Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.268
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Nat Med ; 78(3): 741-752, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573418

RESUMO

In this study, nine triterpene glycosides including seven previously undescribed compounds (1-7), were isolated from leaves of Cryptolepis buchananii R.Br. ex Roem. and Schult. using various chromatographic methods. The chemical structures of the compounds were elucidated to be 3-O-ß-D-glucopyranosyl-(1 → 6)-ß-D-glucopyranosyluncargenin C 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (1), 3-O-ß-D-glucopyranosyl-(1 → 2)-ß-D-glucopyranosyluncargenin C 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (2), 3-O-ß-D-glucopyranosyl-(1 → 2)-ß-D-glucopyranosyluncargenin C 28-O-ß-D-glucopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (3), 3-O-ß-D-glucopyranosyl-(1 → 2)-ß-D-glucopyranosylhederagenin 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (4), 3-O-ß-D-glucopyranosylarjunolic acid 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (5), 3-O-ß-D-glucopyranosyl-(1 → 2)-ß- D-glucopyranosyl-6ß,23-dihydroxyursolic acid 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (6), 3-O-ß-D-glucopyranosyl-6ß,23-dihydroxyursolic acid 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (7), asiatic acid 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (8), and 3-O-ß-D-glucopyranosylasiatic acid 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (9), through infrared, high-resolution electrospray ionization mass spectrometry, one- and two-dimensional nuclear magnetic resonance spectral analyses. The isolates inhibited nitric oxide production in lipopolysaccharide-activated RAW 264.7 cells, with half-maximal inhibitory concentration (IC50) values of 18.8-58.5 µM, compared to the positive control compound, dexamethasone, which exhibited an IC50 of 14.1 µM.


Assuntos
Glicosídeos , Óxido Nítrico , Folhas de Planta , Triterpenos , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/isolamento & purificação , Óxido Nítrico/metabolismo , Glicosídeos/química , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Camundongos , Animais , Estrutura Molecular , Folhas de Planta/química , Células RAW 264.7 , Extratos Vegetais/química , Extratos Vegetais/farmacologia
2.
J Nat Med ; 78(3): 709-721, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575838

RESUMO

Methanol extract of the Cnidium officinale Makino rhizome, which is used as a crude drug Cnidium Rhizome (Cnidii Rhizoma; "Senkyu" in Japanese) and is listed in the Japanese Pharmacopoeia XVIII, showed intracellular triglyceride metabolism-promoting activity in high glucose-pretreated HepG2 cells. Thirty-five constituents, including two new alkylphthalide glycosides, senkyunosides A (1) and B (2), and a neolignan with a new stereoisomeric structure (3), were isolated in the extract. Their stereostructures were elucidated based on chemical and spectroscopic evidence. Among the isolates, several alkylphthalides, (Z)-3-butylidene-7-methoxyphthalide (9) and senkyunolides G (10), H (14), and I (15), and a polyacetylene falcarindiol (26), were found to show significant activity without any cytotoxicity at 10 µM.


Assuntos
Benzofuranos , Cnidium , Rizoma , Triglicerídeos , Humanos , Rizoma/química , Células Hep G2 , Cnidium/química , Triglicerídeos/metabolismo , Benzofuranos/farmacologia , Benzofuranos/química , Benzofuranos/isolamento & purificação , Estrutura Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação
3.
J Ethnopharmacol ; 328: 118097, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38531432

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cistanche tubulosa (CT) is the dried fleshy stem with scaly leaves of Cistanche tubiflora (Schenk) Wight, which has the effects of tonifying the kidney-yang, benefiting the vital essence and blood, and moisturizing the intestines and laxatives. There are differences in the activity of CT before and after processing, but the mechanism of processing is not clear. AIM OF THE STUDY: The study aimed to compare the strength of action of CT before and after yellow-wine processing in the treatment of constipation and kidney yang deficiency and to identify the active ingredients responsible for the differences in activity before and after yellow-wine processing. MATERIALS AND METHODS: This study established the fingerprints of CT and PCT using HPLC to identify their shared components. Then efficacy of KYDS and FC were carried out to compare the differences between CT and PCT in terms of efficacy. Next, this study established the spectrum-effect relationship between the shared chemical components and the medical effects of CT and PCT using the gray correlation analysis and entropy methods. Ultimately, the activity of the analyzed chemical components was verified using the zebrafish model. RESULTS: CT was more effective than PCT in promoting intestinal peristalsis, regulating gastrointestinal hormone levels, and thus treating FC. PCT was more effective than CT in improving the level of hormone indexes of the hypothalamus-pituitary-target gland axis, replenishing blood, and enhancing immunity. Through the analysis of the spectrum-effect relationship, it was finally found that 5, 6, 12 (tubuloside A), and 13 (isoacteoside) might be more closely related to the activity of tonifying kidney yang, and peaks 9, 10, and 11 (acteoside) are more closely associated with the treatment of constipation, and peaks 3 (salidroside), 4, 1, 2 (geniposidic acid), and 8 (echinacoside) were associated with both kidney yang tonic and treatment of constipation. At the same time, an activity verification experiment showed that echinacoside, geniposidic acid, and salidroside were effective in the treatment of FC and KYDS, while acteoside was very effective in the treatment of FC, and tubuloside A was significant in supplementing the blood, which validated the spectrum-effect relationship analysis. CONCLUSION: This study proved that the raw CT had a better laxative effect, while the yellow-wine processed CT had a better kidney-yang tonic effect; moreover, spectrum-effect relationships were established to analyze the chemical components leading to changes in the activity of CT before and after yellow-wine processing.


Assuntos
Cistanche , Glucosídeos , Glucosídeos Iridoides , Fenóis , Polifenóis , Animais , Quimiometria , Peixe-Zebra , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Constipação Intestinal
4.
J Nat Med ; 78(3): 525-536, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38457082

RESUMO

Ipomoea muricata (L.) Jacq. seeds (Convolvulaceae) are used as a traditional laxative and carminative medicine. Muricatins XIV (1), XV (2), XVI (3), and XVII (4), were isolated from I. muricata seeds as four new resin glycosides, along with seven known compounds, three of which were isolated for the first time as natural products; their structures were determined using MS and NMR spectroscopy. Compounds 1-4 are macrolactones (jalapins); the sugar moieties of 1, 2, and 4 are partially acylated with 2S-methylbutyric acid, while that of 3 is esterified with 2S-methylbutyric and 2S-methyl-3S-hydroxybutyric acids. In addition, the antiviral activities of the seven compounds obtained in this study, together with five known compounds obtained in our previous study into resin glycosides from I. muricata seeds, were evaluated against herpes simplex virus type 1 (HSV-1); their cytotoxicities against HL-60 human promyelocytic leukemia cells were also investigated. All examined jalapins exhibited similar or slightly weaker anti-HSV-1 activities than acyclovir, the positive control; however, the glycosidic acid of 4 was inactive, while its methyl ester was weakly active. On the other hand, cytotoxicity testing against HL-60 cells showed similar results to those observed during anti-HSV-1 activity testing, with the exception that one jalapin was less active.


Assuntos
Antivirais , Glicosídeos , Ipomoea , Resinas Vegetais , Sementes , Ipomoea/química , Sementes/química , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Humanos , Resinas Vegetais/química , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Estrutura Molecular , Herpesvirus Humano 1/efeitos dos fármacos , Células HL-60 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Ressonância Magnética
5.
Phytomedicine ; 127: 155483, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432036

RESUMO

BACKGROUND: Genus Paeonia, which is the main source of Traditional Chinese Medicine (TCM) Paeoniae Radix Rubra (Chishao in Chinese), Paeoniae Radix Alba (Baishao in Chinese) and Moutan Cortex (Mudanpi in Chinese), is rich in active pharmaceutical ingredient such as monoterpenoid glycosides (MPGs). MPGs from Paeonia have extensive pharmacological effects, but the pharmacological effects and molecular mechanisms of MPGs has not been comprehensively reviewed. PURPOSE: MPGs compounds are one of the main chemical components of the genus Paeonia, with a wide variety of compounds and strong pharmacological activities, and the structure of the mother nucleus-pinane skeleton is similar to that of a cage. The purpose of this review is to summarize the pharmacological activity and mechanism of action of MPGs from 2012 to 2023, providing reference direction for the development and utilization of Paeonia resources and preclinical research. METHODS: Keywords and phrases are widely used in database searches, such as PubMed, Web of Science, Google Scholar and X-Mol to search for citations related to the new compounds, extensive pharmacological research and molecular mechanisms of MPGs compounds of genus Paeonia. RESULTS: Modern research confirms that MPGs are the main compounds in Paeonia that exert pharmacological effects. MPGs with extensive pharmacological characteristics are mainly concentrated in two categories: paeoniflorin derivatives and albiflflorin derivatives among MPGs, which contains 32 compounds. Among them, 5 components including paeoniflorin, albiflorin, oxypaeoniflorin, 6'-O-galloylpaeoniflorin and paeoniflorigenone have been extensively studied, while the other 28 components have only been confirmed to have a certain degree of anti-inflammatory and anticomplementary effects. Studies of pharmacological effects are widely involved in nervous system, endocrine system, digestive system, immune system, etc., and some studies have identified clear mechanisms. MPGs exert pharmacological activity through multilateral mechanisms, including anti-inflammatory, antioxidant, inhibition of cell apoptosis, regulation of brain gut axis, regulation of gut microbiota and downregulation of mitochondrial apoptosis, etc. CONCLUSION: This systematic review delved into the pharmacological effects and related molecular mechanisms of MPGs. However, there are still some compounds in MPGs whose pharmacological effects and pharmacological mechanisms have not been clarified. In addition, extensive clinical randomized trials are needed to verify the efficacy and dosage of MPGs.


Assuntos
Medicamentos de Ervas Chinesas , Glucosídeos , Paeonia , Glicosídeos/farmacologia , Paeonia/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Monoterpenos/farmacologia , Monoterpenos/química , Anti-Inflamatórios
6.
Phytomedicine ; 128: 155519, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492365

RESUMO

BACKGROUND: Depression is a common mental illness characterised by abnormal and depressed emotions. Total paeony glycoside (TPG) is a naturally active saponin extracted from the traditional Chinese medicine Radix Paeoniae rubra. However, the antidepressant and neuroinflammatory effects of TPG have not been thoroughly studied. PURPOSE: To study the therapeutic potential of TGP in depression caused by neuronal injury and neuroinflammation and to explore the mechanism of TGP and the relationship between the NLRP3 inflammasome, pyroptosis, and autophagy. STUDY DESIGN: A chronic unpredictable mild stress (CUMS)-induced depression model and a cell model of corticosterone (CORT)-induced hippocampal neuron injury were established to evaluate the therapeutic effects of TPG. METHODS: The composition of TPG was analysed using high-performance liquid chromatography and mass spectrometry. The effects of TPG and fluoxetine on depression-like behaviour, neuronal injury, neuroinflammation, pyroptosis, and mitochondrial autophagy in the mice models were evaluated. RESULTS: TGP alleviated depression-like behaviours in mice and inhibited hippocampal neuronal apoptosis. The secretion of inflammatory cytokines was significantly reduced in CORT-induced hippocampal neuron cells and in the serum of a mouse model of CUMS-induced depression. In addition, TGP treatment reduced the levels of NLRP3 family pyrin structural domains, including NLRP3, pro-caspase-1, caspase-1, and IL-1ß, and the pyroptosis related proteins such as GSDMD-N. Importantly, TPG attenuated mitochondrial dysfunction, promoted the clearance of damaged mitochondria, and the activation of mitochondrial autophagy, which reduced ROS accumulation and NLRP3 inflammasome activation. An in-depth study observed that the regulatory effect of TPG on autophagy was attenuated by the autophagy inhibitor 3-methyladenine (3-MA) in vitro and in vivo. However, administration of the caspase-1 inhibitor Belnacasan (VX-765) successfully inhibited pyroptosis and showed a synergistic therapeutic effect with TPG. CONCLUSION: These results indicate that TPG can repair neuronal damage by activating autophagy, restoring mitochondrial function, and reducing inflammation-mediated pyroptosis, thereby playing an important role in the alleviation of neuroinflammation and depression. This study suggests new potential drugs and treatment strategies for neuroinflammation-related diseases and depression.


Assuntos
Antidepressivos , Autofagia , Depressão , Modelos Animais de Doenças , Glicosídeos , Hipocampo , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Paeonia , Piroptose , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Autofagia/efeitos dos fármacos , Antidepressivos/farmacologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Camundongos , Masculino , Glicosídeos/farmacologia , Piroptose/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Depressão/tratamento farmacológico , Paeonia/química , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia
7.
Phytomedicine ; 128: 155433, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547621

RESUMO

BACKGROUND: Post-stroke depression (PSD) affects approximately one-third of stroke survivors, leading to adverse outcomes in rehabilitation, reduced quality of life, and increased mortality rates. Despite these implications, the underlying causes of PSD remain unclear, posing challenges for prevention and treatment. Echinacoside (ECH), a natural compound with known neuroprotective and antidepressant properties, holds significant therapeutic potential for PSD. However, the precise mechanism of its action remains unknown. PURPOSE: To unravel the specific mechanism through which ECH alleviates PSD by exploring the intricate interplay between ECH and Nrf2, as well as its impact on the BDNF/TrkB signaling axis. STUDY DESIGN AND METHODS: A rat PSD model was established though middle cerebral artery occlusion coupled with chronic unpredictable mild stress, followed by ECH treatment. The rats' depressive state was evaluated using the sucrose preference test and force swimming test. Brain damage was assessed through TTC staining, Nissl staining, and TUNEL assay. The multifaceted mechanism of ECH in PSD was investigated using immunofluorescence, immunohistochemistry, RT-qPCR, dual-luciferase assay, and western blotting. Additionally, the interaction between ECH and Nrf2 was explored through molecular docking and microscale thermophoresis. RESULTS: Our findings unveiled a novel facet of ECH action, demonstrating its unique ability to upregulate Nrf2 through acetylation within the hippocampus of PSD-affected rats (p < 0.05). Moreover, ECH showcased its distinctive potential by enhancing BDNF transcriptional activity, activating the BDNF/TrkB signaling axis, and orchestrating a comprehensive response against oxidative stress and apoptosis, thereby alleviating PSD symptoms in rats (p < 0.05). CONCLUSIONS: This study not only provides insights into the pivotal role of Nrf2 in mediating the BDNF/TrkB axis activation by ECH but also highlights the novelty of ECH's mechanism in addressing PSD. The elucidation of these unique aspects positions ECH as a groundbreaking candidate for further exploration and development in the realm of PSD intervention.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Glicosídeos , Fator 2 Relacionado a NF-E2 , Ratos Sprague-Dawley , Transdução de Sinais , Acidente Vascular Cerebral , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/etiologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Ratos , Glicosídeos/farmacologia , Acetilação , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Antidepressivos/farmacologia , Simulação de Acoplamento Molecular , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico
8.
J Ethnopharmacol ; 327: 117982, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38423411

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cynanchum otophyllum C.K.Schneid.PI.Wilson, commonly referred as ''Qingyangshen'' (QYS), is a traditional folk medicine from Yunnan, renowned for its efficacy in neurological and psychiatric disorders. Glycosides isolated from QYS have shown promise in alleviating epilepsy, however, mechanisms of action and specific molecular targets remain to be elucidated. AIM OF THE STUDY: The study aimed to evaluate the anticonvulsant effects of Qingyangshen glycosides M1 (M1), a C21 steroidal glycoside from QYS, on pentylenetetrazol (PTZ)-induced convulsions in zebrafish (Danio rerio), and its neuroprotective effect on Glutamate (Glu)-induced damage to PC12 cells, and importantly to identify its potential molecular targets. MATERIALS AND METHODS: To evaluate anticonvulsant activity of M1, 7 days-post-fertilization (7-dpf) animals were pretreated (by immersion) and then exposed to PTZ (10 mM) solution. Furthermore, Glu-induced PC12 cell damage was employed to investigate the neuroprotective and anti-apoptotic capacity. Cells were pretreated with various concentrations of M1 (0-10 µM) for 12 h and then co-treated with Glu (15 mM) for an additional 24 h. The cell viability, apoptosis rate and apoptosis-related proteins (p-PI3K, PI3K, Akt, p-Akt, CREB, p-CREB, BDNF, Bax and Bcl-2) were measured using CCK-8, annexin V/PI and Western blot assays. To model the expected interaction between M1 and candidate cannabinoid receptor type 1 (CB1R), ERK phosphorylation, molecular docking, and drug affinity responsive target stability (DARTS) techniques were employed. Finally, CB1R antagonist Rimonabant (Rim) was validated by co-administration in both zebrafish and cells to confirm the requirement of CB1R for M1 efficacy. RESULTS: At a concentration of 400 µM, M1 dramatically reversed PTZ-induced convulsive-like behaviors in zebrafish, as evidenced by a significant reduction in locomotor activity. In the context of Glu-induced cytotoxicity, M1 (10 µM) demonstrated a notable increase in cell viability and suppressed apoptosis through modulation of the Bax/Bcl-2 ratio and activation of the PI3K/Akt/CREB/BDNF signaling axis. These effects were facilitated through CB1R activation. In contrast, Rim dampened the beneficial activities of M1 as a cannabinoid agonist. CONCLUSIONS: These results demonstrated that M1 as a potential CB1R activator, exhibiting anticonvulsive effects in a PTZ-induced zebrafish model and neuroprotective properties via the PI3K/Akt/CREB/BDNF signaling axis in a Glu-induced PC12 cell injury model. Notably, the observed seizure relief attenuated by CB1R chemical antagonism.


Assuntos
Fármacos Neuroprotetores , Proteínas Proto-Oncogênicas c-akt , Humanos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Glicosídeos/química , Peixe-Zebra , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteína X Associada a bcl-2 , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Simulação de Acoplamento Molecular , China , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Proteínas Reguladoras de Apoptose , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Pentilenotetrazol/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
9.
Zhongguo Zhong Yao Za Zhi ; 49(2): 412-419, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403317

RESUMO

Thirteen compounds were isolated and identified from 70% ethanol extract of the roots of Gentiana macrophylla by multi-chromatographic methods, including microporous resin, silica gel, and C_(18) reversed-phase column chromatography, as well as HPLC as follows: macrophylloside G(1), macrophylloside D(2), 5-formyl-2,3-dihydroisocoumarin(3),(+)-medicarpin(4),(+)-syringaresinol(5), liquiritigenin(6),(3R)-sativanone(7),(3R)-3'-O-methylviolanone(8), 4,2',4'-trihydroxychalcone(9), latifolin(10), gentioxepine(11), 6α-hydroxycyclonerolidol(12), and ethyl linoleate(13). Compound 1 was a new benzopyran glycoside. Compounds 4, 6-10, 12, and 13 were isolated for the first time from Gentiana plants. Compounds 1 and 2 showed promising hepatoprotective activity against D-GalN-induced AML12 cell damage at the concentration of 10 µmol·L~(-1), and compound 2 exhibited more significant activity than silybin at the same concentration.


Assuntos
Glicosídeos Cardíacos , Éteres , Gentiana , Gentiana/química , Glicosídeos/farmacologia , Benzopiranos , Glucosídeos
10.
Aging (Albany NY) ; 16(3): 2141-2160, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38277193

RESUMO

Oligoasthenoteratozoospermia (OAT) decreases male fertility, seriously affecting the production of offspring. This study clarified the preventive impact of different moxibustion frequencies on OAT and selected the optimal frequency to elucidate the underlying mechanism. An OAT rat model was constructed by gavage of tripterygium glycosides (TGS) suspension. Daily moxibustion (DM) or alternate-day moxibustion (ADM) was administered on the day of TGS suspension administration. Finally, we selected DM for further study based on sperm quality and DNA fragmentation index, testicular and epididymal morphology, and reproductive hormone level results. Subsequently, the oxidative stress (OS) status was evaluated by observing the OS indices levels; malondialdehyde (MDA), 8-hydroxy-deoxyguanosine (8-OHdG), total antioxidant capacity (T-AOC), and total superoxide dismutase (T-SOD) in testicular tissue using colorimetry and enzyme-linked immunosorbent assay. Furthermore, heme oxygenase 1 (HO-1) and nuclear factor erythropoietin-2-related factor 2 (Nrf2) were evaluated using Western blotting. Immunohistochemistry was employed to locate and assess the expression of HO-1 and Nrf2 protein, while quantitative real-time polymerase chain reaction was utilized to detect their mRNA expression. MDA and 8-OHdG levels decreased following DM treatment, while T-SOD and T-AOC increased, suggesting that DM may prevent TGS-induced OAT in rats by decreasing OS in the testis. Furthermore, protein and mRNA expression of Nrf2 and HO-1 in the testis were elevated, indicating that DM may reduce OS by activating the signaling pathway of Nrf2/HO-1. Therefore, DM could prevent OAT in rats via the Nrf2/HO-1 pathway, thereby presenting a promising therapeutic approach against OAT.


Assuntos
Astenozoospermia , Infertilidade Masculina , Moxibustão , Oligospermia , Ratos , Masculino , Animais , Humanos , Heme Oxigenase-1/metabolismo , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Tripterygium/genética , Tripterygium/metabolismo , Oligospermia/induzido quimicamente , Glicosídeos/farmacologia , Astenozoospermia/induzido quimicamente , Astenozoospermia/terapia , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/prevenção & controle , Sementes , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo , RNA Mensageiro/metabolismo
11.
Phytochemistry ; 219: 113990, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219854

RESUMO

Ten undescribed cardiac glycosides, strasperosides A-J, together with twelve known analogues, were isolated from Streblus asper Lour. Their structures were elucidated on the basis of spectroscopic analysis, electronic circular dichroism data, and chemical methods. These cardiac glycosides showed diversity in steroid skeleton and sugar moiety. Strasperosides A and B are a pair of unusual stereoisomers featuring different orientation of the lactone motif. Ten cardiac glycosides demonstrated potent antiviral effects on HSV-1 in vitro with the IC50 values from 0.19 ± 0.08 to 1.03 ± 0.25 µM and the therapeutic indices from 66.61 ± 5.08 to 326.75 ± 11.75.


Assuntos
Glicosídeos Cardíacos , Moraceae , Glicosídeos Cardíacos/farmacologia , Glicosídeos Cardíacos/química , Extratos Vegetais/química , Moraceae/química , Antivirais/química , Glicosídeos/farmacologia
12.
J Ethnopharmacol ; 324: 117720, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38211823

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: During the regression of liver fibrosis, a decrease in hepatic stellate cells (HSCs) can occur through apoptosis or inactivation of activated HSCs (aHSCs). A new approach for antifibrotic therapy involves transforming hepatic myofibroblasts into a quiescent-like state. Lamiophlomis rotata (Benth.) Kudo (L. rotata), an orally available Tibetan herb, has traditionally been used to treat skin disease, jaundice, and rheumatism. In our previous study, we found that the total polyphenolic glycoside extract of L. rotata (TPLR) promotes apoptosis in aHSCs for the treatment of hepatic fibrosis. However, whether TPLR induces aHSCs to become inactivated HSCs (iHSCs) is unclear, and the underlying mechanism remains largely unknown. PURPOSE: This study aimed to examine the impact of TPLR on the phenotypes of hepatic stellate cells (HSCs) during the regression of liver fibrosis and explore the potential mechanism of action. METHODS: The effect of TPLR on the phenotypes of hepatic stellate cells (HSCs) was assessed using immunofluorescence (IF) staining, reverse transcription-polymerase chain reaction (RT-PCR), and Western blotting. Transcriptomic and proteomic methods were employed to identify the main signaling pathways involved. Based on the omics results, the likely mechanism of TPLR on the phenotypes of aHSCs was confirmed through overexpression and knockdown experiments in TGF-ß1-activated LX-2 cells. Using a CCl4-induced liver fibrosis mouse model, we evaluated the anti-hepatic fibrosis effect of TPLR and explored its potential mechanism based on omics findings. RESULTS: TPLR was found to induce the differentiation of aHSCs into iHSCs by significantly decreasing the protein expression of α-SMA and Desmin. Transcriptomic and proteomic analyses revealed that the AGE/RAGE signaling pathway plays a crucial role in the morphological transformation of HSCs following TPLR treatment. In vitro experiments using RAGE overexpression and knockdown demonstrated that the mechanism by which TPLR affects the phenotype of HSCs is closely associated with the RAGE/RAS/MAPK/NF-κB axis. In a model of liver fibrosis, TPLR obviously inhibited the generation of AGEs and alleviated liver tissue damage and fibrosis by downregulating RAGE and its downstream targets. CONCLUSION: The AGE/RAGE axis plays a pivotal role in the transformation of activated hepatic stellate cells (aHSCs) into inactivated hepatic stellate cells (iHSCs) following TPLR treatment, indicating the potential of TPLR as a therapeutic agent for the management of liver fibrosis.


Assuntos
Glicosídeos , Proteômica , Camundongos , Animais , Glicosídeos/farmacologia , Glicosídeos/metabolismo , Cirrose Hepática/metabolismo , Fígado , Perfilação da Expressão Gênica , Células Estreladas do Fígado , Fator de Crescimento Transformador beta1/metabolismo
13.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279268

RESUMO

Nymphoides peltata has been used as a medicinal herb in traditional medicines to treat strangury, polyuria, and swelling. The phytochemical investigation of the MeOH extract of N. peltata roots led to the isolation of three iridoid glycosides and three coumarin glycoside derivatives, which were characterized as menthiafolin (1), threoninosecologanin (2), callicoside C (3), and scopolin (4), as well as two undescribed peltatamarins A (5) and B (6). The chemical structures of the undescribed compounds were determined by analyzing their 1 dimensional (D) and 2D nuclear magnetic resonance (NMR) spectra and using high-resolution (HR)-electrospray ionization mass spectroscopy (ESI-MS), along with the chemical reaction of acid hydrolysis. The wound healing activities of the isolated compounds 1-6 were evaluated using a HaCaT cell scratch test. Among the isolates, scopolin (4) and peltatamarin A (5) promoted HaCaT cell migration over scratch wounds, and compound 5 was the most effective. Furthermore, compound 5 significantly promoted cell migration without adversely affecting cell proliferation, even when treated at a high dose (100 µM). Our results demonstrate that peltatamarin A (5), isolated from N. peltata roots, has the potential for wound healing effects.


Assuntos
Glicosídeos Cardíacos , Magnoliopsida , Plantas Medicinais , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos Iridoides/química , Cicatrização , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cumarínicos/farmacologia
14.
Chin J Integr Med ; 30(4): 330-338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212501

RESUMO

OBJECTIVE: To determine the possible protective effects of Jinghuosu, a dietary supplement (DS), on tripterygium glycosides (TG)-induced reproductive system injury in rats and its underlying mechanisms. METHODS: A reproductive damage model was established in rats by feeding of TGs. Twenty-eight male Sprague Dawley rats were randomly divided into 4 groups using a random number table (n=7 in each): control (C) group, model (M) group, DS group and L-carnitine (LC) group. Rats in M, DS and LC groups received 40 mg/kg TGs orally. Starting from the 5th week, after administration of TGs for 4 h every day, rats in DS and LC groups were administered with 2.7 g/kg DS and 0.21 g/kg LC, respectively, for protective treatment over the next 4 weeks. Rats in Group C continued to receive the control treatment. Hematoxylin-eosin staining was used for histopathological analysis of rat testicular tissues. Enzyme-linked immunosorbent assay was performed to measure alkaline phosphatase (ALP), lactate dehydrogenase, alcohol dehydrogenase, total antioxidant capacity (T-AOC), superoxide dismutase, glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) concentrations. Chemiluminescence assay was used to determine the serum testosterone content. Quantitative real-time PCR and Western blotting were conducted to analyze the expression of genes and proteins related to the testosterone synthesis pathway and the nuclear factor erythroid 2-related factor 2/heme oxygenase 1 antioxidant pathway. RESULTS: Oral administration of TGs induced significant increases in the testicular levels of zinc transporter 1 and MDA (P<0.05). On the other hand, sperm concentration, sperm motility, and serum testosterone, serum zinc, testicular zinc, Zrt-, Irt-like protein 1, ALP, luteinizing hormone (LH) receptor, steroidogenic acute regulatory protein, Cytochrome P450 family 11 subfamily A member 1, 3 ß -hydroxysteroid dehydrogenase 1 T-AOC, GSH-Px, nuclear factor erythroid 2-related factor 2, heme oxygenase-1 and NAD (P)H: quinone oxidoreductase 1 levels decreased following TGs exposure (P<0.05). All of these phenotypes were evidently reversed by DS (P<0.05). CONCLUSION: DS Jinghuosu protects against TG-induced reproductive system injury in rats, probably by improving zinc homeostasis, enhancing the testosterone synthesis and attenuating oxidative stress.


Assuntos
Antioxidantes , Tripterygium , Masculino , Ratos , Animais , Ratos Sprague-Dawley , Antioxidantes/farmacologia , Glicosídeos/farmacologia , Motilidade dos Espermatozoides , Testículo , Testosterona , Estresse Oxidativo , Suplementos Nutricionais , Zinco/farmacologia , Sementes
15.
Fitoterapia ; 173: 105808, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168567

RESUMO

Four new steroidal glycosides (1-4), including two steroidal saponins named lililancifoloside B and C (1-2), one pregnane glycoside named lililancifoloside D (3), and one C22-steroidal lactone glycoside named lililancifoloside E (4), together with five known ones (5-9), were isolated from the bulbs of Lilium lancifolium Thunb. By using spectroscopic analysis, including 1D, 2D NMR, and HR-ESI-MS, the structures of 1-4 were elucidated. All isolates were tested for their cytotoxic potential against the MCF-7, MDA-MB-231, HepG2, and A549 cell lines. Compound 6 distinguished out among them, IC50 values of 3.31, 5.23, 1.78, and 1.49 µM against the four cell lines, respectively. Other compounds such as compound 3, 5, and 9 have also shown specific cytotoxic activity. Next, studies showed that compound 6 might cause HepG2 cells to undergo a cell cycle arrest during the G2/M phase and apoptosis.


Assuntos
Lilium , Saponinas , Lilium/química , Estrutura Molecular , Glicosídeos/farmacologia , Glicosídeos/química , Saponinas/farmacologia , Extratos Vegetais/química
16.
J Ethnopharmacol ; 325: 117766, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38266949

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: A classic stroke formula is Buyang Huanwu Decoction (BYHWD), Glycosides are the pharmacological components found in BYHWD, which are utilized for the prevention and management of cerebral ischemia-reperfusion (CIR), as demonstrated in a previous study. Its neuroprotective properties are closely related to its ability to modulate inflammation, but its mechanism is as yet unclear. AIM OF THE STUDY: A research was undertaken to investigate the impact of glycosides on the inflammation of CIR through the PTEN-induced putative kinase-1 (PINK1)/Parkin mitophagy pathway. MATERIALS AND METHODS: Analyzing glycosides containing serum components was performed with ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Glycosides were applied to rat of Middle cerebral artery occlusion/reperfusion (MCAO/R) model and primary neural cell of Oxygen glucose deprivation/reperfusion (OGD/R) model. The neuroprotective effect and the regulation of mitophagy of glycosides were evaluated through neural damage and PINK1/Parkin mitophagy activation. Moreover, the assessment of the relationship between glycosides regulation of mitophagy and its anti-inflammatory effects subsequent to mitophagy blockade was conducted by examining neural damage, PINK1/Parkin mitophagy activation, and levels of pyroptosis. RESULTS: (1) It was observed that the administration of glycosides resulted in a decrease in neurological function scores, a reduction in cerebral infarction volume, an increase in mitochondrial autophagosome, and the maintenance of a high expression status of light chain 3 (LC3) II/LC3Ⅰ protein. Additionally, there was a significant inhibition of p62 protein expression and an enhancement of PINK1 and Parkin protein expression. Furthermore, it was found that the effect of glycosides at a dosage of 0.128 g · kg-1 was significantly superior to that of glycosides at a dosage of 0.064 g · kg-1. Notably, the neuroprotective effect and inhibition of pyroptosis protein of glycosides at a dosage of 0.128 g · kg-1 were attenuated when mitochondrial autophagy was blocked. (2) Glycosides repaired cellular morphological damage, enhanced cell survival, and reduced Lactate dehydrogenase (LDH) leakage, with glycosides (2.36 µg·mL-1 and 4.72 µg·mL-1) neuronal protection being the strongest. Glycosides (4.72 µg·mL-1) maintained LC3II/LC3Ⅰ protein high expression state, inhibited p62 protein expression, and promoted PINK1 and Parkin protein expression, which was stronger than glycosides (2.36 µg·mL-1). The blockade of mitophagy resulted in a reduction of neuroprotection and inhibition of pyroptosis protein exerted by glycosides. CONCLUSION: Glycosides demonstrate the ability to hinder inflammation through the activation of the PINK1/Parkin mitophagy pathway, thereby leading to subsequent neuroprotective effects on CIR.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Fármacos Neuroprotetores , Ratos , Animais , Mitofagia , Glicosídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Proteínas Quinases/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Reperfusão , Inflamação/tratamento farmacológico
17.
Bioorg Chem ; 143: 107030, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38091718

RESUMO

Here, we present an interesting, previously unreported method for fractionating a particular class of cannabinoids from the crude leaf extract of Cannabis sativa using HP-20 resins. In this study, we report a novel method of divergent synthesis of fractionated Cannabis sativa extract, which allows the generation of multiple cannabinoids C- and O-glycosides which react with the glycosyl donor 2,3,4,6-tetra-O-acetyl-d-mannosyl trichloroacetimidate (TAMTA) to create eight C- and O-ß-d-cannabinoids glycosides (COCG), which are separated by HPLC and whose structures are characterized by 1D, 2D NMR, and mass spectrometry. These glycosides exhibit improved anti-proliferative and anti-metastatic effects against numerous cancer cell lines in vitro and are more water-soluble and stable than their parent cannabinoids. The in vitro testing of the pure cannabinoids (1-4) and their C- & O-glycosides (1a-4a) and 1b-4b exhibited anti-proliferative and anti-metastatic activities against a panel of eight human cancer cell lines in contrast to their respective parent molecules. Different cancer cell lines' IC50 values varied significantly when their cell viability was compared. In addition to the others, compounds 2a, 3a, 4a, and 2b, 3b were highly potent, with IC50values ranging from 0.74 µM (3a) to 51.40 µM (4a).Although2a(1.42 µM) and3a(0.74 µM) exhibited lower IC50values in the MiaPaca-2 cell line than4a(2.58 µM). But, in addition to the comparable anti-clonogenic activity of4ain MiaPaca-2 and Panc-1 cells, it manifested remarkable anti-invasive activity than either 2a or 3a.In contrast to 2a, 2b, 3a, and 3b and their respective parent compounds,4ahad substantial anti-invasive/anti-metastatic capabilities and possessed anti-proliferative activity.The effects of 4a treatment on MiaPaca-2 and Panc-1 cells include a dose-dependent increase in the expression of E-cadherin and a significant decrease in the expression of Zeb-1, Vimentin, and Snail1. Our results demonstrate that divergent synthesis of fractionated Cannabis sativa extract is a feasible and efficient strategy to produce a library of novel cannabinoid glycosides with improved pharmacological properties and potential anticancer benefits.


Assuntos
Canabinoides , Cannabis , Neoplasias , Humanos , Canabinoides/farmacologia , Canabinoides/química , Canabinoides/metabolismo , Cannabis/química , Cannabis/metabolismo , Glicosídeos/farmacologia , Glicosídeos/metabolismo , Espectroscopia de Ressonância Magnética , Extratos Vegetais/química
18.
Biol Trace Elem Res ; 202(5): 2111-2123, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37612486

RESUMO

Tripterygium glycosides (TG) can seriously damage male reproductive function, and the reproductive system is difficult to restore after stopping the administration of TG in male rats. Zinc (Zn) is one of the most important trace elements in the human body and plays an important role in maintaining male fertility. The aim of this study was to investigate whether zinc supplementation could improve the testicular reproductive damage induced by TG toxicity in rats and to investigate its mechanism of action. The results showed that zinc sulfate (ZnSO4) could improve testicular tissue structure and semen parameters, promote testosterone synthesis, increase zinc-containing enzyme activity, increase zinc concentration in serum and testicular tissues, and maintain zinc homeostasis in male rats induced by TG toxicity. Zinc supplementation activated relevant signalling molecules in the KEAP1-NRF2/ARE pathway and alleviated TG-induced oxidative stress. Therefore, this study concluded that zinc supplementation could improve reproductive damage by regulating zinc homeostasis and the expression of genes related to oxidative stress.


Assuntos
Glicosídeos , Tripterygium , Humanos , Ratos , Masculino , Animais , Glicosídeos/farmacologia , Glicosídeos/química , Tripterygium/química , Proteína 1 Associada a ECH Semelhante a Kelch , Zinco/farmacologia , Fator 2 Relacionado a NF-E2/genética , Testículo , Estresse Oxidativo , Homeostase
19.
Fitoterapia ; 172: 105701, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37832877

RESUMO

In this study, eight new natural products were isolated from the leaves of Picrasma quassioides. Spectroscopic techniques were used for the elucidation of their planar structures. Their absolute configurations were elucidated on the basis of electron circular dichroism (ECD) techniques combined with the P/M helicity rule for the 2,3-dihydrobenzofuran chromophore, and saccharide hydrolysis. Cholinesterase inhibitors are often used as Alzheimer's disease inhibitors.Thus, acetylcholinesterase and butyrylcholinesterase inhibitory activity of these eight compounds were tested, and results showed that only compound 6 showed weakly acetylcholinesterase inhibitory activity. In particular, molecular docking was used to illustrate the bindings between compound 6 and the active sites of AChE.


Assuntos
Lignanas , Picrasma , Lignanas/farmacologia , Estrutura Molecular , Acetilcolinesterase , Picrasma/química , Butirilcolinesterase , Glicosídeos/farmacologia , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/farmacologia , Dicroísmo Circular
20.
Arch Pharm (Weinheim) ; 357(2): e2300438, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984852

RESUMO

Ifosfamide (IFOS) is a broad-spectrum chemotherapeutic agent that has been extensively used for breast cancer and other solid tumors. Unfortunately, its use is associated with toxicities of several organs. Stenocarpus sinuatus is an Australian tree belonging to the Proteaceae family. In the current study, the phytochemical constituents of S. sinuatus methanol leaf extract (SSLE) were assessed. In addition, the protective effect of SSLE against IFOS-induced nephrotoxicity and hepatotoxicity was evaluated. Rats were randomly divided into six groups: control, IFOS (50 mg/kg), IFOS + SSLE (100 mg/kg), IFOS + SSLE (200 mg/kg), IFOS + SSLE (400 mg/kg), and SSLE (400 mg/kg). Hepatoprotective and nephroprotective potency of SSLE was assessed using different biochemical parameters. The phytochemical investigation resulted in the isolation of four flavonoid glycosides (kaempferol 3-O-ß- d-glucopyranosyl-(1→2)-α- l-rhamnopyranoside, kaempferol 3-O-α-rhamnopyranoside, isorhamnetin 3-O-ß- d-glucopyranosyl-(1→2)-α- l-rhamnopyranoside, and quercetin 3-O-ß- d-glucopyranosyl-(1→2)-α- l-rhamnopyranoside) and a coumarin (scopoletin). This is the first report on the isolated compounds from the genus Stenocarpus. SSLE showed enhancement of kidney and liver functions and reduction of oxidative stress and inflammation. The histopathology of the investigated organs confirmed the protective effect of SSLE. In conclusion, SSLE is considered as a promising candidate that can be used in defense against the toxic effects of IFOS after further clinical trials.


Assuntos
Ifosfamida , Quempferóis , Ratos , Animais , Quempferóis/farmacologia , Ifosfamida/toxicidade , Relação Estrutura-Atividade , Austrália , Flavonoides/química , Glicosídeos/química , Glicosídeos/farmacologia , Extratos Vegetais/farmacologia , Metanol , Compostos Fitoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA