUMO

The pregnane X receptor (PXR) is understood to be the key regulator for gene expression of such drug-metabolizing enzymes and transporters as multidrug-resistant protein 1 (MDR1) and the cytochrome P450 (CYP) family. We examined the effect of dietary phytochemicals on the PXR-dependent transcriptional activity in human intestinal LS180 cells by using a reporter assay. Among approximately 40 kinds of phytochemicals, tangeretin and ginkgolides A and B markedly induced the PXR-dependent transcriptional activity and also the activity of the human MDR1 promoter. The expression levels of MDR1 mRNA as well as of CYP3A4 mRNA, another gene regulated by PXR, were significantly increased by these phytochemicals. Furthermore, an increase was observed of the MDR1 protein and its functional activity by tangeretin and by ginkgolides A and B. These findings strongly suggest that tangeretin and ginkgolides A and B activated PXR, thereby regulating detoxification enzymes and transporters in the intestines.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Suplementos Nutricionais/análise , Flavonas/farmacologia , Ginkgolídeos/farmacologia , Extratos Vegetais/farmacologia , Receptores de Esteroides/genética , Transcrição Gênica/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Dieta , Flavonas/química , Flavonas/metabolismo , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Ginkgolídeos/química , Ginkgolídeos/metabolismo , Humanos , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Receptor de Pregnano X , Regiões Promotoras Genéticas , Receptores de Esteroides/metabolismo
11.
Planta Med ; 72(3): 234-40, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16534728

RESUMO

Diterpenoid ginkgolides having potent platelet-activating factor antagonist activity are major active ingredients of ginkgo extract. Class 2-type 1-deoxy-D-xylulose 5-phosphate synthase (GbDXS2) and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (GbDXR), the first two enzymes in 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, operating in the earlier step of ginkgolide biosynthesis, were cloned from embryonic roots of Ginkgo biloba through a homology-based polymerase chain reaction for role assessment of the enzymes. Plasmids harboring each gene rescued the respective knockout E. coli mutants. The levopimaradiene synthase gene (LPS), responsible for the first committed step in ginkgolide biosynthesis, and GbDXS2 were transcribed exclusively in embryonic root, suggesting a specific role of GbDXS2 in ginkgolide biosynthesis. GbDXR retained a higher transcription level in roots than in leaves, whereas class 1 DXS (GbDXS1) showed 30 to 50 % higher level in leaves. Ginkgolides and bilobalide were found both in leaves and roots from an earlier stage of the embryo culture. Exclusive transcription of ginkgolide biosynthesis-specific LPS and GbDXS2 in roots and the appearance of ginkgolides in leaves was consistent with translocation of the compounds from roots to leaves.


Assuntos
Aldose-Cetose Isomerases/genética , Ginkgo biloba/genética , Ginkgolídeos/metabolismo , Complexos Multienzimáticos/genética , Oxirredutases/genética , Fitoterapia , Transferases/genética , Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , DNA de Plantas/química , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ginkgo biloba/enzimologia , Ginkgo biloba/metabolismo , Humanos , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Filogenia , Folhas de Planta , Raízes de Plantas , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Técnicas de Cultura de Tecidos , Transferases/química , Transferases/metabolismo
12.
DNA Seq ; 16(2): 111-20, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16147862

RESUMO

1-deoxy-D-xylulose 5-phosphate (DXP) reductoisomerase (DXR, EC: 1.1.1.267) is the second enzyme of the non-mevalonate terpenoid pathway for isopentenyl diphosphate biosynthesis and actually catalyzes a committed step of the methylerythritol phosphate (MEP) pathway for ginkgolide biosynthesis. The full-length DXR cDNA sequence (GenBank accession number: AY443101) was cloned and characterized for the first time from gymnosperm plant species, Ginkgo biloba, using rapid amplification of cDNA ends (RACE) technique. The full-length cDNA of GbDXR was 1720 bp containing a 1431 bp open reading frame (ORF) encoding a peptide of 477 amino acids with a calculated molecular mass of 52 kDa and an isoelectric point of 6.58. Comparative and bioinformatic analyses revealed that GbDXR showed extensive homology with DXRs from other plant species and contained a conserved transit peptide for plastids, an extended Pro-rich region and a highly conserved NADPH binding motif in its N-terminal region owned by all plant DXRs. Phylogenetic analysis indicated that GbDXR was more ancient than other plant DXRs. Tissue expression pattern analysis indicated that GbDXR expressed in all tissues including roots, stems, leaves, pericarps and seeds and lower transcription level was observed in leaves of G. biloba than that of other tissues. The cloning and characterization of GbDXR will be helpful to understand more about the role of DXR involved in the ginkgolides biosynthesis at the molecular level.


Assuntos
Aldose-Cetose Isomerases/genética , Ginkgo biloba/genética , Complexos Multienzimáticos/genética , Oxirredutases/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Biologia Computacional , DNA Complementar/metabolismo , Regulação da Expressão Gênica de Plantas , Ginkgolídeos/metabolismo , Focalização Isoelétrica , Modelos Moleculares , Dados de Sequência Molecular , NADP/química , Fases de Leitura Aberta , Peptídeos/química , Fosfatos/química , Filogenia , Proteínas de Plantas/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA