Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 728
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1266-1274, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621974

RESUMO

This paper investigates the intervention effect and mechanism of Banxia Xiexin Decoction(BXD) on colitis-associated colorectal cancer(CAC) infected with Fusobacterium nucleatum(Fn). C57BL/6 mice were randomly divided into a control group, Fn group, CAC group [azoxymethane(AOM)/dextran sulfate sodium salt(DSS)](AOM/DSS), model group, and BXD group. Except for the control and AOM/DSS groups, the mice in the other groups were orally administered with Fn suspension twice a week. The AOM/DSS group, model group, and BXD group were also injected with a single dose of 10 mg·kg~(-1) AOM combined with three cycles of 2.5% DSS taken intragastrically. The BXD group received oral administration of BXD starting from the second cycle until the end of the experiment. The general condition and weight changes of the mice were monitored during the experiment, and the disease activity index(DAI) was calculated. At the end of the experiment, the colon length and weight of the mice in each group were compared. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in the colon tissue. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of interleukin(IL)-2, IL-4, and IL-6 inflammatory factors in the serum. Immunohistochemistry(IHC) was used to detect the expression of Ki67, E-cadherin, and ß-catenin in the colon tissue. Western blot was used to detect the protein content of Wnt3a, ß-catenin, E-cadherin, annexin A1, cyclin D1, and glycogen synthase kinase-3ß(GSK-3ß) in the colon tissue. The results showed that compared with the control group, the Fn group had no significant lesions. The mice in the AOM/DSS group and model group had decreased body weight, increased DAI scores, significantly increased colon weight, and significantly shortened colon length, with more significant lesions in the model group. At the same time, the colon histology of the model group showed more severe adenomas, inflammatory infiltration, and cellular dysplasia. The levels of IL-4 and IL-6 in the serum were significantly increased, while the IL-2 content was significantly decreased. The IHC results showed low expression of E-cadherin and high expression of Ki67 and ß-catenin in the model group, with a decreased protein content of E-cadherin and GSK-3ß and an increased protein content of Wnt3a, ß-catenin, annexin A1, and cyclin D1. After intervention with BXD, the body weight of the mice increased; the DAI score decreased; the colon length increased, and the tumor decreased. The histopathology showed reduced tumor proliferation and reduced inflammatory infiltration. The levels of IL-6 and IL-4 in the serum were significantly decreased, while the IL-2 content was increased. Meanwhile, the expression of E-cadherin was upregulated, and that of Ki67 and ß-catenin was downregulated. The protein content of E-cadherin and GSK-3ß increased, while that of Wnt3a, ß-catenin, annexin A1, and cyclin D1 decreased. In conclusion, BXD can inhibit CAC infected with Fn, and its potential mechanism may be related to the inhibition of Fn binding to E-cadherin, the decrease in annexin A1 protein level, and the regulation of the Wnt/ß-catenin pathway.


Assuntos
Anexina A1 , Neoplasias Associadas a Colite , Colite , Medicamentos de Ervas Chinesas , Camundongos , Animais , Colite/complicações , Colite/tratamento farmacológico , Colite/genética , beta Catenina/genética , beta Catenina/metabolismo , Ciclina D1/metabolismo , Fusobacterium nucleatum/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Antígeno Ki-67/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Camundongos Endogâmicos C57BL , Caderinas/metabolismo , Peso Corporal , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Azoximetano
2.
J Nat Med ; 78(3): 599-607, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38662302

RESUMO

In this study, the effects of 3,5,7,3',4'-pentamethoxyflavone (KP1), a major bioactive ingredient isolated from the Kaempferia parviflora rhizomes, on a neurite outgrowth in Neuro2a cells and its mechanism have been investigated. KP1 increased concentration-dependently the percentage of neurite-bearing cells. KP1 showed a remarkable capability to elicit neurite outgrowth in Neuro2a cells, as evidenced by morphological alterations and immunostaining using anti-class III ß-tubulin and anti-NeuN antibodies. KP1 also displayed a higher neurogenic activity than retinoic acid (RA), a promoter of neurite outgrowth in Neuro2a cells. KP1 treatment caused significant elevation in phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK) and glycogen synthase kinase-3ß (GSK-3ß). However, KP1-triggered neurite outgrowth was markedly inhibited by treatment with the ERK inhibitor U0126, whereas p38 MAPK inhibitor SB203580 and GSK-3ß inhibitor SB216763 did not influence KP1-induced neurite outgrowth. These results demonstrate that KP1 elicits neurite outgrowth and triggers cell differentiation of Neuro2a cells through ERK signal pathway.


Assuntos
Sistema de Sinalização das MAP Quinases , Crescimento Neuronal , Animais , Crescimento Neuronal/efeitos dos fármacos , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Neuritos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Flavonoides/farmacologia , Flavonas/farmacologia , Flavonas/química , Linhagem Celular Tumoral , Glicogênio Sintase Quinase 3 beta/metabolismo , Linhagem Celular
3.
J Tradit Chin Med ; 44(2): 251-259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504531

RESUMO

OBJECTIVE: To investigate the synergistic effects of polyphyllin I (PPI) combined with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on the growth of osteosarcoma cells through downregulating the Wnt/ß-catenin signaling pathway. METHODS: Cell viability, apoptosis and cell cycle distribution were examined using cell counting kit-8 and flow cytometry assays. The morphology of cancer cells was observed with inverted phase contrast microscope. The migration and invasion abilities were examined by xCELLigence real time cell analysis DP system and transwell assays. The expressions of poly (adenosine diphosphate-ribose) polymerase, C-Myc, Cyclin B1, cyclin-dependent kinases 1, N-cadherin, Vimentin, Active-ß-catenin, ß-catenin, p-glycogen synthase kinase 3ß (GSK-3ß) and GSK-3ß were determined by Western blotting assay. RESULTS: PPI sensitized TRAIL-induced decrease of viability, migration and invasion, as well as increase of apoptosis and cell cycle arrest of MG-63 and U-2 OS osteosarcoma cells. The synergistic effect of PPI with TRAIL in inhibiting the growth of osteosarcoma cells was at least partially realized through the inactivation of Wnt/ß-catenin signaling pathway. CONCLUSION: The combination of PPI and TRAIL is potentially a novel treatment strategy of osteosarcoma.


Assuntos
Neoplasias Ósseas , Diosgenina/análogos & derivados , Osteossarcoma , Humanos , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Ligantes , Linhagem Celular Tumoral , Proliferação de Células , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Ciclo Celular , Apoptose , Fator de Necrose Tumoral alfa/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Movimento Celular
4.
Biochem Pharmacol ; 222: 116110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460908

RESUMO

This study investigates the anticancer activity and pharmacological mechanisms of Corynoxine (Cory) in non-small cell lung cancer (NSCLC). Cory, a natural product derived from the Chinese herbal medicine Uncaria rhynchophylla, demonstrates promising pharmacological activity. Cell proliferation and viability were evaluated via MTT and colony formation assays. Flow cytometry was employed to analyze cell apoptosis, cycle distribution, and mitochondrial membrane potential. Autophagy was detected using fluorescence microscopy and electron microscopy. Western blotting, protein overexpression, gene knockdown, co-immunoprecipitation, and bioinformatics characterized Cory's impact on signaling pathways. The research indicates that Cory inhibits the proliferation of NSCLC cells in vivo and in vitro. Cory enhances PP2A activity, inhibits the AKT/mTOR signaling pathway triggering autophagy, while suppressing the AKT/GSK3ß signaling pathway to induce cellular apoptosis in NSCLC. Notably, the activation of PP2A plays a crucial role in Cory's antitumor effects by inhibiting AKT. In vivo experiments validated Cory's efficacy in NSCLC treatment. These findings highlight the promising role of Cory as a lead compound for drug development in NSCLC therapy, providing a viable option for addressing this challenging disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Compostos de Espiro , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Proliferação de Células , Autofagia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38428624

RESUMO

Reduced blood flow (hypoxia) to the brain is thought to be the main cause of strokes because it deprives the brain of oxygen and nutrients. An increasing amount of evidence indicates that the Centella-Asiatica (HA-CA) hydroalcoholic extract has a variety of pharmacological benefits, such as antioxidant activity, neuroprotection, anti-inflammatory qualities, and angiogenesis promotion. Intermittent fasting (IF) has neurological benefits such as anti-inflammatory properties, neuroprotective effects, and the ability to enhance neuroplasticity. The current study evaluates the combined effect of IF (for 1, 6, and 12 days) along with HA-CA (daily up to 12 days) in adult zebrafish subjected to hypoxia every 5 min for 12 days followed by behavioral (novel tank and open-field tank test), biochemical (SOD, GSH-Px, and LPO), inflammatory (IL-10, IL-1ß, and TNF-α), mitochondrial enzyme activities (Complex-I, II, and IV), signaling molecules (AMPK, MAPK, GSK-3ß, Nrf2), and imaging/staining (H&E, TTC, and TEM) analysis. Results show that sub-acute hypoxia promotes the behavioral alterations, and production of radical species and alters the oxidative stress status in brain tissues of zebrafish, along with mitochondrial dysfunction, neuroinflammation, and alteration of signaling molecules. Nevertheless, HA-CA along with IF significantly ameliorates these defects in adult zebrafish as compared to their effects alone. Further, imaging analysis significantly provided evidence of infarct damage along with neuronal and mitochondrial damage which was significantly ameliorated by IF and HA-CA. The use of IF and HA-CA has been proven to enhance the physiological effects of hypoxia in all dimensions.


Assuntos
Centella , AVC Isquêmico , Triterpenos , Animais , Peixe-Zebra/metabolismo , Centella/química , Centella/metabolismo , Jejum Intermitente , Glicogênio Sintase Quinase 3 beta/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Extratos Vegetais/farmacologia , Anti-Inflamatórios/farmacologia , Hipóxia
6.
PLoS One ; 19(3): e0298529, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483863

RESUMO

Salidroside (SAL) is a phenol glycoside compound found in plants of the Rhodiola genus which has natural antioxidant and free radical scavenging properties. SAL are able to protect against manganese-induced ototoxicity. However, the molecular mechanism by which SAL reduces levels of reactive oxygen species (ROS) is unclear. Here, we established an in vitro gentamicin (GM) ototoxicity model to observe the protective effect of SAL on GM-induced hair cells (HC) damage. Cochlear explants of postnatal day 4 rats were obtained and randomly divided into six groups: two model groups (treatment with 0.2 mM or 0.4 mM GM for 24 h); two 400 µmol/L SAL-pretreated groups pretreatment with SAL for 3 h followed by GM treatment (0.2 mM or 0.4 mM) for 24 h; 400 µmol/L SAL group (treatment with SAL for 24 h); control group (normal cultured cochlear explants). The protective effects of SAL on GM-induced HC damage, and on mRNA and protein levels of antioxidant enzymes were observed. HC loss occurred after 24 h of GM treatment. Pretreatment with SAL significantly reduced GM-induced OHC loss. In cochlear tissues, mRNA and protein levels of NRF2 and HO-1 were enhanced in the GM alone group compared with the SAL pretreatment GM treatment group. SAL may protect against GM-induced ototoxicity by regulating the antioxidant defense system of cochlear tissues; SAL can activate NRF2/HO-1 signaling, inhibit NF-κB activation, activate AKT, and increase inhibitory phosphorylation of GSK3ß to decrease GSK3 activity, all of which exert antioxidant effects.


Assuntos
Gentamicinas , Glucosídeos , Ototoxicidade , Ratos , Animais , Gentamicinas/toxicidade , Gentamicinas/metabolismo , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Células Ciliadas Auditivas , Cóclea/metabolismo , Fenóis/farmacologia , Fenóis/metabolismo , RNA Mensageiro/metabolismo
7.
Phytochemistry ; 220: 114019, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346546

RESUMO

Seven undescribed sesquiterpenes, including three dimeric guaianolide sesquiterpenes artemongolides G-I (1-3) and four sesquiterpene lactones artemanomalide D-G (16-19), along with seventeen known compounds isoabsinthin (4), absinthin (5), 11-eptabsinthin (6), 11, 11'-bis-epiabsinthin (7), 10', 11'- epiabsinthin (8), anabsinthin (9), isoanabsinthin (10), absinthin D (11), anabsin (12), caruifolin D (13), gnapholide (14), caruifolin C (15), 1ß(R),10ß(S)-dihydroxy-3-oxo-11ß (S)H-4,11(13)-guaien-6α(S),12-olide (20), 1α,6α,8α-trihydroxy-5α,7ßH-guaia-3,10(14),11(13)-trien-12-oic acid (21), 1α,6α,8α-trihydroxy-5α,7ßH-guaia-3,9,11(13)-trien-12-oic acid (22), argyinolide J (23), artabsinolide A (24) were isolated from the plant Artemisia mongolica. The structures were determined by interpreting NMR, HRESIMS and ECD data. The X-ray crystal structure of 4, 7 and 8 were reported for the first time. In the anti-vitiligo activity test, compounds 2, 7, 12, 23 and 24 demonstrated activity in promoting melanogenesis at a concentration of 50 µM in B16 cells, with 8-methoxypsoralan (8-MOP) as a positive control. Further research on the mechanism revealed that artemongolides H (2) enhance the expression of MITF and TRPs by upregulating p-Akt and p-GSK-3ß, leading to an increase in ß-catenin content in the cell cytoplasm. Subsequently, ß-catenin translocates into the nucleus, resulting in melanogenesis. The results supported the regulation of melanogenesis by artemongolide H (2) through the Akt/GSK3ß/ß-catenin signaling pathway. The anti-inflammatory results demonstrated that compounds 4, 5, 6, 9 and 14 can inhibit the upregulation of IL-6 mRNA and CCL2 mRNA expression. Compound 12 specifically inhibited the upregulation of IL-6 mRNA expression. These compounds exhibited significant anti-inflammatory activities. The activity results revealed that these sesquiterpene compounds have the potential to become lead compounds for the treatment of vitiligo and inflammatory diseases.


Assuntos
Artemisia , Asteraceae , Sesquiterpenos , Artemisia/química , beta Catenina , Glicogênio Sintase Quinase 3 beta , Interleucina-6 , Proteínas Proto-Oncogênicas c-akt , Trientina , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos de Guaiano/farmacologia , Sesquiterpenos de Guaiano/química , Anti-Inflamatórios , RNA Mensageiro , Lactonas/farmacologia , Lactonas/química , Asteraceae/química , Estrutura Molecular
8.
Psychopharmacology (Berl) ; 241(5): 1027-1036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38289512

RESUMO

BACKGROUND: Jitai tablet, a traditional Chinese medicine, has a neuroprotective effect on 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mice. As one of the main active ingredients in the Jitai tablet, corydaline (Cory) has analgesic and anti-allergic effects, but it has not been studied in PD. Here, we investigated the role and mechanism of Cory in PD. METHODS: The PD model was induced by MPTP. Cell viability was measured by 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide assay. The Pole test and traction test were performed to detect the behaviors of mice. The expression of tyrosine hydroxylase (Th) was detected by immunohistochemistry and Western blot. Immunofluorescence staining, monodansylcadaverine staining, and Western blot were conducted to assess autophagy. A lactic dehydrogenase release assay was used to detect cytotoxicity. Network pharmacology was used to screen the targets. RESULTS: There existed cytotoxicity when the concentration of Cory reached 40 µg/mL. Cory (not exceeding 20 µg/mL) could alleviate MPTP-induced cell damage. In vivo experiments indicated that Cory could improve the motor coordination of mice with PD. Besides, Cory could increase LC3-II/LC3-I levels both in vivo and in vitro. In addition, the Th levels reduced in the striatum and middle brain tissues of Parkinson's mice were recovered by Cory injection. We also found that Cory decreased the phosphorylation of glucogen synthase kinase-3 beta (GSK-3ß) at Tyr216 and increased the phosphorylation of GSK-3ß at Ser9 not only in primary neurons and SH-SY5Y cells but also in the striatum and middle brain tissues. Furthermore, Cory increased LC3-II/LC3-I levels and decreased p62 levels by regulating GSK-3ß. CONCLUSION: Cory enhanced autophagy, attenuated MPTP-induced cytotoxicity, and alleviated PD partly through the regulation of GSK-3ß phosphorylation.


Assuntos
Alcaloides de Berberina , Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosforilação , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Tirosina 3-Mono-Oxigenase/metabolismo , Autofagia , Comprimidos/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Neurônios Dopaminérgicos
9.
Inflammopharmacology ; 32(2): 1091-1112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294617

RESUMO

Erigeron bonariensis is widely distributed throughout the world's tropics and subtropics. In folk medicine, E. bonariensis has historically been used to treat head and brain diseases. Alzheimer's disease (AD) is the most widespread form of dementia initiated via disturbances in brain function. Herein, the neuroprotective effect of the chemically characterized E. bonariensis ethanolic extract is reported for the first time in an AD animal model. Chemical profiling was conducted using UPLC-ESI-MS analysis. Female rats underwent ovariectomy (OVX) followed by 42 days of D-galactose (D-Gal) administration (150 mg/kg/day, i.p) to induce AD. The OVX/D-Gal-subjected rats received either donepezil (5 mg/kg/day) or E. bonariensis at 50, 100, and 200 mg/kg/day, given 1 h prior to D-Gal. UPLC-ESI-MS analysis identified 42 chemicals, including flavonoids, phenolic acids, terpenes, and nitrogenous constituents. Several metabolites, such as isoschaftoside, casticin, velutin, pantothenic acid, xanthurenic acid, C18-sphingosine, linoleamide, and erucamide, were reported herein for the first time in Erigeron genus. Treatment with E. bonariensis extract mitigated the cognitive decline in the Morris Water Maze test and the histopathological alterations in cortical and hippocampal tissues of OVX/D-Gal-subjected rats. Moreover, E. bonariensis extract mitigated OVX/D-Gal-induced Aß aggregation, Tau hyperphosphorylation, AChE activity, neuroinflammation (NF-κBp65, TNF-α, IL-1ß), and apoptosis (Cytc, BAX). Additionally, E. bonariensis extract ameliorated AD by increasing α7-nAChRs expression, down-regulating GSK-3ß and FOXO3a expression, and modulating Jak2/STAT3/NF-ĸB p65 and PI3K/AKT signaling cascades. These findings demonstrate the neuroprotective and memory-enhancing effects of E. bonariensis extract in the OVX/D-Gal rat model, highlighting its potential as a promising candidate for AD management.


Assuntos
Doença de Alzheimer , Erigeron , Fármacos Neuroprotetores , Ratos , Feminino , Animais , Ratos Wistar , Galactose/efeitos adversos , Cromatografia Líquida de Alta Pressão , Fosfatidilinositol 3-Quinases , Glicogênio Sintase Quinase 3 beta , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
10.
Adv Sci (Weinh) ; 11(13): e2307850, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240457

RESUMO

Kidney fibrosis is a common fate of chronic kidney diseases (CKDs), eventually leading to renal dysfunction. Yet, no effective treatment for this pathological process has been achieved. During the bioassay-guided chemical investigation of the medicinal plant Wikstroemia chamaedaphne, a daphne diterpenoid, daphnepedunin A (DA), is characterized as a promising anti-renal fibrotic lead. DA shows significant anti-kidney fibrosis effects in cultured renal fibroblasts and unilateral ureteral obstructed mice, being more potent than the clinical trial drug pirfenidone. Leveraging the thermal proteome profiling strategy, cell division cycle 42 (Cdc42) is identified as the direct target of DA. Mechanistically, DA targets to reduce Cdc42 activity and down-regulates its downstream phospho-protein kinase Cζ(p-PKCζ)/phospho-glycogen synthase kinase-3ß (p-GSK-3ß), thereby promoting ß-catenin Ser33/37/Thr41 phosphorylation and ubiquitin-dependent proteolysis to block classical pro-fibrotic ß-catenin signaling. These findings suggest that Cdc42 is a promising therapeutic target for kidney fibrosis, and highlight DA as a potent Cdc42 inhibitor for combating CKDs.


Assuntos
Diterpenos , Nefropatias , Proteína cdc42 de Ligação ao GTP , Animais , Camundongos , beta Catenina/efeitos dos fármacos , beta Catenina/metabolismo , Fibrose/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Rim/metabolismo , Nefropatias/tratamento farmacológico , Wikstroemia/química , Diterpenos/farmacologia , Proteína cdc42 de Ligação ao GTP/efeitos dos fármacos
11.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38289713

RESUMO

Bovine endometritis severely inhibits uterine repair and causes considerable economic loss. Besides, parturition-induced high cortisol levels inhibit immune function, reduce cell proliferation, and further inhibit tissue repair. Selenium (Se) is an essential trace element for animals to maintain normal physiological function and has powerful antioxidant functions. This study investigated whether Se supplementation reduces endometrial damage and promotes tissue repair in cows with endometritis under stress and explored the underlying mechanism. Primary bovine endometrial epithelial cells were isolated and purified from healthy cows. The cells were treated with different combinations of lipopolysaccharide (LPS), cortisol, and various concentrations of Se. Data showed that LPS stimulation inhibited cell proliferation and increased cell apoptosis. High levels of cortisol further exacerbated these effects. Flow cytometry, scratch wound healing tests, and 5-ethynyl-2'-deoxyuridine (EdU) proliferation assays showed that Se supplementation promoted cell cycle progression, cell migration, and cell proliferation in the presence of LPS and cortisol. The quantitative PCR results showed that the expression of related growth factors was increased after Se supplementation. After administering various inhibitors, we further demonstrated that Se supplementation decreased the activity of glycogen synthetase kinase 3ß (GSK-3ß) through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway to reduce the degradation of ß-catenin except the Wnt signal to promote cell proliferation. In conclusion, Se supplementation attenuated the cell damage induced by LPS at high cortisol levels and increased cell proliferation to promote uterine repair by elevating the mRNA expression of TGFB3 and VEGFA and activating the PI3K/AKT/GSK-3ß/ß-catenin signaling pathway.


After parturition, endometritis is a common bovine disease, which hinders endometrial repair and reduces bovine economic value. Besides, parturition-induced high cortisol levels cause immunosuppression, aggravate infection, and further inhibit cell proliferation and tissue repair. As an essential trace element, adding selenium to feed helps to maintain the normal physiological function of animals. This study developed a cellular model using lipopolysaccharide (LPS) and cortisol to simulate cows with endometritis in stress conditions. The results showed that Se supplementation attenuated bovine endometrial epithelial cell damage and promoted their proliferation in the presence of LPS and high cortisol levels, which are positively correlated with the concentration of Se. Besides, this study proved another molecular mechanism for Se to regulate ß-catenin except for the Wnt signal by affecting the ß-catenin degradation pathway.


Assuntos
Doenças dos Bovinos , Endometrite , Selênio , Feminino , Bovinos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Endometrite/induzido quimicamente , Endometrite/genética , Endometrite/veterinária , Lipopolissacarídeos/toxicidade , Hidrocortisona/metabolismo , Selênio/farmacologia , Selênio/metabolismo , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células , Células Epiteliais/metabolismo , Suplementos Nutricionais , Doenças dos Bovinos/genética
12.
Cell Commun Signal ; 22(1): 78, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291510

RESUMO

BACKGROUND: Renal fibrosis significantly contributes to the progressive loss of kidney function in chronic kidney disease (CKD), with alternatively activated M2 macrophages playing a crucial role in this progression. The serum succinate level is consistently elevated in individuals with diabetes and obesity, both of which are critical factors contributing to CKD. However, it remains unclear whether elevated succinate levels can mediate M2 polarization of macrophages and contribute to renal interstitial fibrosis. METHODS: Male C57/BL6 mice were administered water supplemented with 4% succinate for 12 weeks to assess its impact on renal interstitial fibrosis. Additionally, the significance of macrophages was confirmed in vivo by using clodronate liposomes to deplete them. Furthermore, we employed RAW 264.7 and NRK-49F cells to investigate the underlying molecular mechanisms. RESULTS: Succinate caused renal interstitial macrophage infiltration, activation of profibrotic M2 phenotype, upregulation of profibrotic factors, and interstitial fibrosis. Treatment of clodronate liposomes markedly depleted macrophages and prevented the succinate-induced increase in profibrotic factors and fibrosis. Mechanically, succinate promoted CTGF transcription via triggering SUCNR1-p-Akt/p-GSK3ß/ß-catenin signaling, which was inhibited by SUCNR1 siRNA. The knockdown of succinate receptor (SUCNR1) or pretreatment of anti-CTGF(connective tissue growth factor) antibody suppressed the stimulating effects of succinate on RAW 264.7 and NRK-49F cells. CONCLUSIONS: The causative effects of succinate on renal interstitial fibrosis were mediated by the activation of profibrotic M2 macrophages. Succinate-SUCNR1 played a role in activating p-Akt/p-GSK3ß/ß-catenin, CTGF expression, and facilitating crosstalk between macrophages and fibroblasts. Our findings suggest a promising strategy to prevent the progression of metabolic CKD by promoting the excretion of succinate in urine and/or using selective antagonists for SUCNR1.


Assuntos
Insuficiência Renal Crônica , beta Catenina , Masculino , Camundongos , Animais , beta Catenina/metabolismo , Ácido Succínico/metabolismo , Lipossomos/metabolismo , Ácido Clodrônico/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insuficiência Renal Crônica/metabolismo , Fibrose , Macrófagos/metabolismo
13.
Phytomedicine ; 124: 155296, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176276

RESUMO

BACKGROUND: Diabetes belongs to the most prevalent metabolic diseases worldwide, which is featured with insulin resistance, closely associated with obesity and urgently needs to be treated. Baicalin, belonging to natural flavonoids, has been reported to inhibit oxidative stress or inflammatoin. PURPOSE: This study investigated the properties of baicalin on modulating abnormal glucolipid metabolism, as well as the underlying in-vitro and in-vivo mechanisms. METHODS: Insulin-resistant (IR)-HepG2 cells were stimulated by dexamethasone (20 µM) and high glucose (50 mM) for 48 h and incubated with or without baicalin or metformin for another 16 h. Male C57BL/6 J mice were fed with a high-fat diet (HFD, 60 % kcal% fat) during the total 14 weeks. Obese mice were then administered with baicalin (50 and 100 mg/kg) or vehicle solution everyday through oral gavage during the last 4-week period. Moreover, baicalin metabolisms in vitro and in vivo were determined using UPLC/MS/MS to study its metabolism situation. RESULTS: Exposure to dexamethasone and high glucose damaged the abilities of glycogen synthesis and glucose uptake with elevated oxidative stress and increased generation levels of advanced glycation end-products (AGEs) in HepG2 cells. These impairments were basically reversed by baicalin treatment. Four-week oral administration with baicalin ameliorated hyperglycemia and dyslipidemia in HFD-induced obese and pre-diabetic mice. Downregulation of IRS/PI3K/Akt signaling pathway accomplished with reduced GLUT4 expression and enhanced GSK-3ß activity was observed in insulin resistant HepG2 cells as well as liver tissues from pre-diabetic mice; and such effect was prevented by baicalin. Moreover, baicalin and its matabolites were detected in IR-HepG2 cells and mouse plasma. CONCLUSION: The study illustrated that baicalin alleviated insulin resistance by activating insulin signaling pathways and inhibiting oxidative stress and AGEs production, revealing the potential of baicalin to be a therapeutic natural flavonoid against hepatic insulin and glucose-lipid metabolic disturbance in pre-diabetes accompanied with obesity.


Assuntos
Diabetes Mellitus Experimental , Resistência à Insulina , Estado Pré-Diabético , Masculino , Camundongos , Animais , Glucose/metabolismo , Insulina/metabolismo , Estado Pré-Diabético/tratamento farmacológico , Camundongos Obesos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Espectrometria de Massas em Tandem , Camundongos Endogâmicos C57BL , Flavonoides/uso terapêutico , Transdução de Sinais , Fígado , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Dexametasona/farmacologia , Dieta Hiperlipídica/efeitos adversos
14.
J Ethnopharmacol ; 324: 117781, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38253278

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The application of Cortex Mori (CM) in the treatment of diabetes mellitus (DM) has been extensively documented in traditional medicine. In recent years, the chemical composition of CM has been gradually unraveled, and its therapeutic mechanism in treating DM, diabetic nephropathy, diabetic cardiomyopathy, and other related conditions has been highlighted in successive reports. However, there is no systematic study on the treatment of DM based on the chemical composition of CM. AIM OF THE STUDY: This study was conducted to systematically explore the hypoglycemic activity mechanism of CM based on its chemical composition. METHODS: The material basis of Cortex Mori extract (CME) was investigated through qualitative analyses based on liquid chromatography-mass spectrometry (LC-MS). The possible acting mechanism was simulated using network pharmacology and validated in streptozotocin (STZ) + high fat diet (HFD)-induced diabetic rats and glucosamine-induced IR-HepG2 model with the assistance of molecular docking techniques. RESULTS: A total of 39 compounds were identified in CME by the LC-MS-based qualitative analysis. In diabetic rats, it was demonstrated that CME significantly ameliorated insulin resistance, blood lipid levels, and liver injury. The network pharmacology analysis predicted five major targets, including AKT1, PI3K, FoxO1, Gsk-3ß, and PPARγ. Additionally, three key compounds (resveratrol, protocatechuic acid, and kaempferol) were selected based on their predicted contributions. The experimental results revealed that CME, resveratrol, protocatechuic acid, and kaempferol could promote the expression of AKT1, PI3K, and PPARγ, while inhibiting the expression of FoxO1 and Gsk-3ß. The molecular docking results indicated a strong binding affinity between resveratrol/kaempferol and their respective targets. CONCLUSIONS: CME contains a substantial amount of prenylated flavonoids, which may be the focal point of research on the efficacy of CM in the treatment of DM. Besides, CME is effective in controlling blood glucose and insulin resistance, improving lipid levels, and mitigating liver injury in patients with DM. Relevant mechanisms may be associated with the activation of the PI3K/Akt pathway, the inhibition of the expression of FoxO1 and Gsk-3ß, and the enhancement of PPARγ activity. This study represents the first report on the role of CME in the treatment of DM through regulating PPARγ, FoxO1, and Gsk-3ß.


Assuntos
Diabetes Mellitus Experimental , Medicamentos de Ervas Chinesas , Hidroxibenzoatos , Resistência à Insulina , Ratos , Humanos , Animais , Glicogênio Sintase Quinase 3 beta , Quempferóis/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Simulação de Acoplamento Molecular , Resveratrol , Fosfatidilinositol 3-Quinases/metabolismo , PPAR gama , Lipídeos/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Medicamentos de Ervas Chinesas/farmacologia
15.
J Ethnopharmacol ; 324: 117747, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38218500

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill., also known as "African mango" or "bush mango", belonging to family Irvingiaceae, has been mostly used as food and traditional medicine for weight loss and to enhance the health. AIM OF THE STUDY: The overconsumption of high-fat and high-carbohydrate (HFHC) food induces oxidative stress, leading to neurological and cognitive dysfunction. Consequently, there is an immediate need for effective treatment. Hence, this study explored the efficacy of orlistat, metformin, and I. gabonensis seeds' total aqueous extract (IG SAE) in addressing HFHC-induced cognitive impairment by mitigating oxidative stress and their underlying mechanistic pathways. MATERIALS AND METHODS: Initially, the secondary metabolite profile of IG SAE is determined using high-performance liquid chromatography coupled with a mass detector (UHPLC/MS). The in vivo study involves two phases: an established model phase with control (10 rats on a standard diet) and HFHC diet group (50 rats) for 3 months. In the study phase, HFHC is divided into 5 groups. The first subgroup receives HFHC diet only, while the remaining groups each receive HFHC diet with either Orlistat, metformin, or IG SAE at doses of 100 mg/kg and 200 mg/kg, respectively, for 28 days. RESULTS: More than 150 phytoconstituents were characterized for the first holistic approach onto IG metabolome. Characterization of IG SAE revealed that tannins dominate metabolites in the plant. Total phenolics and flavonoids were estimated to standardize our extract (77.12 ± 7.09 µg Gallic acid equivalent/mg extract and 8.039 ± 0.53 µg Rutin equivalent/mg extract, respectively). Orlistat, metformin, and IG SAE successfully reduced the body weight, blood glucose level, lipid profile, oxidative stress and neurotransmitters levels leading to improved behavioral functions as well as histological alternation. Also, IG SAE halted inflammation, apoptosis, and endoplasmic reticulum stress, together with promoting autophagy, via modulation of PI3K/AKT/GSK-3ß/CREB, PERK/CHOP/Bcl-2 and AMPK/SIRT-1/m-TOR pathways. CONCLUSION: Metformin, orlistat, and IG SAE offer a promising multi-target therapy to mitigate HFHC diet-induced oxidative stress, addressing cognitive function. This involves diverse molecular mechanisms, particularly the modulation of inflammation, ER stress, and both PI3K/AKT/GSK-3ß/CREB and AMPK/SIRT-1/m-TOR pathways. Furthermore, the higher dose of IG SAE demonstrated effects comparable to orlistat and metformin across most studied parameters.


Assuntos
Disfunção Cognitiva , Mangifera , Metformina , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Orlistate , Serina-Treonina Quinases TOR/metabolismo , Sementes/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Inflamação , Metaboloma , Dieta
16.
J Ethnopharmacol ; 324: 117731, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38218505

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Oxalis corniculata (O. corniculata) is a member of Oxalidaceae family, widely distributed in Asia, Europe, America, and Africa, used extensively as food and its traditional folkloric uses include management of epilepsy, gastric disorders, and neurodegenerative diseases, together with its use in enhancing health. Numerous pharmacological benefits of O. corniculata are linked to its anti-inflammatory and antioxidant abilities. One of the most prevalent neurodegenerative disorders is Alzheimer's disease (AD) in which neuroinflammation and oxidative stress are its main pathogenic processes. AIM OF THE STUDY: Our research aimed to study the neuroprotective effect of the methanolic extract of Oxalis corniculata Linn. (O. corniculata ME), compared to selenium (Se) against AlCl3-induced AD. MATERIALS AND METHODS: Forty male albino rats were allocated into four groups (Gps). Gp I a control group, the rest of the animals received AlCl3 (Gp II-Gp IV). Rats in Gp III and IV were treated with Se and O. corniculata ME, respectively. RESULTS: The chemical profile of O. corniculata ME was studied using ultraperformance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry, allowing the tentative identification of sixty-six compounds, including organic acids, phenolics and others, cinnamic acid and its derivatives, fatty acids, and flavonoids. AlCl3 showed deterioration in short-term memory and brain histological pictures. Our findings showed that O. corniculata ME and selenium helped to combat oxidative stress produced by accumulation of AlCl3 in the brain and in prophylaxis against AD. Thus, Selenium (Se) and O. corniculata ME restored antioxidant defense, via enhancing Nrf2/HO-1 hub, hampered neuroinflammation, via TLR4/NF-κß/NLRP3, along with dampening apoptosis, Aß generation, tau hyperphosphorylation, BACE1, ApoE4 and LRP1 levels. Treatments also promoted autophagy and modulated Wnt 3/ß-catenin/GSK3ß cue. CONCLUSIONS: It was noted that O. corniculata ME showed a notable ameliorative effect compared to Se on Nrf2/HO-1, TLR4/NF-κß/NLRP3, APOE4/LRP1, Wnt 3/ß-catenin/GSK-3ß and PERK axes.


Assuntos
Doença de Alzheimer , Oxalidaceae , Selênio , Ratos , Masculino , Animais , Glicogênio Sintase Quinase 3 beta , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Oxalidaceae/química , Sinais (Psicologia) , Apolipoproteína E4 , Secretases da Proteína Precursora do Amiloide , Receptor 4 Toll-Like , Selênio/uso terapêutico , beta Catenina , Doenças Neuroinflamatórias , Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ácido Aspártico Endopeptidases/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
17.
J Biomol Struct Dyn ; 42(2): 559-570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37011015

RESUMO

The wound-healing process is accelerated by inhibiting proteins that decelerate the wound-healing pathway. One of the active proteins involved in enhancing healing at the nuclear level and in gene expression is catenin. Inhibition of Glycogen Synthase Kinase 3ß (GSK3 ß) phosphorylates and degrades catenin via the downstream Wnt signalling pathway, thereby stabilizing catenin. A medicated wound dressing transdermal patch designed with fusion of bio wastes, viz. physiologically clotted fibrin, fish scale collagen, and the ethanolic extract of Mangifera indica (L.) and spider web, was analysed against GSK3ß to enhance healing. In our earlier studies, the compounds present in the transdermal patch were identified using GC-MS analysis; 12 compounds exhibiting the wound healing mechanism were analyzed using PASS software and filtered out. From these 12 compounds, 6 compounds that possessed drug-likeness were screened by SwissADME and vNN-ADMET to dock against GSK3ß in the present work. The PyRx results confirmed the binding of the six ligands to the active site of the target protein. Though the remaining filtered ligands also exhibited inhibitory activity, Molecular dynamics simulation studies were carried out with 100 ns on a complex of 10,12 Tricosadiyonic acid, Nopyl acetate and 2 Methyl 4 Heptanol as they showed binding affinity of -6.2Kcal/mol, -5.7Kcal/mol and -5.1Kcal/mol respectively. The stability of the complex was validated using MD simulation parameters RMSD, RMSF, Rg, and Number of Hydrogen bonds. These results implied that the transdermal patch would be efficient in accelerating the wound healing process through the inactivation of GSK3ß.Communicated by Ramaswamy H. Sarma.


Assuntos
Quinase 3 da Glicogênio Sintase , Extratos Vegetais , Animais , Extratos Vegetais/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Adesivo Transdérmico , beta Catenina/metabolismo , Cicatrização , Via de Sinalização Wnt/fisiologia , Simulação de Acoplamento Molecular
18.
Environ Sci Pollut Res Int ; 31(1): 458-480, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38015391

RESUMO

Nonmedical use of modafinil (MOD) led to increased rates of overdose toxicity, road accidents, addiction, withdrawal, suicide, and mental illnesses. The current study aims to determine the probable MOD brain toxicity and elucidate the possible role of selenium (Se) in ameliorating the neurotoxicity in rat models. Fifty-four male Albino rats were randomly assigned into nine groups. The groups were G1 (control negative), G2 (Se0.1), G3 (Se0.2), G4 (MOD300), G5 (MOD600), G6 (Se0.1 + MOD300), G7 (Se0.2 + MOD300), G8 (Se0.1 + MOD600), and G9 (Se0.2 + MOD600). After finishing the experiment, blood and brain tissue were harvested for biochemical and histological investigation. Neurobehavior parameters were assessed. Tissue neurotransmitter levels and oxidative stress markers were assessed. Gene expression of PI3K/Akt/mTOR-GSK3B, orexin, and orexin receptor2 was measured by qRT-PCR. Histological and immunohistochemistry assessments, as well as molecular docking, were carried out. MOD-induced neurobehavioral toxicity exhibited by behavioral and cognitive function impairments, which are associated with decreased antioxidant activities, increased MDA levels, and decreases in neurotransmitter levels. Brain levels of mRNA expression of PI3K, Akt, and mTOR were decreased, while GS3K, orexin, and orexin receptors were significantly elevated. These disturbances were confirmed by histopathological brain changes with increased silver and Bax immunostaining and decreased crystal violet levels. MOD induced neurotoxic effects in a dose-dependent manner. Compared with the MOD groups, SE coadministration significantly attenuates MOD-induced toxic changes. Docking study shows the protective role of Se as an apoptosis inhibitor and inflammation inhibitor. In conclusion, Se could be used as a biologically effective antioxidant compound to protect from MOD neurobehavioral toxicity in Wistar rats by reversing behavioral alterations, inflammation, apoptosis, and oxidative injury.


Assuntos
Glicogênio Sintase Quinase 3 beta , Selênio , Humanos , Ratos , Masculino , Animais , Selênio/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antioxidantes/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Modafinila/farmacologia , Orexinas/metabolismo , Orexinas/farmacologia , Simulação de Acoplamento Molecular , Ratos Wistar , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Estresse Oxidativo , Inflamação , Apoptose , Neurotransmissores
19.
Phytother Res ; 38(4): 1735-1744, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37661763

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease. Senile plaques and intracellular neurofibrillary tangles are pathological hallmarks of AD. Recent studies have described the improved cognitive and neuroprotective functions of acteoside (AS). This study aimed to investigate whether the improved cognition of AS was mediated by Aß degradation and tau phosphorylation in APP/PS1 mice. The open field, Y maze, and novel object recognition tests were used to assess cognitive behavioral changes. We evaluated the levels of Aß40 and Aß42 in serum, cortex, and hippocampus, and Aß-related scavenging enzymes, phosphorylated GSK3ß and hyperphosphorylated tau in the cortex and hippocampus of APP/PS1 mice by western blotting. Our results revealed that AS treatment ameliorated anxious behaviors, spatial learning, and memory impairment in APP/PS1 mice and significantly reduced Aß deposition in their serum, cortex, and hippocampus. AS significantly increased Aß degradation, inhibited the hyperphosphorylation of tau, and significantly decreased the activity of GSK3ß, which is involved in tau phosphorylation. Altogether, these findings indicated that the beneficial effects of AS on AD-associated anxious behaviors and cognitive impairments could be attributed to promoting Aß degradation and inhibiting tau hyperphosphorylation, which might be partly mediated by GSK3ß.


Assuntos
Doença de Alzheimer , Glucosídeos , Polifenóis , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Camundongos Transgênicos , Proteínas tau/metabolismo
20.
Mol Neurobiol ; 61(2): 1100-1118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37682453

RESUMO

Neurodegenerative diseases constitute a major threat to human health and are usually accompanied by progressive structural and functional loss of neurons. Abnormalities in synaptic plasticity are involved in neurodegenerative disorders. Aberrant cell signaling cascades play a predominant role in the initiation, progress as well as in the severity of these ailments. Notch signaling is a pivotal role in the maintenance of neural stem cells and also participates in neurogenesis. PI3k/Akt cascade regulates different biological processes including cell proliferation, apoptosis, and metabolism. It regulates neurotoxicity and mediates the survival of neurons. Moreover, the activated BDNF/TrkB cascade is involved in promoting the transcription of genes responsible for cell survival and neurogenesis. Despite significant progress made in delineating the underlying pathological mechanisms involved and derangements in cellular metabolic promenades implicated in these diseases, satisfactory strategies for the clinical management of these ailments are yet to be achieved. Therefore, the molecules targeting these cell signaling cascades may emerge as useful leads in developing newer management strategies. Osthole is an important ingredient of traditional Chinese medicinal plants, often found in various plants of the Apiaceae family and has been observed to target these aforementioned mediators. Until now, no review has been aimed to discuss the possible molecular signaling cascades involved in osthole-mediated neuroprotection at one platform. The current review aimed to explore the interplay of various mediators and the modulation of the different molecular signaling cascades in osthole-mediated neuroprotection. This review could open new insights into research involving diseases of neuronal origin, especially the effect on neurodegeneration, neurogenesis, and synaptic plasticity. The articles gathered to compose the current review were extracted by using the PubMed, Scopus, Science Direct, and Web of Science databases. A methodical approach was used to integrate and discuss all published original reports describing the modulation of different mediators by osthole to confer neuroprotection at one platform to provide possible molecular pathways. Based on the inclusion and exclusion criteria, 32 articles were included in the systematic review. Moreover, literature evidence was also used to construct the biosynthetic pathway of osthole. The current review reveals that osthole promotes neurogenesis and neuronal functioning via stimulation of Notch, BDNF/Trk, and P13k/Akt signaling pathways. It upregulates the expression of various proteins, such as BDNF, TrkB, CREB, Nrf-2, P13k, and Akt. Activation of Wnt by osthole, in turn, regulates downstream GSK-1ß to inhibit tau phosphorylation and ß-catenin degradation to prevent neuronal apoptosis. The activation of Wnt and inhibition of oxidative stress, Aß, and GSK-3ß mediated ß-catenin degradation by osthole might also be involved in mediating the protection against neurodegenerative diseases. Furthermore, it also inhibits neuroinflammation by suppressing MAPK/NF-κB-mediated transcription of genes involved in the generation of inflammatory cytokines and NLRP-3 inflammasomes. This review delineates the various underlying signaling pathways involved in mediating the neuroprotective effect of osthole. Modulation of Notch, BDNF/Trk, MAPK/NF-κB, and P13k/Akt signaling pathways by osthole confers protection against neurodegenerative diseases. The preclinical effects of osthole suggest that it could be a valuable molecule in inspiring the development of new drugs for the management of neurodegenerative diseases and demands clinical studies to explore its potential. An effort has been made to unify the varied mechanisms and target sites involved in the neuroprotective effect of osthole. The comprehensive description of the molecular pathways in the present work reflects its originality and thoroughness. The reviewed literature findings may be extrapolated to suggest the role of othole as a "biological response modifier" which contributes to neuroprotection through kinase modulatory, immunomodulatory, and anti-oxidative activity, which is documented even at lower doses. The current review attempts to emphasize the gaps in the existing literature which can be explored in the future.


Assuntos
Cumarínicos , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , beta Catenina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , NF-kappa B/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA