Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.522
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Int Soc Sports Nutr ; 21(1): 2336095, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38576169

RESUMO

PURPOSE: Garlic extract (GA) is purported to enhance antioxidant and anti-inflammatory activity and glucose regulation in humans. The present study investigated the effects of post-exercise GA supplementation on GLUT4 expression, glycogen replenishment, and the transcript factors involved with mitochondrial biosynthesis in exercised human skeletal muscle. METHODS: The single-blinded crossover counterbalanced study was completed by 12 participants. Participants were randomly divided into either GA (2000 mg of GA) or placebo trials immediately after completing a single bout of cycling exercise at 75% Maximal oxygen uptake (VO2max) for 60 minutes. Participants consumed either GA (2000 mg) or placebo capsules with a high glycemic index carbohydrate meal (2 g carb/body weight) immediately after exercise. Muscle samples were collected at 0-h and 3-h post-exercise. Muscle samples were used to measure glycogen levels, GLUT4 protein expression, as well as transcription factors for glucose uptake, and mitochondria biogenesis. Plasma glucose, insulin, glycerol, non-esterified fatty acid (NEFA) concentrations, and respiratory exchange ratio (RER) were also analyzed during the post-exercise recovery periods. RESULTS: Skeletal muscle glycogen replenishment was significantly elevated during the 3-h recovery period for GA concurrent with no difference in GLUT4 protein expression between the garlic and placebo trials. PGC1-α gene expression was up-regulated for both GA and placebo after exercise (p < 0.05). Transcript factors corresponding to muscle mitochondrial biosynthesis were significantly enhanced under acute garlic supplementation as demonstrated by TFAM and FIS1. However, the gene expression of SIRT1, ERRα, NFR1, NFR2, MFN1, MFN2, OPA1, Beclin-1, DRP1 were not enhanced, nor were there any improvements in GLUT4 expression, following post-exercise garlic supplementation. CONCLUSION: Acute post-exercise garlic supplementation may improve the replenishment of muscle glycogen, but this appears to be unrelated to the gene expression for glucose uptake and mitochondrial biosynthesis in exercised human skeletal muscle.


Assuntos
Alho , Glicogênio , Humanos , Glicogênio/metabolismo , Antioxidantes/metabolismo , Alho/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Músculo Esquelético , Suplementos Nutricionais , RNA Mensageiro/metabolismo , Mitocôndrias/metabolismo , Glicemia/metabolismo
2.
Nutrients ; 16(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612966

RESUMO

Relative to carbohydrate (CHO) alone, exogenous ketones followed by CHO supplementation during recovery from glycogen-lowering exercise have been shown to increase muscle glycogen resynthesis. However, whether this strategy improves subsequent exercise performance is unknown. The objective of this study was to assess the efficacy of ketone monoester (KME) followed by CHO ingestion after glycogen-lowering exercise on subsequent 20 km (TT20km) and 5 km (TT5km) best-effort time trials. Nine recreationally active men (175.6 ± 5.3 cm, 72.9 ± 7.7 kg, 28 ± 5 y, 12.2 ± 3.2% body fat, VO2max = 56.2 ± 5.8 mL· kg BM-1·min-1; mean ± SD) completed a glycogen-lowering exercise session, followed by 4 h of recovery and subsequent TT20km and TT5km. During the first 2 h of recovery, participants ingested either KME (25 g) followed by CHO at a rate of 1.2 g·kg-1·h-1 (KME + CHO) or an iso-energetic placebo (dextrose) followed by CHO (PLAC + CHO). Blood metabolites during recovery and performance during the subsequent two-time trials were measured. In comparison to PLAC + CHO, KME + CHO displayed greater (p < 0.05) blood beta-hydroxybutyrate concentration during the first 2 h, lower (p < 0.05) blood glucose concentrations at 30 and 60 min, as well as greater (p < 0.05) blood insulin concentration 2 h following ingestion. However, no treatment differences (p > 0.05) in power output nor time to complete either time trial were observed vs. PLAC + CHO. These data indicate that the metabolic changes induced by KME + CHO ingestion following glycogen-lowering exercise are insufficient to enhance subsequent endurance time trial performance.


Assuntos
Glicogênio , Estado Nutricional , Masculino , Humanos , Ácido 3-Hidroxibutírico , Cetonas , Ingestão de Alimentos
3.
Clin Nutr ; 43(3): 692-700, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38320460

RESUMO

BACKGROUND & AIMS: Ketone supplementation is gaining popularity. Yet, its effects on exercise performance when muscle glycogen cannot be used remain to be determined. McArdle disease can provide insight into this question, as these patients are unable to obtain energy from muscle glycogen, presenting a severely impaired physical capacity. We therefore aimed to assess the effects of acute ketone supplementation in the absence of muscle glycogen utilization (McArdle disease). METHODS: In a randomized cross-over design, patients with an inherited block in muscle glycogen breakdown (i.e., McArdle disease, n = 8) and healthy controls (n = 7) underwent a submaximal (constant-load) test that was followed by a maximal ramp test, after the ingestion of a placebo or an exogenous ketone ester supplement (30 g of D-beta hydroxybutyrate/D 1,3 butanediol monoester). Patients were also assessed after carbohydrate (75 g) ingestion, which is currently considered best clinical practice in McArdle disease. RESULTS: Ketone supplementation induced ketosis in all participants (blood [ketones] = 3.7 ± 0.9 mM) and modified some gas-exchange responses (notably increasing respiratory exchange ratio, especially in patients). Patients showed an impaired exercise capacity (-65 % peak power output (PPO) compared to controls, p < 0.001) and ketone supplementation resulted in a further impairment (-11.6 % vs. placebo, p = 0.001), with no effects in controls (p = 0.268). In patients, carbohydrate supplementation resulted in a higher PPO compared to ketones (+21.5 %, p = 0.001) and a similar response was observed vs. placebo (+12.6 %, p = 0.057). CONCLUSIONS: In individuals who cannot utilize muscle glycogen but have a preserved ability to oxidize blood-borne glucose and fat (McArdle disease), acute ketone supplementation impairs exercise capacity, whereas carbohydrate ingestion exerts the opposite, beneficial effect.


Assuntos
Doença de Depósito de Glicogênio Tipo V , Glicogênio , Humanos , Glicemia , Suplementos Nutricionais , Cetonas , Músculos , Estudos Cross-Over
4.
Zhongguo Zhong Yao Za Zhi ; 49(1): 151-161, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403348

RESUMO

Jiedu Huoxue Decoction(JDHX), first recorded in the Correction on Errors in Medical Works by WANG Qing-ren, is an effective formula screened out from ancient formulas by the traditional Chinese medicine(TCM) master ZHANG Qi to treat acute kidney injury(AKI) caused by heat, toxicity, stasis, and stagnation. This paper elucidated the therapeutic effect of JDHX on AKI and probed into the potential mechanism from ferroptosis. Thirty-two male C57BL/6 mice were randomized into four groups(n=8): normal, model, and low-and high-dose JDHX. Since the clinical treatment of AKI depends on supportive or alternative therapies and there is no specific drug, this study did not include a positive drug group. The low dose of JDHX corresponded to half of clinically equivalent dose, while the high dose corresponded to the clinically equivalent dose. Mice were administrated with JDHX by gavage daily for 7 consecutive days, while those in the normal group and the model group were administered with the corresponding volume of distilled water. On day 5 of drug administration, mice in other groups except the normal group were injected intraperitoneally with cisplatin solution at a dose of 20 mg·kg~(-1) to induce AKI, and the normal group was injected with saline. All of the mice were sacrificed 72 h after modeling, blood and kidney samples were collected for subsequent analysis. The levels of serum creatine(Scr) and blood urea nitrogen(BUN) were measured by the commercial kits. The expression level of kidney injury molecule 1(KIM-1) in the serum was measured by enzyme-linked immunosorbent assay. Hematoxylin-eosin(HE) staining, periodic acid-Schiff(PAS) staining, and Prussian blue staining were employed to observe the pathological changes, glycogen deposition, and iron deposition, respectively, in the renal tissue. In addition, the levels of glutathione(GSH), superoxide dismutase(SOD), and catalase(CAT) in the renal tissue were examined by biochemical colorimetry. Western blot was performed to determine the protein levels of acyl-CoA synthetase long chain family member 4(ACSL4), lysophosphatidylcholine acyltransferase 3(LPCAT3), and Yes-associated protein(YAP, a key molecule in the Hippo pathway) in the renal tissue. Immunohistochemistry was then employed to detect the location and expression of YAP in the renal tissue. Real-time fluorescence quantitative polymerase chain reaction(qRT-PCR) was performed to measure the mRNA levels of ACSL4 and glutathione peroxidase 4(GPX4). Compared with the normal group, the model group showed elevated serum levels of Scr, BUN, and KIM-1. In the AKI model group, the tubular epithelial cells underwent atrophy and necrotic detachment, disappearance of brush border, and some tubules became protein tubules or experienced vacuole-like degeneration. In addition, this group presented widening of the interstitium or even edema, increased renal tubule injury score, and obvious glycogen and iron deposition in parts of the renal tissue. Moreover, the model group had lower GSH, SOD, and CAT levels, higher ASCL4 and LPCAT3 levels, and lower GPX4 expression and higher YAP expression than the normal group. Compared with the model group, high dose of JDHX effectively protected renal function, lowered the levels of Scr, BUN and KIM-1, alleviated renal pathological injury, reduced glycogen and iron deposition, and elevated the GSH, SOD, and CAT levels in the renal tissue. Furthermore, JDHX down-regulated the protein levels of ACSL4, LPCAT3, and YAP and up-regulated the level of GPX4, compared with the model group. In conclusion, JDHX can protect mice from cisplatin-induced AKI by inhibiting ferroptosis via regulating the YAP/ACSL4 signaling pathway.


Assuntos
Injúria Renal Aguda , Ferroptose , Camundongos , Masculino , Animais , Cisplatino/efeitos adversos , Camundongos Endogâmicos C57BL , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/genética , Glicogênio , Superóxido Dismutase , Ferro , 1-Acilglicerofosfocolina O-Aciltransferase
5.
Biomed Res Int ; 2024: 6673550, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204757

RESUMO

Background: Traditional herbal medicine practitioners in the Ashanti region of Ghana use the fruit peels of Citrus limon (L.) Osbeck (C. limon) in preventive and curative treatment of many cancers including liver cancer. This ethnobotanical claim remains to be verified scientifically. Aim of the Study. This study investigated prophylactic hepatoprotective and anti-HCC effects of C. limon peel extract (LPE) in CCl4/olive oil-induced HCC-like rats. Materials and Methods: After preparation of LPE, it was subjected to phytochemical screening using standard phytochemical methods. A total of 30 healthy adult male Sprague-Dawley rats (weighing 150-200 g) were randomly assigned into six groups of 5 rats each. Rats in the control group received olive oil (5 mL/kg ip) twice weekly for 16 weeks. Rats in the model group received CCl4/olive oil (2 mL/kg, ip) twice weekly for 16 weeks. Rats in capecitabine (10 mg/kg po) and LPE (50, 100, and 200 mg/kg po) groups received CCl4/olive oil (2 mL/kg, i.p) in the morning and their respective treatments in the afternoon twice a week for 16 weeks. Rats in all groups had free access to food and water ad libitum. Body weight and survival rates were monitored. Rats were sacrificed under deep anesthesia, blood was collected, and liver and other organs were isolated. Aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), prothrombin time, bilirubin, C-reactive protein (CRP), alpha- (α-) fetoprotein (AFP), and liver histology were assessed. Results: Alkaloids, tannins, flavonoids, terpenoids, and saponins were detected in LPE. Model rats demonstrated increased serum levels of AFP, CRP, ALP, GGT, ALT, and AST, prothrombin time, total bilirubin, direct bilirubin, blood lymphocyte, and monocyte counts, but decreased serum albumin and total protein compared to control rats. Unlike the control, model rats demonstrated fat accumulation in periportal and centrilobular hepatocytes and neoplastic transformation. Semiquantitation of periodic acid Schiff- (PAS-) stained liver sections showed decreased glycogen storage in hepatocytes of model rats compared to control rats. Compared to the model, LPE treatment protected against CCl4-induced hepatocarcinogenesis, which was evidenced by decreased AFP, CRP, liver enzymes, total and direct bilirubin, prothrombin time, and blood lymphocyte and monocyte counts; attenuation of fat accumulation; and increased glycogen storage, albumin, and total protein. Conclusion: LPE abates CCl4-induced hepatocarcinogenesis by attenuating liver inflammation and improving metabolic, biosynthetic, and detoxification functions of the liver. The prophylactic hepatoprotective and anti-hepatocarcinogenic effects of LPE are attributable to its phytochemical composition raising hopes of finding potential anticancer bioactive compounds from C. limon fruit peels.


Assuntos
Carcinoma Hepatocelular , Citrus , Neoplasias Hepáticas , Masculino , Ratos , Animais , Ratos Sprague-Dawley , Tetracloreto de Carbono , alfa-Fetoproteínas , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Frutas , Azeite de Oliva , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Carcinogênese , Alanina Transaminase , Fosfatase Alcalina , Aspartato Aminotransferases , Bilirrubina , Compostos Fitoquímicos , Glicogênio , Extratos Vegetais/farmacologia
6.
Bioresour Technol ; 393: 130031, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37993071

RESUMO

In anaerobic/aerobic/anoxic (A/O/A) process, endogenous denitrification (ED) is critically important, and achieving steady endogenous partial denitrification (EdPD) is crucial to carbon saving and anammox application. In this study, EdPD was rapidly realized from conventional activated sludge by expelling phosphorus accumulating organisms (PAOs) in anaerobic/anoxic (A/A) mode during 40 days, with nitrite transformation rate (NTR) surging to 82.8 % from 29.4 %. Competibacter was the prime EdPD-fulfilling bacterium, soaring to 28.9 % from 0.5 % in phase II. Afterwards, balance of high NTR and phosphorus removal efficiency (PRE) were attained by well regulating competition and cooperation between PAOs and glycogen accumulating organisms (GAOs) in A/O/A mode, when the Competibacter (21.7 %) and Accumulibacter (7.3 %, mainly Acc_IIC and Acc_IIF) were in dominant position with balance. The PRE recovered to 88.6 % and NTR remained 67.7 %. Great balance of GAOs and PAOs contributed to advanced nitrogen removal by anammox.


Assuntos
Fósforo , Esgotos , Esgotos/microbiologia , Desnitrificação , Glicogênio , Reatores Biológicos/microbiologia , Nitritos , Nitrogênio
7.
Sci Total Environ ; 912: 169103, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38065508

RESUMO

Increasing eutrophication has led to a continuous deterioration of many aquatic ecosystems. Polyphosphate-accumulating organisms (PAOs) can provide insight into the human response to this challenge, as they initiate enhanced biological phosphorus removal (EBPR) through cyclical anaerobic phosphorus release and aerobic phosphorus uptake. Although the limiting environmental factors for PAO growth and phosphorus removal have been widely discussed, there remains a gap in the knowledge surrounding the differences in the type and phosphorus removal efficiencies of natural and engineered PAO systems. Furthermore, due to the limitations of PAOs in conventional wastewater treatment environments, there is an urgent need to find functional PAOs in extreme environments for better wastewater treatment. Therefore, it is necessary to explore the effects of extreme conditions on the phosphorus removal efficiency of PAOs as well as the types, sources, and characteristics of PAOs. In this paper, we summarize the response mechanisms of PAOs, denitrifying polyphosphate-accumulating organisms (D-PAOs), aerobic denitrifying polyphosphate-accumulating organisms (AD-PAOs), and sulfur-related PAOs (S-PAOs). The mechanism of nitrogen and phosphorus removal in PAOs is related to the coupling cycles of carbon, nitrogen, phosphorus, and sulfur. The genera of PAOs differ in natural and engineered systems, but PAOs have more diversity in aquatic environments and soils. Recent studies on the impact of several parameters (e.g., temperature, carbon source, pH, and dissolved oxygen) and extracellular polymer substances on the phosphorus removal efficiency of PAOs in natural and engineered systems are further discussed. Most of the PAOs screened under extreme conditions still had high phosphorus removal efficiencies (>80.0 %). These results provide a reference for searching for PAOs with different adaptations to achieve better wastewater treatment.


Assuntos
Fósforo , Polifosfatos , Humanos , Ecossistema , Glicogênio , Reatores Biológicos , Carbono/química , Nitrogênio , Enxofre , Esgotos
8.
Biol Trace Elem Res ; 202(4): 1644-1655, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37495827

RESUMO

This study evaluated the effect of prepubertal arsenic exposure in the liver and kidney of pubescent rats and their reversibility 30 days after arsenic withdrawal. Male pups of Wistar rats (21 days old) were divided into two groups (n = 20/group): control animals received filtered water, and exposed rats received 10 mg L-1 arsenic from postnatal day (PND) 21 to PND 51. The liver and kidney of 52 days old rats (n = 10/group) were examined to investigate the effects of arsenic on micromineral content, antioxidant enzyme activity, histology, and biochemistry parameters. The other animals were kept alive under free arsenic conditions until 82 days old and further analyzed by the same parameters. Our results revealed that 52-day-old rats increased arsenic content in their liver and arsenic and manganese in their kidney. In those animals, glycogen and zinc content and catalase activity were reduced in the liver, and the selenium content decreased in the kidney. Thirty days later, arsenic reduced the manganese and iron content and SOD and CAT activity in the liver of 82-day-old rats previously exposed to arsenic, while glycogen and selenium content decreased in their kidney. In contrast, PND 82 rats exhibited higher retention of copper in the liver, an increase in iron and copper content, and CAT and GST activity in the kidney. Significant histological alterations of liver and kidney tissues were not observed in rats of both ages. We conclude that arsenic-induced toxicity could alter differently the oxidative status and balance of trace elements in pubertal and adult rats, demonstrating that the metalloid can cause effects in adulthood.


Assuntos
Arsênio , Selênio , Ratos , Masculino , Animais , Arsênio/metabolismo , Cobre/farmacologia , Ratos Wistar , Selênio/farmacologia , Selênio/metabolismo , Manganês/farmacologia , Catalase/metabolismo , Antioxidantes/metabolismo , Fígado/metabolismo , Rim/metabolismo , Ferro/metabolismo , Estresse Oxidativo , Glicogênio/metabolismo
9.
Mol Metab ; 79: 101838, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995884

RESUMO

OBJECTIVE: Carbohydrate Response Element Binding Protein (ChREBP) is a glucose 6-phosphate (G6P)-sensitive transcription factor that acts as a metabolic switch to maintain intracellular glucose and phosphate homeostasis. Hepatic ChREBP is well-known for its regulatory role in glycolysis, the pentose phosphate pathway, and de novo lipogenesis. The physiological role of ChREBP in hepatic glycogen metabolism and blood glucose regulation has not been assessed in detail, and ChREBP's contribution to carbohydrate flux adaptations in hepatic Glycogen Storage Disease type 1 (GSD I) requires further investigation. METHODS: The current study aimed to investigate the role of ChREBP as a regulator of glycogen metabolism in response to hepatic G6P accumulation, using a model for acute hepatic GSD type Ib. The immediate biochemical and regulatory responses to hepatic G6P accumulation were evaluated upon G6P transporter inhibition by the chlorogenic acid S4048 in mice that were either treated with a short hairpin RNA (shRNA) directed against ChREBP (shChREBP) or a scrambled shRNA (shSCR). Complementary stable isotope experiments were performed to quantify hepatic carbohydrate fluxes in vivo. RESULTS: ShChREBP treatment normalized the S4048-mediated induction of hepatic ChREBP target genes to levels observed in vehicle- and shSCR-treated controls. In parallel, hepatic shChREBP treatment in S4048-infused mice resulted in a more pronounced accumulation of hepatic glycogen and further reduction of blood glucose levels compared to shSCR treatment. Hepatic ChREBP knockdown modestly increased glucokinase (GCK) flux in S4048-treated mice while it enhanced UDP-glucose turnover as well as glycogen synthase and phosphorylase fluxes. Hepatic GCK mRNA and protein levels were induced by shChREBP treatment in both vehicle- and S4048-treated mice, while glycogen synthase 2 (GYS2) and glycogen phosphorylase (PYGL) mRNA and protein levels were reduced. Finally, knockdown of hepatic ChREBP expression reduced starch domain binding protein 1 (STBD1) mRNA and protein levels while it inhibited acid alpha-glucosidase (GAA) activity, suggesting reduced capacity for lysosomal glycogen breakdown. CONCLUSIONS: Our data show that ChREBP activation controls hepatic glycogen and blood glucose levels in acute hepatic GSD Ib through concomitant regulation of glucose phosphorylation, glycogenesis, and glycogenolysis. ChREBP-mediated control of GCK enzyme levels aligns with corresponding adaptations in GCK flux. In contrast, ChREBP activation in response to acute hepatic GSD Ib exerts opposite effects on GYS2/PYGL enzyme levels and their corresponding fluxes, indicating that GYS2/PYGL expression levels are not limiting to their respective fluxes under these conditions.


Assuntos
Glicemia , Doença de Depósito de Glicogênio Tipo I , Animais , Camundongos , Metabolismo dos Carboidratos , Modelos Animais de Doenças , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Glicogênio/metabolismo , Glicogênio Sintase/metabolismo , Glicogênio Hepático/metabolismo , Fosfatos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Fish Shellfish Immunol ; 144: 109233, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984614

RESUMO

This study was conducted to ascertain the effect of dietary Zn on growth and health status of juvenile largemouth bass (Micropterus salmoides). Six experimental diets with Zn level of 50.17, 56.74, 73.34, 86.03, 123.94, and 209.20 mg/kg, respectively were compounded using complex amino acid-chelated zinc, and were fed to juvenile fish (5.50 ± 0.10 g) for 70 d. The specific growth rate (SGR) varied with dietary Zn level in a quadratic model and peaked at the 73.34 mg/kg group, while the feeding rate exhibited an opposite trend (P < 0.05). The condition factor, hepatosomatic index and mesenteric fat index all exhibited a tendency similar with SGR (P < 0.05). Dietary Zn level affected serum total proteins, urea, triglycerides, and glucose (P < 0.05). Serum Zn and copper levels linearly increased with dietary Zn level, while serum iron and manganese showed the opposite trend. Serum superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) increased with dietary Zn level and reached a plateau at 86.03 mg/kg. Serum complement component 3 (C3), IgM, and lysozyme also were enhanced by 73.34 mg/kg Zn. Body protein content increased with zinc level up to 73.34 mg/kg, and then remained steadily. As dietary Zn level increased, hepatic lipid level increased and then reached a plateau at 86.03 mg/kg group, while glycogen increased linearly. Moreover, gene expression related to lipid and glycogen metabolism from liver transcriptome further explained the liver lipid and glycogen variations. To conclude, a dietary Zn requirement of 76.99 mg/kg was suggested for juvenile largemouth bass to improve growth, antioxidant capacity, and immune status.


Assuntos
Antioxidantes , Bass , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Fígado/metabolismo , Triglicerídeos/metabolismo , Glicogênio/metabolismo , Glicogênio/farmacologia , Glucose/metabolismo , Zinco/farmacologia
11.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5565-5575, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114149

RESUMO

This study investigated the mechanism of Gegen Qinlian Decoction(GQD) in improving glucose metabolism in vitro and in vivo by alleviating endoplasmic reticulum stress(ERS). Molecular docking was used to predict the binding affinity between the main effective plasma components of GQD and ERS-related targets. Liver tissue samples were obtained from normal rats, high-fat-induced diabetic rats, rats treated with metformin, and rats treated with GQD. RNA and protein were extracted. qPCR was used to measure the mRNA expression of ERS marker glucose-regulated protein 78(GRP78), and unfolded protein response(UPR) genes inositol requiring enzyme 1(Ire1), activating transcription factor 6(Atf6), Atf4, C/EBP-homologous protein(Chop), and caspase-12. Western blot was used to detect the protein expression of GRP78, IRE1, protein kinase R-like ER kinase(PERK), ATF6, X-box binding protein 1(XBP1), ATF4, CHOP, caspase-12, caspase-9, and caspase-3. The calcium ion content in liver tissues was determined by the colorimetric assay. The ERS-HepG2 cell model was established in vitro by inducing with tunicamycin for 6 hours, and 2.5%, 5%, and 10% GQD-containing serum were administered for 9 hours. The glucose oxidase method was used to measure extracellular glucose levels, flow cytometry to detect cell apoptosis, glycogen staining to measure cellular glycogen content, and immunofluorescence to detect the expression of GRP78. The intracellular calcium ion content was measured by the colorimetric assay. Whereas Western blot was used to detect GRP78 and ERS-induced IRE1, PERK, ATF6, and eukaryotic translation initiation factor 2α(eIF2α) phosphorylation. Additionally, the phosphorylation levels of insulin receptor substrate 1(IRS1), phosphatidylinositol 3-kinase regulatory subunit p85(PI3Kp85), and protein kinase B(Akt), which were involved in the insulin signaling pathway, were also measured. In addition, the phosphorylation levels of c-Jun N-terminal kinases(JNKs), which were involved in both the ERS and insulin signaling pathways, were measured by Western blot. Molecular docking results showed that GRP78, IRE1, PERK, ATF4, and various compounds such as baicalein, berberine, daidzein, jateorhizine, liquiritin, palmatine, puerarin and wogonoside had strong binding affinities, indicating that GQD might interfere with ERS-induced UPR. In vivo results showed that GQD down-regulated the mRNA transcription of Ire1, Atf6, Atf4, Grp78, caspase-12, and Chop in diabetic rats, and down-regulated GRP78, IRE1, PERK, as well as ERS-induced apoptotic factors ATF4 and CHOP, caspase-12, caspase-9, and caspase-3, while up-regulating XBP1 to enhance adaptive UPR. In addition, GQD increased the calcium ion content in liver tissues, which facilitated correct protein folding. In vitro results showed that GQD increased glucose consumption in ERS-induced HepG2 cells without significantly affecting cell viability, increased liver glycogen synthesis, down-regulated ATF6 and p-eIF2α(Ser51), and down-regulated IRE1, PERK, and GRP78, as well as p-IRS1(Ser312) and p-JNKs(Thr183/Tyr185), while up-regulating p-PI3Kp85(Tyr607) and p-Akt(Ser473). These findings suggested that GQD alleviates excessive ERS in the liver, reduces insulin resistance, and improves hepatic glucose metabolism in vivo and in vitro.


Assuntos
Diabetes Mellitus Experimental , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Chaperona BiP do Retículo Endoplasmático , Caspase 3 , Caspase 9 , Caspase 12 , Cálcio/farmacologia , Simulação de Acoplamento Molecular , Estresse do Retículo Endoplasmático , Proteínas Serina-Treonina Quinases/genética , Fígado , Apoptose , Insulina , Glucose , Glicogênio/farmacologia , RNA Mensageiro
12.
Sci Rep ; 13(1): 19439, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945676

RESUMO

Implementing homologous overexpression of the amt1 (A) and aroB (B) genes involved in ammonium transporter and the synthesis of mycosporine-like amino acids (MAAs) and aromatic amino acids, respectively, we created three engineered Synechocystis sp. PCC6803 strains, including Ox-A, Ox-B, and Ox-AB, to study the utilization of carbon and nitrogen in cyanobacteria for the production of valuable products. With respect to amt1 overexpression, the Ox-A and Ox-AB strains had a greater growth rate under (NH4)2SO4 supplemented condition. Both the higher level of intracellular accumulation of lipids in Ox-A and Ox-AB as well as the increased secretion of free fatty acids from the Ox-A strain were impacted by the late-log phase of cell growth. It is noteworthy that among all strains, the Ox-B strain undoubtedly spotted a substantial accumulation of glycogen as a consequence of aroB overexpression. Additionally, the ammonium condition drove the potent antioxidant activity in Ox strains with a late-log phase, particularly in the Ox-B and Ox-AB strains. This was probably related to the altered MAA component inside the cells. The higher proportion of P4-fraction was induced by the ammonium condition in both Ox-B and Ox-AB, while the noted increase of the P1 component was found in the Ox-A strain.


Assuntos
Compostos de Amônio , Synechocystis , Aminoácidos/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Glicogênio/metabolismo , Compostos de Amônio/metabolismo
13.
Water Res ; 246: 120742, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857010

RESUMO

Partial nitrification (PN) and high glycogen accumulating metabolism (GAM) activity are the basis for efficient nitrogen (N) and phosphorus (P) removal in simultaneous nitrification endogenous denitrification and phosphorus removal (SNDPR) systems. However, achieving these processes in practical operations is challenging. This study proposes that light irradiation is a novel strategy to enhance the nutrient removal performance of the SNDPR system with low carbon to nitrogen ratios (C/N of 3.3-4.1) domestic wastewater. Light energy densities (Es) of 55-135 J/g VSS were found to promote the activity of ammonia-oxidizing bacteria (AOB) and GAM, while inhibiting the activity of nitrite-oxidizing bacteria (NOB) and polyphosphate accumulating metabolism (PAM). Long-term exposure to different light patterns at Es of 55-135 J/g VSS revealed that continuous light rapidly achieved PN by inhibiting NOB activity and promoted the growth of glycogen accumulating organisms (GAOs), allowing the removal of above 82 % N and below 80 % P. Intermittent light maintained stable PN by inhibiting the activity and growth of NOB and promoted the growth of polyphosphate accumulating organisms (PAOs) with high GAM activity (Accmulibacer IIC-ii and IIC-iii), allowing the removal of above 82 % N and 95 % P. Flow cytometry and enzyme activity assays showed that light promoted GAM-related enzyme activity and the metabolic activity of partial Accmulibacer II over other endogenous denitrifying bacteria, while inhibiting NOB translation activity. These findings provide a new approach for enhancing nutrient removal, especially for achieving PN and promoting GAM activity, in SNDPR systems treating low C/N ratio domestic wastewater using light irradiation.


Assuntos
Nitrificação , Águas Residuárias , Desnitrificação , Fósforo/metabolismo , Eliminação de Resíduos Líquidos , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Bactérias/metabolismo , Glicogênio/metabolismo , Nitritos/metabolismo , Polifosfatos/metabolismo , Esgotos
14.
J Comp Physiol B ; 193(6): 615-630, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37833417

RESUMO

Melatonin is a multifunctional bioactive molecule present in almost all organisms and has been gradually used in the aquaculture industry in recent years. Energy metabolism is an essential process for individuals to maintain their life activities; however, the process through which melatonin regulates energy metabolism in aquatic animals remains unclear. The present study aimed to conduct a comprehensive analysis of the regulatory mechanism of melatonin for energy metabolism in Cherax destructor by combining metabolomics analysis with the detection of the key substance content, enzymatic activity, and gene expression levels in the energy metabolism process after culturing with dietary melatonin supplementation for 8 weeks. Our results showed that dietary melatonin increased the content of glycogen, triglycerides, and free fatty acids; decreased lactate levels; and promoted the enzymatic activity of pyruvate kinase (PK), malate dehydrogenase (MDH), and acetyl-CoA carboxylase. The results of gene expression analysis showed that dietary melatonin also increased the expression levels of hexokinase, PK, MDH, lactate dehydrogenase, lipase, and fatty acid synthase genes. The results of metabolomics analysis showed that differentially expressed metabolites were significantly enriched in lysine degradation and glycerophospholipid metabolism. In conclusion, our study demonstrates that dietary melatonin increased oxidative phosphorylation, improved glucose utilization, and promoted storage of glycogen and lipids in C. destructor. These lipids are used not only for energy storage but also to maintain the structure and function of cell membranes. Our results further add to the understanding of the mechanisms of energy regulation by melatonin in crustaceans.


Assuntos
Astacoidea , Melatonina , Humanos , Animais , Astacoidea/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Dieta , Metabolismo Energético , Glicogênio/metabolismo , Lipídeos
15.
EMBO Rep ; 24(12): e57440, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37885348

RESUMO

Embryogenesis is highly dependent on maternally loaded materials, particularly those used for energy production. Different environmental conditions and genetic backgrounds shape embryogenesis. The robustness of embryogenesis in response to extrinsic and intrinsic changes remains incompletely understood. By analyzing the levels of two major nutrients, glycogen and neutral lipids, we discovered stage-dependent usage of these two nutrients along with mitochondrial morphology changes during Caenorhabditis elegans embryogenesis. ATGL, the rate-limiting lipase in cellular lipolysis, is expressed and required in the hypodermis to regulate mitochondrial function and support embryogenesis. The embryonic lethality of atgl-1 mutants can be suppressed by reducing sinh-1/age-1-akt signaling, likely through modulating glucose metabolism to maintain sustainable glucose consumption. The embryonic lethality of atgl-1(xd314) is also affected by parental nutrition. Parental glucose and oleic acid supplements promote glycogen storage in atgl-1(xd314) embryos to compensate for the impaired lipolysis. The rescue by parental vitamin B12 supplement is likely through enhancing mitochondrial function in atgl-1 mutants. These findings reveal that metabolic plasticity contributes to the robustness of C. elegans embryogenesis.


Assuntos
Caenorhabditis elegans , Lipólise , Animais , Caenorhabditis elegans/metabolismo , Lipólise/genética , Lipase/genética , Glucose/metabolismo , Glicogênio/metabolismo
16.
Nutrients ; 15(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37892517

RESUMO

Hyperthermia accelerates dehydration and can lead to a glycolysis malfunction. Therefore, to deeply understand the relationship between dehydration and hyperthermia during exercise, as well as in the recovery time, there might be important factors to improve athletic performance. A systematic review was carried out in different databases using the words "hydration" OR "dehydration" AND "glycogen" OR "glycogenesis" OR "glycogenolysis" AND "muscle" OR "muscle metabolism" OR "cardiovascular system" and adding them to the "topic section" in Web of Science, to "Title/Abstract" in PubMed and to "Abstract" in SPORTDiscus. A total of 18 studies were included in the review and 13 in the meta-analysis. The free statistical software Jamovi was used to run the meta-analysis (version 1.6.15). A total sample of 158 people was included in the qualitative analysis, with a mean age of 23.5 years. Ten studies compared muscle glycogen content after hydration vs. remaining dehydrated (SMD -4.77 to 3.71, positive 80% of estimates, \hat{\mu} = 0.79 (95% CI: -0.54 to 2.12), z = 1.17, p = 0.24, Q-test (Q(9) = 66.38, p < 0.0001, tau2 = 4.14, I2 = 91.88%). Four studies examined the effect of temperature on postexercise muscle glycogen content (SMD -3.14 to -0.63, 100% of estimates being negative, \hat{\mu} = -1.52 (95% CI: -2.52 to -0.53), (z = -3.00, p = 0.003, Q-test (Q(3) = 8.40, p = 0.038, tau2 = 0.68, I2 = 66.81%). In conclusion, both hyperthermia and dehydration may contribute to elevated glycogenolysis during exercise and poor glycogen resynthesis during recovery. Although core and muscle hyperthermia are the key factors in glycogen impairments, they are also directly related to dehydration.


Assuntos
Glicogênio , Hipertermia Induzida , Humanos , Adulto Jovem , Adulto , Desidratação , Músculo Esquelético/fisiologia
17.
PLoS One ; 18(10): e0290562, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796906

RESUMO

Objectives were to determine the effects of supplementing increasing amounts of choline ion on hepatic composition and mRNA abundance in pregnant dry cows subjected to a fatty liver induction protocol. Holstein cows (35 primiparous and 41 multiparous) at mean (± standard deviation) of 211 ± 9.9 days of gestation were blocked by body condition (3.59 ± 0.33) and assigned to receive 0, 6.45, 12.90, 19.35, and 25.80 g/day of choline ion as rumen-protected choline (RPC) as a top-dress for 14 days. Cows were fed for ad libitum intake on days 1 to 5 and restricted to 30% of the required net energy for lactation from days 6 to 14 of the experiment. Hepatic tissue was sampled on days 5 and 14 and analyzed for concentrations of triacylglycerol and glycogen, and mRNA abundance was investigated. Orthogonal contrasts evaluated the effects of supplementing RPC (0 g/day vs. rest), and the linear, quadratic, and cubic effects of increasing intake of choline ion from 6.45 to 25.80 g/day. Results are depicted in sequence of treatments from 0 to 25.8. During feed restriction, RPC reduced the concentration of hepatic triacylglycerol by 28.5% and increased that of glycogen by 26.1%, and the effect of increasing RPC intake on triacylglycerol was linear (6.67 vs. 5.45 vs. 4.68 vs. 5.13 vs. 3.81 ± 0.92% wet-basis). Feeding RPC during feed restriction increased abundance of transcripts involved in choline metabolism (CHKA, PLD1), synthesis of apolipoprotein-B100 (APOB100), and antioxidant activity (GPX3), and decreased the abundance of transcripts involved in hepatic lipogenesis (DGAT2, SREBF1) and acute phase response (SAA3). Most effects were linear with amount of choline fed. Changes in hepatic mRNA abundance followed a pattern of reduced lipogenesis and enhanced lipids export, which help explain the reduced hepatic triacylglycerol content in cows fed RPC. Choline exerts lipotropic effects in dairy cows by altering transcript pathways linked to hepatic lipids metabolism.


Assuntos
Colina , Fígado Gorduroso , Gravidez , Feminino , Bovinos , Animais , Colina/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Rúmen/metabolismo , Leite/metabolismo , Fígado Gorduroso/metabolismo , Lactação/fisiologia , Fígado/metabolismo , Triglicerídeos/metabolismo , Glicogênio/metabolismo , RNA Mensageiro/metabolismo
18.
Environ Health Perspect ; 131(9): 97004, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37682722

RESUMO

BACKGROUND: Several epidemiological investigations demonstrated that maternal arsenic (As) exposure elevated risk of fetal growth restriction (FGR), but the mechanism remains unclear. OBJECTIVES: This study aimed to investigate the effects of gestational As exposure on placental and fetal development and its underlying mechanism. METHODS: Dams were exposed to 0.15, 1.5, and 15mg/L NaAsO2 throughout pregnancy via drinking water. Sizes of fetuses and placentas, placental histopathology, and glycogen content were measured. Placental RNA sequencing was conducted. Human trophoblasts were exposed to NaAsO2 (2µM) to establish an in vitro model of As exposure. The mRNA stability and protein level of genes identified through RNA sequencing were measured. N6-Methyladenosine (m6A) modification was detected by methylated RNA immunoprecipitation-quantitative real-time polymerase chain reason (qPCR). The binding ability of insulin-like growth factor 2 binding protein 2 to the gene of interest was detected by RNA-binding protein immunoprecipitation-qPCR. Intracellular S-adenosylmethionine (SAM) and methyltransferase activity were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and colorimetry, respectively. In vitro As+3 methyltransferase (As3MT) knockdown or SAM supplementation and in vivo folic acid (FA) supplementation were used to evaluate the protective effect. A case-control study verified the findings. RESULTS: Sizes of fetuses (exposed to 1.5 and 15mg/L NaAsO2) and placentas (exposed to 15mg/L NaAsO2) were lower in As-exposed mice. More glycogen+ trophoblasts accumulated and the expression of markers of interstitial invasion was lower in the 15mg/L NaAsO2-exposed mouse group in comparison with control. Placental RNA sequencing identified cysteine-rich angiogenic inducer 61 (Cyr61) as a candidate gene of interest. Mechanistically, mice and cells exposed to As had lower protein expression of CYR61, and this was attributed to a lower incidence of Cyr61 m6A. Furthermore, cells exposed to As had lower methyltransferase activity, suggesting that this could be the mechanism by which Cyr61 m6A was affected. Depletion of intracellular SAM, a cofactor for m6A methyltransferase catalytic domain, partially contributed to As-induced methyltransferase activity reduction. Either As3MT knockdown or SAM supplementation attenuated As-induced Cyr61 m6A down-regulation. In mice, FA supplementation rescued As-induced defective trophoblastic invasion and FGR. In humans, a negative correlation between maternal urinary As and plasma CYR61 was observed in infants who were small for gestational age. DISCUSSION: Using in vitro and in vivo models, we found that intracellular SAM depletion-mediated Cyr61 m6A down-regulation partially contributed to As-induced defective trophoblastic invasion and FGR. https://doi.org/10.1289/EHP12207.


Assuntos
Arsênio , Placenta , Gravidez , Lactente , Humanos , Feminino , Animais , Camundongos , Arsênio/toxicidade , Estudos de Casos e Controles , Cromatografia Líquida , Espectrometria de Massas em Tandem , Desenvolvimento Fetal , Glicogênio
19.
Parasit Vectors ; 16(1): 226, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415204

RESUMO

BACKGROUND: Iron is an essential element for cellular functions, such as energy metabolism. Trichomonas vaginalis, a human urogenital tract pathogen, is capable of surviving in the environment without sufficient iron supplementation. Pseudocysts (cyst-like structures) are an environmentally tolerated stage of this parasite while encountering undesired conditions, including iron deficiency. We previously demonstrated that iron deficiency induces more active glycolysis but a drastic downregulation of hydrogenosomal energy metabolic enzymes. Therefore, the metabolic direction of the end product of glycolysis is still controversial. METHODS: In the present work, we conducted an LC‒MS-based metabolomics analysis to obtain accurate insights into the enzymatic events of T. vaginalis under iron-depleted (ID) conditions. RESULTS: First, we showed the possible digestion of glycogen, cellulose polymerization, and accumulation of raffinose family oligosaccharides (RFOs). Second, a medium-chain fatty acid (MCFA), capric acid, was elevated, whereas most detected C18 fatty acids were reduced significantly. Third, amino acids were mostly reduced, especially alanine, glutamate, and serine. Thirty-three dipeptides showed significant accumulation in ID cells, which was probably associated with the decrease in amino acids. Our results indicated that glycogen was metabolized as the carbon source, and the structural component cellulose was synthesized at same time. The decrease in C18 fatty acids implied possible incorporation in the membranous compartment for pseudocyst formation. The decrease in amino acids accompanied by an increase in dipeptides implied incomplete proteolysis. These enzymatic reactions (alanine dehydrogenase, glutamate dehydrogenase, and threonine dehydratase) were likely involved in ammonia release. CONCLUSION: These findings highlighted the possible glycogen utilization, cellulose biosynthesis, and fatty acid incorporation in pseudocyst formation as well as NO precursor ammonia production induced by iron-depleted stress.


Assuntos
Cistos , Deficiências de Ferro , Trichomonas vaginalis , Humanos , Trichomonas vaginalis/metabolismo , Ferro/metabolismo , Amônia/metabolismo , Aminoácidos/metabolismo , Metabolômica , Glicogênio/metabolismo , Alanina/metabolismo , Celulose/metabolismo
20.
Discov Med ; 35(176): 275-282, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37272094

RESUMO

BACKGROUND: Asiaticoside is one of the main components of triterpenoid saponins extracted from Centella asiatica. Asiaticoside has shown the effects of wound healing, osteoclastogenesis, anti-inflammatory, anti-cancer, and improving cognition in multiple human disease models. However, studies on the antifatigue effects of asiaticoside have not been explored. Therefore, the aim of this study was to investigate the potential antifatigue effect and underlying mechanism of asiaticoside administration on exhaustive exercise performance. METHODS: Male Kunming mice were divided into four groups randomly (n = 20/group). Saline (10 mL/kg) was administered to the model control group and the other three experimental groups were fed with low (10 mg/kg), medium (20 mg/kg) and high (40 mg/kg) asiaticoside once/daily for 14 days. The antifatigue effect of asiaticoside on mice was estimated by analyzing changes in body weight, weight-loaded swimming time, rotating time, lactic acid, urea nitrogen, liver/muscle glycogen, serumal superoxide dismutase, superoxide dismutase and the liver tissues of hematoxylin and eosin (H&E) staining. RESULTS: The results indicated that no significant differences were observed in the body weight of each group (p > 0.05). Compared with the model control group, supplementation of asiaticoside significantly prolonged the weight-loaded swimming time and rotating time; Decreased the blood lactic acid (LA), blood urea nitrogen (BUN), and serumal malonaldehyde (MDA); And increased the content of liver/muscle glycogen and serumal superoxide dismutase levels (SOD) (p < 0.05). Furthermore, the pathological results of the liver were improved greatly. The maximal effect was observed in the medium group of 20 mg/kg. CONCLUSIONS: Asiaticoside is capable of reducing the fatigue effect by regulating energy consumption, energy metabolism and improving antioxidant activity after exercise. While there are still some shortcomings in this study, our findings provide a scientific basis for developing an asiaticoside-based antifatigue supplement.


Assuntos
Estresse Oxidativo , Triterpenos , Animais , Masculino , Camundongos , Peso Corporal , Glicogênio/metabolismo , Ácido Láctico , Superóxido Dismutase/metabolismo , Triterpenos/farmacologia , Triterpenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA