Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 822, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039558

RESUMO

Scoparone (6,7-dimethoxycoumarin) is a simple coumarin from botanical drugs of Artemisia species used in Traditional Chinese Medicine and Génépi liquor. However, its bioavailability to the brain and potential central effects remain unexplored. We profiled the neuropharmacological effects of scoparone upon acute and subchronic intraperitoneal administration (2.5-25 mg/kg) in Swiss mice and determined its brain concentrations and its effects on the endocannabinoid system (ECS) and related lipids using LC-ESI-MS/MS. Scoparone showed no effect in the forced swimming test (FST) but, administered acutely, led to a bell-shaped anxiogenic-like behavior in the elevated plus-maze test and bell-shaped procognitive effects in the passive avoidance test when given subchronically and acutely. Scoparone rapidly but moderately accumulated in the brain (Cmax < 15 min) with an apparent first-order elimination (95% eliminated at 1 h). Acute scoparone administration (5 mg/kg) significantly increased brain arachidonic acid, prostaglandins, and N-acylethanolamines (NAEs) in the FST. Conversely, subchronic scoparone treatment (2.5 mg/kg) decreased NAEs and increased 2-arachidonoylglycerol. Scoparone differentially impacted ECS lipid remodeling in the brain independent of serine hydrolase modulation. Overall, the unexpectedly potent central effects of scoparone observed in mice could have toxicopharmacological implications for humans.


Assuntos
Encéfalo/metabolismo , Cumarínicos/farmacologia , Animais , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Disponibilidade Biológica , Cognição/efeitos dos fármacos , Cumarínicos/administração & dosagem , Cumarínicos/farmacocinética , Endocanabinoides/metabolismo , Etanolaminas/metabolismo , Glicerídeos/metabolismo , Infusões Parenterais , Metabolismo dos Lipídeos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Prostaglandinas/metabolismo
2.
Arch Anim Nutr ; 76(3-6): 191-204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36688467

RESUMO

This study aimed to determine whether butyric acid glycerides can replace conventional growth promoters, favour intestinal health, and improve performance. A total of 420 birds were used, divided into four groups with seven repetitions per group (n = 15), as follows: NC, negative control (no promoter); PC, positive control (basal diet + enramycin + salinomycin); MDT-BUT, a diet supplemented with mono-, di-, and triglycerides of butyric acid; TRI-BUT, a diet supplemented with tributyrin of butyric acid glycerides. Productive performance was measured on days 1, 21, 35, and 42. Excreta were collected for counting Escherichia coli and coliforms on days 21 and 42. Blood samples were collected at 42 days of age to analyse oxidant/antioxidant status, and the intestine was removed for intestinal morphometry. From 1 to 42 days, there was greater body weight, weight gain, and feed conversion in the PC, MDT-BUT, and TRI-BUT groups than in the NC group; the production efficiency index was 21.10% higher in all groups than in the NC group (p = 0.001). At 21 days, there were lower E. coli counts of 86.8% in the TRI-BUT and 99.7% in PC groups than in the NC and MDT-BUT groups (p < 0.001), while at 42 days, lower counts were found in the PC, MDT-BUT, and TRI-BUT groups than the NC group (p < 0.001). There were lower total protein and globulin levels in the MDT-BUT and TRI-BUT groups than in the NC group (p = 0.001). Cholesterol levels were lower in the TRI-BUT group, followed by MDT-BUT and PC groups, than in the NC group (p = 0.001), while lower triglyceride levels were found in the TRI-BUT group than in the NC and PC groups (p = 0.001). There were lower levels of lipid peroxidation and reactive oxygen species in the TRI-BUT group, followed by the PC group than the NC group (p < 0.001); on the other hand, there were higher protein thiol levels in the TRI-BUT group than the NC group (p = 0.041). The villus:crypt ratio increase was 79.4% in the TRI-BUT group, followed by the 45.1% PC and 19.8% MDT-BUT groups than the NC (p < 0.001). These findings suggest that adding butyric acid confers antimicrobial and antioxidant activity and improves birds' production efficiency, intestinal health, and metabolism. Butyric acid glycerides are an effective alternative to conventional growth promoters.


Assuntos
Galinhas , Dieta , Animais , Dieta/veterinária , Ácido Butírico/metabolismo , Glicerídeos/metabolismo , Escherichia coli , Ração Animal/análise , Suplementos Nutricionais/análise , Intestinos , Antioxidantes/metabolismo
3.
Nutrients ; 13(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34684588

RESUMO

The endocannabinoid system (ECS) plays a pivotal role in the complex control and regulation of food intake. Pharmacological ECS activation could improve health in energy-deficient stages by increasing food intake, at least in intermittent feeders. However, knowledge of the mechanism regulating appetite in species with continued nutrient delivery is incomplete. The objectives of this pilot study were to investigate the effect of the intraperitoneal (i.p.) administration of the endocannabinoids (ECs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) on food intake, plasma EC concentrations and hypothalamic orexigenic signaling, and to study how the circulatory EC tone changes in response to short-term food deprivation in dairy cows, a species with continuous nutrient delivery. The administration of EC resulted in higher food intake during the first hour after treatment. Plasma AEA concentrations were significantly increased 2.5 h after AEA injection, whereas plasma 2-AG concentrations remained unchanged 2.5 h after 2-AG injection. The hypothalamic immunoreactivity of cannabinoid receptor 1, agouti-related protein, and orexin-A was not affected by either treatment; however, neuropeptide Y and agouti-related protein mRNA abundances were downregulated in the arcuate nucleus of AEA-treated animals. Short-term food deprivation increased plasma 2-AG, while plasma AEA remained unchanged. In conclusion, i.p.-administered 2-AG and AEA increase food intake in the short term, but only AEA accumulates in the circulation. However, plasma 2-AG concentrations are more responsive to food deprivation than AEA.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Comportamento Alimentar , Glicerídeos/metabolismo , Hipotálamo/metabolismo , Nutrientes , Orexinas/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Animais , Ácidos Araquidônicos/sangue , Peso Corporal , Bovinos , Endocanabinoides/sangue , Ácidos Graxos/metabolismo , Privação de Alimentos , Regulação da Expressão Gênica , Glucose/metabolismo , Glicerídeos/sangue , Leite , Alcamidas Poli-Insaturadas/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
4.
Eur J Endocrinol ; 185(2): 231-239, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061772

RESUMO

OBJECTIVE: Patients with craniopharyngioma (CP) frequently suffer from morbid obesity. Endocannabinoids (ECs) are involved in weight gain and rewarding behavior but have not been investigated in this context. DESIGN: Cross-sectional single-center study. METHODS: Eighteen patients with CP and 16 age- and sex-matched controls were included. Differences in endocannabinoids (2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)) and endocannabinoid-like molecules (oleoyl ethanolamide (OEA), palmitoylethanolamide (PEA), and arachidonic acid (AA) were measured at baseline and following endurance exercise. We further explored ECs-dynamics in relation to markers of HPA-axis activity (ACTH, cortisol, copeptin) and hypothalamic damage. RESULTS: Under resting conditions, independent of differences in BMI, 2-AG levels were more than twice as high in CP patients compared to controls. In contrast, 2-AG and OEA level increased in response to exercise in controls but not in CP patients, while AEA levels decreased in controls. As expected, exercise increased ACTH and copeptin levels in controls only. In a mixed model analysis across time and group, HPA measures did not provide additional information for explaining differences in 2-AG levels. However, AEA levels were negatively influenced by ACTH and copeptin levels, while OEA levels were negatively predicted by copeptin levels only. There were no significant differences in endocannabinoids depending on hypothalamic involvement. CONCLUSION: Patients with CP show signs of a dysregulated endocannabinoid system under resting conditions as well as following exercise in comparison to healthy controls. Increased 2-AG levels under resting conditions and the missing response to physical activity could contribute to the metabolic phenotype of CP patients.


Assuntos
Craniofaringioma , Endocanabinoides/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Neoplasias Hipofisárias , Hormônio Adrenocorticotrópico/metabolismo , Adulto , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/metabolismo , Estudos de Casos e Controles , Craniofaringioma/metabolismo , Craniofaringioma/fisiopatologia , Estudos Transversais , Treino Aeróbico , Exercício Físico/fisiologia , Feminino , Glicerídeos/metabolismo , Glicopeptídeos/metabolismo , Humanos , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Hipotálamo/patologia , Hipotálamo/fisiopatologia , Masculino , Pessoa de Meia-Idade , Ácidos Oleicos/metabolismo , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/fisiopatologia , Alcamidas Poli-Insaturadas/metabolismo , Adulto Jovem
5.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379212

RESUMO

The endocannabinoid/CB1R system as well as the central ghrelin signalling with its growth hormone secretagogoue receptors (GHS-R1A) are importantly involved in food intake and reward/reinforcement processing and show distinct overlaps in distribution within the relevant brain regions including the hypothalamus (food intake), the ventral tegmental area (VTA) and the nucleus accumbens (NAC) (reward/reinforcement). The significant mutual interaction between these systems in food intake has been documented; however, the possible role of ghrelin/GHS-R1A in the cannabinoid reinforcement effects and addiction remain unclear. Therefore, the principal aim of the present study was to investigate whether pretreatment with GHS-R1A antagonist/JMV2959 could reduce the CB1R agonist/WIN55,212-2-induced dopamine efflux in the nucleus accumbens shell (NACSh), which is considered a crucial trigger impulse of the addiction process. The synthetic aminoalklylindol cannabinoid WIN55,212-2 administration into the posterior VTA induced significant accumbens dopamine release, which was significantly reduced by the 3 mg/kg i.p. JMV2959 pretreatment. Simultaneously, the cannabinoid-increased accumbens dopamine metabolic turnover was significantly augmented by the JMV2959 pretreament. The intracerebral WIN55,212-2 administration also increased the endocannabinoid arachidonoylethanolamide/anandamide and the 2-arachidonoylglycerol/2-AG extracellular levels in the NACSh, which was moderately but significantly attenuated by the JMV2959 pretreatment. Moreover, the cannabinoid-induced decrease in accumbens γ-aminobutyric acid/gamma-aminobutyric acid levels was reversed by the JMV2959 pretreatment. The behavioural study in the LABORAS cage showed that 3 mg/kg JMV2959 pretreatment also significantly reduced the systemic WIN55,212-2-induced behavioural stimulation. Our results demonstrate that the ghrelin/GHS-R1A system significantly participates in the rewarding/reinforcing effects of the cannabinoid/CB1 agonist that are involved in cannabinoid addiction processing.


Assuntos
Benzoxazinas/administração & dosagem , Dopamina/metabolismo , Grelina/metabolismo , Glicina/análogos & derivados , Morfolinas/administração & dosagem , Naftalenos/administração & dosagem , Núcleo Accumbens/efeitos dos fármacos , Triazóis/administração & dosagem , Animais , Ácidos Araquidônicos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Glicina/administração & dosagem , Masculino , Núcleo Accumbens/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Ratos Wistar , Ácido gama-Aminobutírico/metabolismo
6.
Essays Biochem ; 64(3): 485-499, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32648908

RESUMO

Thirty years ago, the discovery of a cannabinoid (CB) receptor that interacts with the psychoactive compound in Cannabis led to the identification of anandamide, an endogenous receptor ligand or endocannabinoid. Research on endocannabinoids has since exploded, and additional receptors along with their lipid mediators and signaling pathways continue to be revealed. Specifically, in humans, the release of endocannabinoids from membrane lipids occurs on demand and the signaling process is rapidly attenuated by the breakdown of the ligand suggesting a tight regulation of the endocannabinoid system (ECS). Additionally, the varying distribution of CB receptors between the central nervous system and other tissues allows for the ECS to participate in a wide range of cognitive and physiological processes. Select plant-derived 'phyto'cannabinoids such as Δ-9-tetrahydrocannabinol (Δ9-THC) bind to the CB receptors and trigger the ECS, and in the case of Δ9-THC, while it has therapeutic value, can also produce detrimental effects. Current research is aimed at the identification of additional phytocannabinoids with minimal psychotropic effects with potential for therapeutic development. Although decades of research on the ECS and its components have expanded our understanding of the mechanisms and implications of endocannabinoid signaling in mammals, it continues to evolve. Here, we provide a brief overview of the ECS and its overlap with other related lipid-mediated signaling pathways.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Cannabis/química , Sistema Nervoso Central/metabolismo , Dronabinol/metabolismo , Humanos , Ligantes , Extratos Vegetais/metabolismo , Transdução de Sinais
7.
Fish Physiol Biochem ; 46(4): 1603-1619, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32415410

RESUMO

The tissue distribution pattern of lipid is highly diverse among different fish species. Tiger puffer has a special lipid storage pattern, storing lipid predominantly in liver. In order to better understand the lipid physiology in fish storing lipid in liver, the present study preliminarily investigated the tissue distribution of transcription for 29 lipid metabolism-related genes in tiger puffer, which are involved in lipogenesis, fatty acid oxidation, biosynthesis and hydrolysis of glycerides, lipid transport, and relevant transcription regulation. Samples of eight tissues, brain, eye, heart, spleen, liver, intestine, skin, and muscle, from fifteen juvenile tiger puffer were used in the qRT-PCR analysis. The intestine and brain had high transcription of lipogenic genes, whereas the liver and muscle had low expression levels. The intestine also had the highest transcription level of most apolipoproteins and lipid metabolism-related transcription factors. The transcription of fatty acid ß-oxidation-related genes was low in the muscle. The peroxisomal fatty acid oxidation may dominate over mitochondrial ß-oxidation in the liver and intestine of tiger puffer, and the MAG pathway probably predominates over the G3P pathway in re-acylation of absorbed lipids in the intestine. The intracellular glyceridases were highly transcribed in the brain, eye, and heart. In conclusion, in tiger puffer, the intestine could be a center of lipid metabolism whereas the liver is more likely a pure storage organ for lipid. The lipid metabolism in the muscle could also be inactive, possibly due to the very low level of intramuscular lipid.


Assuntos
Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Takifugu/genética , Animais , Apolipoproteínas/metabolismo , Encéfalo/metabolismo , DNA Complementar/metabolismo , Ácidos Graxos/metabolismo , Glicerídeos/metabolismo , Coração , Intestinos/fisiologia , Miocárdio/metabolismo , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Takifugu/metabolismo , Distribuição Tecidual , Transcrição Gênica
8.
J Lipid Res ; 60(7): 1260-1269, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31138606

RESUMO

The endocannabinoid (eCB) system regulates energy homeostasis and is linked to obesity development. However, the exact dynamic and regulation of eCBs in the hypothalamus during obesity progression remain incompletely described and understood. Our study examined the time course of responses in two hypothalamic eCBs, 2-arachidonoylglycerol (2-AG) and arachidonoylethanolamine (AEA), in male and female mice during diet-induced obesity and explored the association of eCB levels with changes in brown adipose tissue (BAT) thermogenesis and body weight. We fed mice a high-fat diet (HFD), which induced a transient increase (substantial at 7 days) in hypothalamic eCBs, followed by a progressive decrease to basal levels with a long-term HFD. This transient rise at early stages of obesity is considered a physiologic compensatory response to BAT thermogenesis, which is activated by diet surplus. The eCB dynamic was sexually dimorphic: hypothalamic eCBs levels were higher in female mice, who became obese at later time points than males. The hypothalamic eCBs time course positively correlated with thermogenesis activation, but negatively matched body weight, leptinemia, and circulating eCB levels. Increased expression of eCB-synthetizing enzymes accompanied the transient hypothalamic eCB elevation. Icv injection of eCB did not promote BAT thermogenesis; however, administration of thermogenic molecules, such as central leptin or a peripheral ß3-adrenoreceptor agonist, induced a significant increase in hypothalamic eCBs, suggesting a directional link from BAT thermogenesis to hypothalamic eCBs. This study contributes to the understanding of hypothalamic regulation of obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Endocanabinoides/metabolismo , Hipotálamo/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Feminino , Glicerídeos/metabolismo , Masculino , Camundongos , Alcamidas Poli-Insaturadas/metabolismo , Caracteres Sexuais
9.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1102-1103: 52-59, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30368043

RESUMO

In this paper, we report a method for the separation of hydroxy fatty acid and non-hydroxy fatty acid containing neutral lipid classes via normal phase HPLC with UV detection on a PVA-Sil column. The hexane/isopropanol/methanol/water based method separates all the neutral lipids in 21 min, and subsequently flushes through the polar lipids by 27 min such that prefractionation of neutral and polar lipids are not required, and the column is re-equilibrated for the next run in 15 min, for a total run time of 45 min per sample. The separation was demonstrated at both 1.0 mL/min and 1.5 mL/min for added applicability for fraction collection or inline analysis. Separation of various hydroxy fatty acid containing lipids was demonstrated from three different plant species Ricinus communis, Physaria fendleri, and engineered Arabidopsis thaliana. Additionally, we have combined this method with an in-line liquid scintillation counter for the separation and quantification of 14C labeled lipids obtained from in vivo metabolic flux experiments conducted in the developing seeds of Arabidopsis thaliana.


Assuntos
Radioisótopos de Carbono/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Lipídeos/isolamento & purificação , Contagem de Cintilação/métodos , Radioisótopos de Carbono/análise , Glicerídeos/química , Glicerídeos/isolamento & purificação , Glicerídeos/metabolismo , Hidroxilação , Marcação por Isótopo , Metabolismo dos Lipídeos , Lipídeos/química , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Óleos de Plantas/metabolismo , Plantas/química , Reprodutibilidade dos Testes
10.
Food Funct ; 9(10): 5189-5197, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30259935

RESUMO

The aim of the present study was to comprehensively evaluate the changes in the metabolite profile of breast milk over lactation stages and their relationship with dietary intake in Chinese women by HPLC-QTOFMS based metabolomic analysis. The colostrum, transitional milk and mature milk of thirty healthy lactating women were collected for analysis. Eighty-four differential metabolites over lactation stages were identified, including 12 fatty acyls, 15 glycerolipids, 23 glycerophospholipids, 7 sphingolipids, 7 vitamins, 5 nucleotides-related metabolites, 2 amino acids, 1 amino acid derivate, 9 dipeptides, 1 steroid hormone, 1 energy-related metabolite and 1 amine. Partial least-squares regression analysis indicated that the metabolite profiles of the colostrum, transitional milk and mature milk have a strong relationship with dietary intake (R2 values were 0.92, 0.87 and 0.74, respectively). However, among the 84 differential metabolites over lactation stages, only two showed a strong relationship with dietary intake: 1,24,25-(OH)3 vitamin D3 was positively correlated with the dietary intake of meat and eggs, protein and fat; 11ß-hydroxyprogesterone was negatively correlated with the dietary intake of fruit and carbohydrate. After adjusting for dietary intake, the variation trend of all the 84 differential metabolites over lactation stages remained unchanged. In conclusion, 84 differential metabolites in the breast milk of Chinese women over lactation stages were identified, and their variation trend was independent of dietary intake. These metabolites were partially different from those identified in previous metabolomic studies in the Western population. The present study is quite meaningful for understanding the variation of nutritional requirements in Chinese infants at different developmental stages and manufacturing optimal infant formulas for them.


Assuntos
Lactação , Leite Humano/química , Adulto , Aminoácidos/química , Aminoácidos/metabolismo , Cromatografia Líquida de Alta Pressão , Colostro/química , Colostro/metabolismo , Dieta , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Glicerídeos/química , Glicerídeos/metabolismo , Humanos , Espectrometria de Massas , Metabolômica , Leite Humano/metabolismo , Gravidez , Vitaminas/química , Vitaminas/metabolismo
11.
J Pharm Sci ; 107(11): 2946-2956, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30053556

RESUMO

Breast cancer resistance protein (BCRP) transporter is an efflux transporter that utilizes energy from adenosine triphosphate hydrolysis to push its substrates, regardless of the concentration gradient. Its presence on the apical membrane of the intestinal mucosa is a major obstacle for the intestinal absorption of its substrates. In this study, we examined the effects of various pharmaceutical excipients on the intestinal transport and absorption of sulfasalazine, a BCRP substrate. Four excipients, including 0.05% and 0.075% BL-9EX, 0.01% and 0.05% Brij 97, 0.075% Labrasol, and 0.05% and 0.1% Tween 20 decreased the secretory transport of sulfasalazine in an in vitro diffusion chamber. Further investigation in an in situ closed loop experiment in rats showed that 0.05% and 0.1% BL-9EX and 0.1% Brij 97 effectively enhanced the intestinal absorption of sulfasalazine while maintaining minimal toxicity to the intestinal mucosa. However, 0.1% Brij 97 also increased the intestinal absorption of 5(6)-carboxyfluorescein, a paracellular marker compound. These findings suggest that BL-9EX might effectively inhibit the BCRP-mediated efflux of sulfasalazine in vivo, indicating that BL-9EX could improve the intestinal absorption of sulfasalazine and other BCRP substrates.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Anti-Infecciosos/farmacocinética , Excipientes/metabolismo , Absorção Intestinal/efeitos dos fármacos , Sulfassalazina/farmacocinética , Animais , Anti-Infecciosos/metabolismo , Transporte Biológico/efeitos dos fármacos , Glicerídeos/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Óleos de Plantas/metabolismo , Polietilenoglicóis/metabolismo , Polissorbatos/metabolismo , Ratos Wistar , Sulfassalazina/metabolismo
12.
Poult Sci ; 97(7): 2303-2311, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29562369

RESUMO

Valeric acid is a C5 fatty acid, naturally produced in low concentrations by specific members of the microbiota of the lower intestinal tract. Effects of valeric acid on intestinal health have been poorly investigated. Valeric acid derivatives can be produced as glyceride esters and added to broiler feed. In the current study, experiments were carried out to evaluate the effect of valeric acid glycerides (GVA) on growth performance, on the morphology of the small intestinal mucosa and on protection against necrotic enteritis. In a first feeding trial, Ross-308 chicks were randomly divided into 2 dietary treatment groups and fed either a non-supplemented diet or a diet supplemented with GVA (1.5 g/kg). In the GVA supplemented group, the feed conversion ratio was significantly decreased during the entire trial period (D1-37). In a second trial, gut wall morphology was evaluated. In broilers fed a GVA-containing diet at 5 g/kg, the villus height/crypt depth ratio in the jejunum was significantly increased (P ≤ 0.05), and the crypt depth was significantly decreased at 28 d. In a third trial, immunohistochemistry showed that the density of glucagon-like peptide-2 immunoreactive cells in jejunal and ileal villi from broilers supplemented with GVA (5 g/kg) was significantly increased (P ≤ 0.05) on d 10. In a necrotic enteritis challenge model, a significant reduction of the number of birds with necrotic lesions was found at d 21, using in-feed supplementation of low and high regimen of GVA. These data show that GVA supplementation to broiler feed can decrease the feed conversion, positively affect the morphology of the small intestinal mucosa, increase the density of glucagon-like peptide-2 producing enteroendocrine cells, and reduce the incidence of necrotic enteritis, making GVA a valuable candidate feed additive for broilers.


Assuntos
Galinhas , Coccidiose/veterinária , Enterite/veterinária , Glicerídeos/metabolismo , Doenças das Aves Domésticas/prevenção & controle , Valeratos/metabolismo , Ração Animal/análise , Animais , Galinhas/crescimento & desenvolvimento , Coccidiose/imunologia , Coccidiose/prevenção & controle , Dieta/veterinária , Suplementos Nutricionais/análise , Eimeria/fisiologia , Enterite/imunologia , Enterite/prevenção & controle , Ésteres/administração & dosagem , Ésteres/metabolismo , Feminino , Glicerídeos/administração & dosagem , Masculino , Doenças das Aves Domésticas/imunologia , Distribuição Aleatória , Valeratos/administração & dosagem
13.
Poult Sci ; 97(4): 1315-1323, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462360

RESUMO

Butyric acid is the primary energy source for colonocytes, and has shown potential as an alternative to in-feed antibiotics, due to its antimicrobial activity and positive effects on production performance traits of broiler chickens. SILOhealth 104 (SILO S.P.A., Florence, Italy) is a commercial product mainly containing mono- and di-glycerides of butyrate with a small portion of propionic, caprylic, capric, and lauric acid mono- and di-glycerides. Its effects on broiler performance and carcass composition have yet to be evaluated. Four-hundred-eighty day-old male Ross 308 birds were divided into different dietary treatment groups with equal starting weights and fed a diet containing 0, 500, 1,000, 2,000, or 3,000 ppm of SILOhealth 104 for 35 days. There were no significant differences in overall average daily gain or feed: gain ratio with the addition of SILOhealth 104 to the diets (P > 0.05). At 5 wk of age, abdominal fat weight was reduced in birds supplemented with SILOhealth 104 in a dose-responsive manner (P < 0.05), while breast muscle weight increased with supplementation, with significant increases in 2,000 ppm and 3,000 ppm birds compared to controls (P < 0.05). A significant reduction in gene expression of both forkhead box protein O4 and myostatin, 2 factors that can inhibit protein synthesis, was found in the breast muscle of all SILOhealth 104 treated birds (P < 0.05). In addition, gene expression in the adipose tissue, including acetyl-CoA carboxylase alpha and lipoprotein lipase, which are associated with lipid metabolism, was significantly decreased and increased, respectively, by the supplementation of SILOhealth 104 (P < 0.05). These data suggest that the components of SILOhealth 104 can positively affect the deposition of muscle, while reducing abdominal fat deposition in broiler chickens.


Assuntos
Galinhas/fisiologia , Ácidos Graxos/metabolismo , Glicerídeos/metabolismo , Carne/análise , Ração Animal/análise , Animais , Galinhas/crescimento & desenvolvimento , Dieta/veterinária , Suplementos Nutricionais/análise , Ácidos Graxos/administração & dosagem , Ácidos Graxos/análise , Glicerídeos/administração & dosagem , Glicerídeos/análise , Masculino
14.
Poult Sci ; 96(9): 3221-3228, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28431158

RESUMO

Mixed mono- and tributyrate glycerides have been used for effective delivery of butyrate to the gut to benefit broilers. However, limited information is available on the efficacy of butyrate glycerides individually and in combination with different levels and feeding schedules. The present study has first investigated the effects of monobutyrin at inclusion levels of zero, 500, 1,000, 2,000, and 3,000 ppm on the performance of broilers, and second, the effects of its combination with tributyrin. In the monobutyrin trial, there were no overall significant differences in average daily gain or feed efficiency. However, 2,000 ppm birds had significantly decreased abdominal fat deposition compared to controls (P ≤ 0.05), and the breast muscle deposition increased in a dose-response manner to the supplementation of monobutyrin (P ≤ 0.05). The combination trial tested 5 treatment groups: control, 500 ppm tributyrin + 500 ppm monobutyrin (5T5M), 500 ppm tributyrin + 500 ppm monobutyrin staggered (5T5Ms), 500 ppm tryibutyrin + 2,000 ppm monobutyrin (5T20M), or 500 ppm tributyrin + 2,000 ppm monobutyrin staggered (5T20Ms). In staggered groups, birds were fed tributyrin for one wk followed by 2 wk of monobutyrin, after which the feed was butyrate glyceride free. The non-staggered groups had constant inclusions levels through the 5 weeks. There were no significant differences in average daily gain or feed efficiency among groups. At 5 wk of age, all treatment groups except for 5T5Ms had significantly lower relative abdominal fat weight compared to control birds (P ≤ 0.05), although 5T5Ms birds demonstrated a trend for a decrease (P = 0.095). Relative breast muscle weight was significantly increased only in 5T5M birds over control birds at 5 wk of age (P ≤ 0.05). Serum biochemistry revealed significant changes in factors relating to muscle growth and fat deposition (P ≤ 0.05). These results indicate a consistent shift in lipid metabolism with the addition of butyrate glycerides and that the deposition of breast muscle may be highest with the incorporation of butyrate glycerides at a moderate level for the duration of development.


Assuntos
Galinhas/fisiologia , Glicerídeos/metabolismo , Triglicerídeos/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Galinhas/crescimento & desenvolvimento , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Métodos de Alimentação , Glicerídeos/administração & dosagem , Triglicerídeos/administração & dosagem
15.
J Biotechnol ; 249: 66-72, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28344155

RESUMO

In this work, a novel castor oil-based caffeoyl structured lipids was successfully prepared by the enzymatic transesterification using castor oil (CO) as caffeoyl acceptor. During the structured lipids preparation, two competitive reactions, the hydrolysis of CO to form hydrophilic caffeoyl glycerols (CG)+dicaffeoyl glycerols (DCG) and the transesterification of CO with ethyl caffeate (EC) to form lipophilic caffeoyl mono- and di-acylglycerols (CMAG and CDAG), were found. Reaction progress was monitored using HPLC-ESI-MS and HPLC-UV. The effects of by-product ethanol removal and reaction variables on the transesterification and reaction selectivity were evaluated. Results showed that, the activation energies for the transesterification and for the selective formations of CMAG+CDAG and CG+DCG were 57.60kJ/mol, 58.86kJ/mol, and 60.53kJ/mol, respectively. Under the optimal reaction conditions (enzyme load 23%, 90°C, 1:3 molar ratio of EC to CO, and 46.5h), EC conversion and the yield of CMAG+CDAG were 93.68±2.52% and 78.11±1.35%, respectively.


Assuntos
Ácidos Cafeicos/química , Ácidos Cafeicos/metabolismo , Óleo de Rícino/química , Óleo de Rícino/metabolismo , Glicerídeos/química , Glicerídeos/metabolismo , Biotecnologia , Enzimas Imobilizadas , Esterificação , Etanol , Proteínas Fúngicas , Lipase/metabolismo
16.
Lipids Health Dis ; 16(1): 14, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28103941

RESUMO

BACKGROUND: The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) may trigger a physiological response in an attempt to preserve tissue and function integrity. There are several candidate molecules among which the endocannabinoid system (ECS) and/or peroxisome-proliferator activated receptor-alpha (PPAR-alpha) may play a role in modulating oxidative stress and inflammation. The aims of the present study are to evaluate whether the ECS, the enzyme cyclooxygenase-2 (COX-2) and PPAR-alpha are involved during BCCAO/R in rat brain, and to identify possible markers of the ongoing BCCAO/R-induced challenge in plasma. METHODS: Adult Wistar rats underwent BCCAO/R with 30 min hypoperfusion followed by 60 min reperfusion. The frontal and temporal-occipital cortices and plasma were analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS) to determine concentrations of endocannabinoids (eCBs) and related molecules behaving as ligands of PPAR-alpha, and of oxidative-stress markers such as lipoperoxides, while Western Blot and immunohistochemistry were used to study protein expression of cannabinoid receptors, COX-2 and PPAR-alpha. Unpaired Student's t-test was used to evaluate statistical differences between groups. RESULTS: The acute BCCAO/R procedure is followed by increased brain tissue levels of the eCBs 2-arachidonoylglycerol and anandamide, palmitoylethanolamide, an avid ligand of PPAR-alpha, lipoperoxides, type 1 (CB1) and type 2 (CB2) cannabinoid receptors, and COX-2, and decreased brain tissue concentrations of docosahexaenoic acid (DHA), one of the major targets of lipid peroxidation. In plasma, increased levels of anandamide and lipoperoxides were observed. CONCLUSIONS: The BCCAO/R stimulated early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation. The observed variations suggest that the positive modulation of the ECS and the increase of proinflammatory substances are directly correlated events. Increase of plasmatic levels of anandamide and lipoperoxides further suggests that dysregulation of these molecules may be taken as an indicator of an ongoing hypoperfusion/reperfusion challenge.


Assuntos
Isquemia Encefálica/metabolismo , Transtornos Cerebrovasculares/metabolismo , Endocanabinoides/metabolismo , Peróxidos Lipídicos/metabolismo , Traumatismo por Reperfusão/metabolismo , Amidas , Animais , Ácidos Araquidônicos/metabolismo , Isquemia Encefálica/fisiopatologia , Artéria Carótida Primitiva/cirurgia , Transtornos Cerebrovasculares/fisiopatologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Etanolaminas/metabolismo , Lobo Frontal/metabolismo , Lobo Frontal/fisiopatologia , Regulação da Expressão Gênica , Glicerídeos/metabolismo , Peroxidação de Lipídeos , Masculino , Lobo Occipital/metabolismo , Lobo Occipital/fisiopatologia , Estresse Oxidativo , PPAR alfa/genética , PPAR alfa/metabolismo , Ácidos Palmíticos/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/fisiopatologia , Lobo Temporal/metabolismo , Lobo Temporal/fisiopatologia
17.
Science ; 353(6305): 1228-32, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27634522

RESUMO

Lipids and oils derived from plant and algal photosynthesis constitute much of human daily caloric intake and provide the basis for high-energy bioproducts, chemical feedstocks for countless applications, and even fossil fuels over geological time scales. Sustainable production of high-energy compounds from plants is essential to preserving fossil fuel sources and ensuring the well-being of future generations. As a result of progress in basic research on plant and algal lipid metabolism, in combination with advances in synthetic biology, we can now tailor plant lipids for desirable biological, physical, and chemical properties. We highlight recent advances in plant lipid translational biology and discuss untapped areas of research that might expand the application of plant lipids.


Assuntos
Saúde Ambiental , Glicerídeos/metabolismo , Metabolismo dos Lipídeos , Plantas Geneticamente Modificadas/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Engenharia Genética , Glicerídeos/genética , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Triglicerídeos/genética , Triglicerídeos/metabolismo
18.
J Pharmacol Exp Ther ; 359(1): 62-72, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27451409

RESUMO

Monoacylglycerol lipase (MAGL) is a serine hydrolase that acts as a principal degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). In addition to terminating the signaling function of 2-AG, MAGL liberates arachidonic acid to be used as a primary source for neuroinflammatory prostaglandin synthesis in the brain. MAGL activity also contributes to cancer pathogenicity by producing precursors for tumor-promoting bioactive lipids. Pharmacological inhibitors of MAGL provide valuable tools for characterization of MAGL and 2-AG signaling pathways. They also hold great therapeutic potential to treat several pathophysiological conditions, such as pain, neurodegenerative disorders, and cancer. We have previously reported piperidine triazole urea, {4-[bis-(benzo[d][1,3]dioxol-5-yl)methyl]-piperidin-1-yl}(1H-1,2,4-triazol-1-yl)methanone (JJKK-048), to be an ultrapotent and highly selective inhibitor of MAGL in vitro. Here, we characterize in vivo effects of JJKK-048. Acute in vivo administration of JJKK-048 induced a massive increase in mouse brain 2-AG levels without affecting brain anandamide levels. JJKK-048 appeared to be extremely potent in vivo. Activity-based protein profiling revealed that JJKK-048 maintains good selectivity toward MAGL over other serine hydrolases. Our results are also the first to show that JJKK-048 promoted significant analgesia in a writhing test with a low dose that did not cause cannabimimetic side effects. At a high dose, JJKK-048 induced analgesia both in the writhing test and in the tail-immersion test, as well as hypomotility and hyperthermia, but not catalepsy.


Assuntos
Benzodioxóis/farmacologia , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/farmacologia , Animais , Ácidos Araquidônicos/metabolismo , Comportamento Animal/efeitos dos fármacos , Benzodioxóis/efeitos adversos , Benzodioxóis/farmacocinética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Endocanabinoides/metabolismo , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacocinética , Glicerídeos/metabolismo , Hipotermia/induzido quimicamente , Masculino , Camundongos , Nociceptividade/efeitos dos fármacos , Piperidinas/efeitos adversos , Piperidinas/farmacocinética , Pirazóis/farmacologia , Rimonabanto
19.
Biochim Biophys Acta ; 1861(6): 491-500, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26956082

RESUMO

A leading hypothesis of N-acyl ethanolamine (NAE) biosynthesis, including the endogenous cannabinoid anandamide (AEA), is that it depends on hydrolysis of N-acyl-phosphatidylethanolamines (NAPE) by a NAPE-specific phospholipase D (NAPE-PLD). Thus, deletion of NAPE-PLD should attenuate NAE levels. Previous analyses of two different NAPE-PLD knockout (KO) strains produced contradictory data on the importance of NAPE-PLD to AEA biosynthesis. Here, we examine this hypothesis with a strain of NAPE-PLD KO mice whose lipidome is uncharacterized. Using HPLC/MS/MS, over 70 lipids, including the AEA metabolite, N-arachidonoyl glycine (NAGly), the endocannabinoid 2-arachidonyl glycerol (2-AG) and prostaglandins (PGE(2) and PGF(2α)), and over 60 lipoamines were analyzed in 8 brain regions of KO and wild-type (WT) mice. Lipidomics analysis of this third NAPE-PLD KO strain shows a broad range of lipids that were differentially affected by lipid species and brain region. Importantly, all 6 NAEs measured were significantly reduced, though the magnitude of the effect varied by fatty acid saturation length and brain region. 2-AG levels were only impacted in the brainstem, where levels were significantly increased in KO mice. Correspondingly, levels of arachidonic acid were significantly decreased exclusively in brainstem. NAGly levels were significantly increased in 4 brain regions and levels of PGE(2) increased in 6 of 8 brain regions in KO mice. These data indicate that deletion of NAPE-PLD has far broader effects on the lipidome than previously recognized. Therefore, behavioral characteristics of suppressing NAPE-PLD activity may be due to a myriad of effects on lipids and not simply due to reduced AEA biosynthesis.


Assuntos
Encéfalo/metabolismo , Metabolismo dos Lipídeos , Lipídeos/análise , Fosfolipase D/metabolismo , Animais , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/metabolismo , Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Cromatografia Líquida de Alta Pressão , Corpo Estriado/metabolismo , Dinoprosta/metabolismo , Dinoprostona/metabolismo , Endocanabinoides/metabolismo , Etanolaminas/metabolismo , Glicerídeos/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Mesencéfalo/metabolismo , Camundongos Knockout , Fosfatidiletanolaminas/metabolismo , Fosfolipase D/genética , Alcamidas Poli-Insaturadas/metabolismo , Espectrometria de Massas em Tandem , Tálamo/metabolismo
20.
J Food Sci ; 81(2): C317-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26720174

RESUMO

In this study, a pH-stat digestion model and a simulated in vitro digestion model were employed to evaluate the digestion degree of lipids depending on different acylglycerols and acyl chain length (that is, diacylglycerol [DAG] compared with soybean oil representing long-chain triacylglycerol compared with medium-chain triacylglycerol [MCT]). In the pH-stat digestion model, differences were observed among the digestion degrees of 3 oils using digestion rate (k), digestion half-time (t1/2 ), and digestion extent (Φmax). The results showed the digestion rate order was MCT > soybean oil > DAG. Accordingly, the order of digestion half-times was MCT < soybean oil < DAG. In simulated in vitro digestion model, digestion rates (k') and digestion half-times (t'1/2 ) were also obtained and the results showed a digestion rate order of MCT (k' = 0.068 min(-1) ) > soybean oil (k' = 0.037 min(-1) ) > DAG (k' = 0.024 min(-1) ). Consequently, the order of digestion half-times was MCT (t'1/2 = 10.20 min) < soybean oil (t'1/2 = 18.74 min) < DAG (t'1/2 = 29.08 min). The parameters obtained using the 2 models showed MCT was digested faster than soybean oil, and that soybean oil was digested faster than DAG.


Assuntos
Diglicerídeos/metabolismo , Glicerídeos/metabolismo , Óleo de Soja/metabolismo , Triglicerídeos/metabolismo , Digestão , Ácidos Graxos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Metabolismo dos Lipídeos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA