Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(1): 70-79, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403340

RESUMO

Flavonoid C-glycosides are a class of natural products that are widely involved in plant defense responses and have diverse pharmacological activities. They are also important active ingredients of Dendrobium huoshanense. Flavanone synthase Ⅱ has been proven to be a key enzyme in the synthesis pathway of flavonoid C-glycosides in plants, and their catalytic product 2-hydroxyflavanone is the precursor compound for the synthesis of various reported flavonoid C-glycosides. In this study, based on the reported amino acid sequence of flavanone synthase Ⅱ, a flavanone synthase Ⅱ gene(DhuFNSⅡ) was screened and verified from the constructed D. huoshanense genome localization database. Functional validation of the enzyme showed that it could in vitro catalyze naringenin and pinocembrin to produce apigenin and chrysin, respectively. The open reading frame(ORF) of DhuFNSⅡ was 1 644 bp in length, encoding 547 amino acids. Subcellular localization showed that the protein was localized on the endoplasmic reticulum. RT-qPCR results showed that DhuFNSⅡ had the highest expression in stems, followed by leaves and roots. The expression levels of DhuFNSⅡ and other target genes in various tissues of D. huoshanense were significantly up-regulated after four kinds of abiotic stresses commonly encountered in the growth process, but the extent of up-regulation varied among treatment groups, with drought and cold stress having more significant effects on gene expression levels. Through the identification and functional analysis of DhuFNSⅡ, this study is expected to contribute to the elucidation of the molecular mechanism of the formation of quality metabolites of D. huoshanense, flavonoid C-glycosides, and provide a reference for its quality formation and scientific cultivation.


Assuntos
Dendrobium , Flavanonas , Dendrobium/genética , Dendrobium/química , Flavanonas/metabolismo , Flavonoides , Clonagem Molecular , Glicosídeos/metabolismo
2.
Biosci Biotechnol Biochem ; 88(3): 270-275, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38169014

RESUMO

Secondary metabolites are specialized metabolic products synthesized by plants, insects, and bacteria, some of which exhibit significant physiological activities against other organisms. Plants containing bioactive secondary metabolites have been used in traditional medicine for centuries. In developed countries, one-fourth of medicines directly contain plant-derived compounds or indirectly contain them via semi-synthesis. These compounds have contributed considerably to the development of not only medicine but also molecular biology. Moreover, the biosynthesis of these physiologically active secondary metabolites has attracted substantial interest and has been extensively studied. However, in many cases, the degradation mechanisms of these secondary metabolites remain unclear. In this review, some unique microbial degradation pathways for lignans and C-glycosides are explored.


Assuntos
Bactérias , Fungos , Glicosídeos , Lignanas , Lignanas/metabolismo , Glicosídeos/metabolismo , Bactérias/metabolismo , Redes e Vias Metabólicas , Fungos/metabolismo
3.
J Ethnopharmacol ; 324: 117720, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38211823

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: During the regression of liver fibrosis, a decrease in hepatic stellate cells (HSCs) can occur through apoptosis or inactivation of activated HSCs (aHSCs). A new approach for antifibrotic therapy involves transforming hepatic myofibroblasts into a quiescent-like state. Lamiophlomis rotata (Benth.) Kudo (L. rotata), an orally available Tibetan herb, has traditionally been used to treat skin disease, jaundice, and rheumatism. In our previous study, we found that the total polyphenolic glycoside extract of L. rotata (TPLR) promotes apoptosis in aHSCs for the treatment of hepatic fibrosis. However, whether TPLR induces aHSCs to become inactivated HSCs (iHSCs) is unclear, and the underlying mechanism remains largely unknown. PURPOSE: This study aimed to examine the impact of TPLR on the phenotypes of hepatic stellate cells (HSCs) during the regression of liver fibrosis and explore the potential mechanism of action. METHODS: The effect of TPLR on the phenotypes of hepatic stellate cells (HSCs) was assessed using immunofluorescence (IF) staining, reverse transcription-polymerase chain reaction (RT-PCR), and Western blotting. Transcriptomic and proteomic methods were employed to identify the main signaling pathways involved. Based on the omics results, the likely mechanism of TPLR on the phenotypes of aHSCs was confirmed through overexpression and knockdown experiments in TGF-ß1-activated LX-2 cells. Using a CCl4-induced liver fibrosis mouse model, we evaluated the anti-hepatic fibrosis effect of TPLR and explored its potential mechanism based on omics findings. RESULTS: TPLR was found to induce the differentiation of aHSCs into iHSCs by significantly decreasing the protein expression of α-SMA and Desmin. Transcriptomic and proteomic analyses revealed that the AGE/RAGE signaling pathway plays a crucial role in the morphological transformation of HSCs following TPLR treatment. In vitro experiments using RAGE overexpression and knockdown demonstrated that the mechanism by which TPLR affects the phenotype of HSCs is closely associated with the RAGE/RAS/MAPK/NF-κB axis. In a model of liver fibrosis, TPLR obviously inhibited the generation of AGEs and alleviated liver tissue damage and fibrosis by downregulating RAGE and its downstream targets. CONCLUSION: The AGE/RAGE axis plays a pivotal role in the transformation of activated hepatic stellate cells (aHSCs) into inactivated hepatic stellate cells (iHSCs) following TPLR treatment, indicating the potential of TPLR as a therapeutic agent for the management of liver fibrosis.


Assuntos
Glicosídeos , Proteômica , Camundongos , Animais , Glicosídeos/farmacologia , Glicosídeos/metabolismo , Cirrose Hepática/metabolismo , Fígado , Perfilação da Expressão Gênica , Células Estreladas do Fígado , Fator de Crescimento Transformador beta1/metabolismo
4.
Bioorg Chem ; 143: 107030, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38091718

RESUMO

Here, we present an interesting, previously unreported method for fractionating a particular class of cannabinoids from the crude leaf extract of Cannabis sativa using HP-20 resins. In this study, we report a novel method of divergent synthesis of fractionated Cannabis sativa extract, which allows the generation of multiple cannabinoids C- and O-glycosides which react with the glycosyl donor 2,3,4,6-tetra-O-acetyl-d-mannosyl trichloroacetimidate (TAMTA) to create eight C- and O-ß-d-cannabinoids glycosides (COCG), which are separated by HPLC and whose structures are characterized by 1D, 2D NMR, and mass spectrometry. These glycosides exhibit improved anti-proliferative and anti-metastatic effects against numerous cancer cell lines in vitro and are more water-soluble and stable than their parent cannabinoids. The in vitro testing of the pure cannabinoids (1-4) and their C- & O-glycosides (1a-4a) and 1b-4b exhibited anti-proliferative and anti-metastatic activities against a panel of eight human cancer cell lines in contrast to their respective parent molecules. Different cancer cell lines' IC50 values varied significantly when their cell viability was compared. In addition to the others, compounds 2a, 3a, 4a, and 2b, 3b were highly potent, with IC50values ranging from 0.74 µM (3a) to 51.40 µM (4a).Although2a(1.42 µM) and3a(0.74 µM) exhibited lower IC50values in the MiaPaca-2 cell line than4a(2.58 µM). But, in addition to the comparable anti-clonogenic activity of4ain MiaPaca-2 and Panc-1 cells, it manifested remarkable anti-invasive activity than either 2a or 3a.In contrast to 2a, 2b, 3a, and 3b and their respective parent compounds,4ahad substantial anti-invasive/anti-metastatic capabilities and possessed anti-proliferative activity.The effects of 4a treatment on MiaPaca-2 and Panc-1 cells include a dose-dependent increase in the expression of E-cadherin and a significant decrease in the expression of Zeb-1, Vimentin, and Snail1. Our results demonstrate that divergent synthesis of fractionated Cannabis sativa extract is a feasible and efficient strategy to produce a library of novel cannabinoid glycosides with improved pharmacological properties and potential anticancer benefits.


Assuntos
Canabinoides , Cannabis , Neoplasias , Humanos , Canabinoides/farmacologia , Canabinoides/química , Canabinoides/metabolismo , Cannabis/química , Cannabis/metabolismo , Glicosídeos/farmacologia , Glicosídeos/metabolismo , Espectroscopia de Ressonância Magnética , Extratos Vegetais/química
5.
Food Chem ; 439: 138133, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064841

RESUMO

This study was the first to comprehensively investigate the metabolic mechanism of flavonoid glycosides (FGs) and their contribution to flavor evolution during white tea processing using quantitative descriptive analysis, metabolomics, dose-over-threshold factors and pseudo-first-order kinetics. A total of 223 flavonoids were identified. Total FGs decreased from 7.02 mg/g to 4.35 mg/g during processing, compared to fresh leaves. A total of 86 FGs had a significant impact on the flavor evolution and 9 key flavor FGs were identified. The FG biosynthesis pathway was inhibited during withering, while the degradation pathway was enhanced. This promoted the degradation of 9 key flavor FGs following pseudo-first-order kinetics during withering. The degradation of the FGs contributed to increase the taste acceptance of white tea from -4.18 to 1.32. These results demonstrated that water loss stress during withering induces the degradation of key flavor FGs, contributing to the formation of the unique flavor of white tea.


Assuntos
Camellia sinensis , Flavonoides , Flavonoides/análise , Glicosídeos/metabolismo , Camellia sinensis/metabolismo , Metabolômica/métodos , Chá/metabolismo
6.
BMC Plant Biol ; 23(1): 352, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415121

RESUMO

Stevia rebaudiana Bertoni is a valuable medicinal plant and an essential source of natural sweetener, steviol glycosides (SGs), with rebaudioside A (RA) being one of the main components of SGs. bHLH transcription factors play a crucial role in plant development and secondary metabolism. In this study, 159 SrbHLH genes were identified from the S. rebaudiana genome, and each gene was named based on its chromosome location. The SrbHLH proteins were then clustered into 18 subfamilies through phylogenetic analysis. The analysis of conserved motifs and gene structure further supported the classification of the SrbHLH family. Chromosomal location and gene duplication events of SrbHLH genes were also studied. Moreover, based on the RNA-Seq data of different tissues of S. rebaudiana, 28 SrbHLHs were co-expressed with structural genes involved in RA biosynthesis. The expression pattern of candidate SrbHLH genes were confirmed by qPCR. Finally, dual luciferase reporter assays (DLAs) and subcellular localization analysis verified SrbHLH22, SrbHLH111, SrbHLH126, SrbHLH142, and SrbHLH152 are critical regulators of RA biosynthesis. This study provides new insights into the function of SrbHLHs in regulating SGs biosynthesis and lays the foundation for future applications of SrbHLH genes in molecular breeding of S. rebaudiana.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Stevia/genética , Stevia/metabolismo , Fatores de Transcrição/genética , Filogenia , Diterpenos do Tipo Caurano/metabolismo , Folhas de Planta/metabolismo , Glicosídeos/metabolismo
7.
Plant Physiol Biochem ; 201: 107807, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37311291

RESUMO

Nanotechnology has recently been emerged as a transformative technology that offers efficient and sustainable options for nano-bio interface. There has been a considerable interest in exploring the factors affecting elicitation mechanism and nanomaterials have been emerged as strong elicitors in medicinal plants. Stevia rebaudiana is well-known bio-sweetener and the presence of zero calorie, steviol glycosides (SGs) in the leaves of S. rebaudiana have made it a desirable crop to be cultivated on large scale to obtain its higher yield and maximal content of high quality natural sweeteners. Besides, phenolics, flavonoids, and antioxidants are abundant in stevia which contribute to its medicinal importance. Currently, scientists are trying to increase the market value of stevia by the enhancement in production of its bioactive compounds. As such, various in vitro and cell culture strategies have been adopted. In stevia agronanotechnology, nanoparticles behave as elicitors for the triggering of its secondary metabolites, specifically rebaudioside A. This review article discusses the importance of S. rebaudiana and SGs, conventional approaches that have failed to increase the desired yield and quality of stevia, modern approaches that are currently being applied to obtain utmost benefits of SGs, and future needs of advanced technologies for further exploitation of this wonder of nature.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Stevia/metabolismo , Glucosídeos/metabolismo , Edulcorantes/metabolismo , Flavonoides/metabolismo , Diterpenos do Tipo Caurano/metabolismo , Folhas de Planta/metabolismo , Glicosídeos/metabolismo
8.
Molecules ; 28(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298768

RESUMO

In traditional oriental medicine, carrots (Daucus carota L.) are considered effective medicinal herbs; however, the use of D. carota leaves (DCL) as therapeutic agents has not been explored in depth. Therefore, we aimed to demonstrate the value of DCL, generally treated as waste while developing plants for wide industrial availability. Six flavone glycosides were isolated and identified from DCL, and their constituents were identified and quantitated using an NMR and HPLC/UV method, which was optimized and validated. The structure of chrysoeriol-7-rutinoside from DCL was elucidated for the first time. The method exhibited adequate relative standard deviation (<1.89%) and recovery (94.89-105.97%). The deglycosylation of DCL flavone glycosides by Viscozyme L and Pectinex was assessed. Upon converting the reaction contents to percentages, the luteolin, apigenin, and chrysoeriol groups showed values of 85.8, 33.1, and 88.7%, respectively. The enzyme-treated DCL had a higher inhibitory effect on TNF-α and IL-2 expression than that of the carrot roots or carrot leaves without enzyme treatments. These results highlight the importance of carrot leaves and could be used as baseline standardization data for commercial development.


Assuntos
Daucus carota , Flavonas , Glicosídeos/metabolismo , Daucus carota/química , Flavonas/análise , Folhas de Planta/química , Anti-Inflamatórios/metabolismo
9.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175675

RESUMO

The medicinal plant Cistanche deserticola Ma (Orobanchaceae) is a holoparasitic angiosperm that takes life-essential materials from Haloxylon ammodendron (C. A. Mey.) Bunge (Amaranthaceae) roots. Although many experiments have been conducted to improve the quality of C. deserticola, little attention has been paid to the host's influence on metabolite accumulation. In this study, transcriptomic and metabolomic analyses were performed to unveil the host's role in C. deserticola's metabolite accumulation, especially of phenylethanoid glycosides (PhGs). The results indicate that parasitism by C. deserticola causes significant changes in H. ammodendron roots in relation to metabolites and genes linked to phenylalanine metabolism, tryptophan metabolism and phenylpropanoid biosynthesis pathways, which provide precursors for PhGs. Correlation analysis of genes and metabolites further confirms that C. deserticola's parasitism affects PhG biosynthesis in H. ammodendron roots. Then we found specific upregulation of glycosyltransferases in haustoria which connect the parasites and hosts. It was shown that C. deserticola absorbs PhG precursors from the host and that glycosylation takes place in the haustorium. We mainly discuss how the host resists C. deserticola parasitism and how this medicinal parasite exploits its unfavorable position and takes advantage of host-derived metabolites. Our study highlights that the status of the host plant affects not only the production but also the quality of Cistanches Herba, which provides a practical direction for medicinal plant cultivation.


Assuntos
Cistanche , Plantas Medicinais , Cistanche/genética , Cistanche/metabolismo , Perfilação da Expressão Gênica , Glicosídeos/metabolismo , Transcriptoma , Plantas Medicinais/genética , Metaboloma
10.
PLoS One ; 18(4): e0285007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37104509

RESUMO

Floral chemical defence strategies remain under-investigated, despite the significance of flowers to plant fitness. We used cyanogenic glycosides (CNglycs)-constitutive secondary metabolites that deter herbivores by releasing hydrogen cyanide, but also play other metabolic roles-to ask whether more apparent floral tissues and those most important for fitness are more defended as predicted by optimal defence theories, and what fine-scale CNglyc localisation reveals about function(s)? Florets of eleven species from the Proteaceae family were dissected to quantitatively compare the distribution of CNglycs within flowers and investigate whether distributions vary with other floral/plant traits. CNglycs were identified and their localisation in florets was revealed by matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI-MSI). We identified extremely high CNglyc content in floral tissues of several species (>1% CN), highly tissue-specific CNglyc distributions within florets, and substantial interspecific differences in content distributions, not all consistent with optimal defence hypotheses. Four patterns of within-flower CNglyc allocation were identified: greater tissue-specific allocations to (1) anthers, (2) pedicel (and gynophore), (3) pollen presenter, and (4) a more even distribution among tissues with higher content in pistils. Allocation patterns were not correlated with other floral traits (e.g. colour) or taxonomic relatedness. MALDI-MSI identified differential localisation of two tyrosine-derived CNglycs, demonstrating the importance of visualising metabolite localisation, with the diglycoside proteacin in vascular tissues, and monoglycoside dhurrin across floral tissues. High CNglyc content, and diverse, specific within-flower localisations indicate allocations are adaptive, highlighting the importance of further research into the ecological and metabolic roles of floral CNglycs.


Assuntos
Proteaceae , Flores/metabolismo , Glicosídeos/metabolismo , Pólen , Plantas , Polinização
11.
Appl Microbiol Biotechnol ; 107(7-8): 2671-2688, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36864204

RESUMO

Recently, endorhizospheric microbiota is realized to be able to promote the secondary metabolism in medicinal plants, but the detailed metabolic regulation metabolisms and whether the promotion is influenced by environmental factors are unclear yet. Here, the major flavonoids and endophytic bacterial communities in various Glycyrrhiza uralensis Fisch. roots collected from seven distinct places in northwest China, as well as the edaphic conditions, were characterized and analyzed. It was found that the soil moisture and temperature might modulate the secondary metabolism in G. uralensis roots partially through some endophytes. One rationally isolated endophyte Rhizobium rhizolycopersici GUH21 was proved to promote the accumulation of isoliquiritin and glycyrrhizic acid significantly in roots of the potted G. uralensis under the relatively high-level watering and low temperature. Furthermore, we did the comparative transcriptome analysis of G. uralensis seedling roots in different treatments to investigate the detailed mechanisms of the environment-endophyte-plant interactions and found that the low temperature went hand in hand with the high-level watering to activate the aglycone biosynthesis in G. uralensis, while GUH21 and the high-level watering cooperatively promoted the in planta glucosyl unit production. Our study is of significance for the development of methods to rationally promote the medicinal plant quality. KEY POINTS: • Soil temperature and moisture related to isoliquiritin contents in Glycyrrhiza uralensis Fisch. • Soil temperature and moisture related to the hosts' endophytic bacterial community structures. • The causal relation among abiotic factors-endophytes-host was proved through the pot experiment.


Assuntos
Flavonas , Glycyrrhiza uralensis , Plantas Medicinais , Glycyrrhiza uralensis/química , Glycyrrhiza uralensis/metabolismo , Glycyrrhiza uralensis/microbiologia , Endófitos , Terpenos/metabolismo , Glicosídeos/metabolismo , Raízes de Plantas/microbiologia
12.
Food Chem ; 412: 135587, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36739726

RESUMO

Ochradenus baccatus Delile (Resedaceae) is a desert plant with edible fruits native to the Middle East. Few investigators have reported antibacterial, antiparasitic and anti-cancer activities of the plant. Herein we evaluated the cytotoxic activity of O. baccatus using four cell lines and a zebrafish embryo model. Additionally, liquid chromatography coupled with mass spectroscopy was performed to characterize the extract's main constituents. The highest cytotoxicity was observed against human cervical adenocarcinoma (HeLa), with CC50 of 39.1 µg/mL and a selectivity index (SI) of 7.23 (p < 0.01). Metabolic analysis of the extract resulted in the annotation of 57 metabolites, including fatty acids, flavonoids, glucosinolates, nitrile glycosides, in addition to organic acids. The extract showed an abundance of hydroxylated fatty acids (16 peaks). Further, 3 nitrile glycosides have been identified for the first time in Ochradenus sp., in addition to 2 glucosinolates. These identified phytochemicals may partially explain the cytotoxic activity of the extract. We propose O. baccatus as a possible safe food source for further utilization to partially contribute to the increasing food demand specially in Saharan countries.


Assuntos
Resedaceae , Animais , Humanos , Resedaceae/metabolismo , Glucosinolatos/metabolismo , Cromatografia Líquida de Alta Pressão , Peixe-Zebra/metabolismo , Plantas/metabolismo , Extratos Vegetais/química , Flavonoides/metabolismo , Glicosídeos/metabolismo
13.
Plant J ; 114(2): 371-389, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36775989

RESUMO

Arabinogalactan-proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high sugar content and are widely distributed in the plant kingdom. AGPs have long been suggested to play important roles in sexual plant reproduction. The synthesis of their complex carbohydrates is initiated by a family of hydroxyproline galactosyltransferase (Hyp-GALT) enzymes which add the first galactose to Hyp residues in the protein backbone. Eight Hyp-GALT enzymes have been identified so far, and in the present work a mutant affecting five of these enzymes (galt2galt5galt7galt8galt9) was analyzed regarding the reproductive process. The galt25789 mutant presented a low seed set, and reciprocal crosses indicated a significant female gametophytic contribution to this mutant phenotype. Mutant ovules revealed abnormal callose accumulation inside the embryo sac and integument defects at the micropylar region culminating in defects in pollen tube reception. In addition, immunolocalization and biochemical analyses allowed the detection of a reduction in the amount of glucuronic acid in mutant ovary AGPs. Dramatically low amounts of high-molecular-weight Hyp-O-glycosides obtained following size exclusion chromatography of base-hydrolyzed mutant AGPs compared to the wild type indicated the presence of underglycosylated AGPs in the galt25789 mutant, while the monosaccharide composition of these Hyp-O-glycosides displayed no significant changes compared to the wild-type Hyp-O-glycosides. The present work demonstrates the functional importance of the carbohydrate moieties of AGPs in ovule development and pollen-pistil interactions.


Assuntos
Arabidopsis , Arabidopsis/genética , Hidroxiprolina/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mucoproteínas/genética , Mucoproteínas/metabolismo , Flores/genética , Pólen/metabolismo , Glicosídeos/metabolismo
14.
Molecules ; 28(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36770956

RESUMO

Paeoniflorin is a glycoside compound found in Paeonia lactiflora Pall that is used in traditional herbal medicine and shows various protective effects on the cardio-cerebral vascular system. It has been reported that the pharmacological effects of paeoniflorin might be generated by its metabolites. However, the bioavailability of paeoniflorin by oral administration is low, which greatly limits its clinical application. In this paper, a paeoniflorin-converting enzyme gene (G6046, GenBank accession numbers: OP856858) from Cunninghamella blakesleeana (AS 3.970) was identified by comparative analysis between MS analysis and transcriptomics. The expression, purification, enzyme activity, and structure of the conversion products produced by this paeoniflorin-converting enzyme were studied. The optimal conditions for the enzymatic activity were found to be pH 9, 45 °C, resulting in a specific enzyme activity of 14.56 U/mg. The products were separated and purified by high-performance counter-current chromatography (HPCCC). Two main components were isolated and identified, 2-amino-2-p-hydroxymethyl-methyl alcohol-benzoate (tirs-benzoate) and 1-benzoyloxy-2,3-propanediol (1-benzoyloxypropane-2,3-diol), via UPLC-Q-TOF-MS and NMR. Additionally, paeoniflorin demonstrated the ability to metabolize into benzoic acid via G6046 enzyme, which might exert antidepressant effects through the blood-brain barrier into the brain.


Assuntos
Cunninghamella , Paeonia , Glucosídeos/metabolismo , Glicosídeos/metabolismo , Cunninghamella/metabolismo , Monoterpenos/química , Benzoatos/metabolismo , Paeonia/química
15.
Food Chem ; 410: 135396, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634561

RESUMO

High-performance liquid chromatography (HPLC), headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and ultra-high performance liquid chromatography-Q-Exactive HF-X mass spectrometer (UHPLC-Q-Exactive HF/MS) were carried out to reveal dynamic changes of volatile and non-volatile compounds during the withering process of black tea. A total of 118 volatile organic compounds (VOCs) and 648 metabolites were identified in fresh and withered tea-leaves, respectively. Among them, 47 VOCs (OAV > 1.0) for the aroma formation, and 46 characteristic metabolites (VIP > 1.50, p < 0.01) selected through orthonormal partial least squares-discriminant analysis, indicated the withering contribution during black tea processing. Overall, the withering promoted alcohols, aldehydes, phenols, heterocyclic oxygen, hydrocarbons and halogenated hydrocarbons through relevant hydrolyzation, decomposition, terpene synthesis, and O-methylation. The hydrolyzation, O-methylation, condensation and N-acylation of kaempferol glycosides, quercetin glycosides, ester catechins, and gallic acid generated the accumulation of methoxyl flavonoids and flavonoid glucosides, dihydrokaempferol, syringic acid, theaflavins, and N-acylated amino acids, respectively.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Chá/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Camellia sinensis/química , Odorantes/análise , Glicosídeos/metabolismo , Compostos Orgânicos Voláteis/análise , Microextração em Fase Sólida/métodos
16.
Planta Med ; 89(5): 516-525, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35439837

RESUMO

Eurya chinensis has been recorded as a folk medicine traditionally used for treatment of a variety of symptoms. However, the phytochemical and pharmacological investigations of this plant are still scarce. A novel phenolic glycoside named Euryachincoside (ECS) was isolated by chromatographic separation from E. chinensis, and its chemical structure was identified by analysis of HRMS and NMR data. Its anti-hepatic fibrosis effects were evaluated in both HSC-T6 (rat hepatic stellate cells) and carbon tetrachloride (CCl4)-induced mice with Silybin (SLB) as the positive control. In an in vitro study, ECS showed little cytotoxicity and inhibited transforming growth factor-beta (TGF-ß)-induced Collagen I (Col1) along with alpha-smooth muscle actin (α-SMA) expressions in HSC-T6. An in vivo study suggested ECS significantly ameliorated hepatic injury, secretions of inflammatory cytokines, and collagen depositions. Moreover, ECS markedly mediated Smad2/3, nuclear factor kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways both in vitro and vivo. These present findings confirmed that ECS is a novel phenolic glycoside from E. chinensis with promising curative effects on hepatic fibrosis, and its mechanisms may include decreasing extracellular matrix accumulation, reducing inflammation and attenuating free radicals via Smad2/3, NF-κB and Nrf2 signaling pathways, which may shed light on the exploration of more effective phenolic glycoside-based anti-fibrotic agents.


Assuntos
Glicosídeos , NF-kappa B , Ratos , Camundongos , Animais , NF-kappa B/metabolismo , Glicosídeos/farmacologia , Glicosídeos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Crescimento Transformador beta , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Fígado , Fator de Crescimento Transformador beta1/metabolismo , Tetracloreto de Carbono/efeitos adversos , Tetracloreto de Carbono/metabolismo , Colágeno/metabolismo , Células Estreladas do Fígado
17.
Food Chem ; 406: 135075, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36462363

RESUMO

Profilin family members are potential pan-allergens in foods, presenting public health hazards. However, studies on the allergenicity modification of profilin allergens are limited. Herein, quercetin and its glycosides (isoquercitrin and rutin) were applied to modify the allergenicity of a profilin allergen (Bra c p) from Brassica campestris bee pollen. Results showed that only quercetin can be closely covalently bound to Bra c p among the three, and the binding site was located at the Cys98 residue. After covalently conjunction, the relative content of α-helix structure in Bra c p was reduced by 40.05%, while random coil was increased by 42.89%; moreover, the Tyr and Phe residues in Bra c p were masked. These structural changes could alter the conformational antigenic epitopes of Bra c p, resulting in its allergenicity reduction. Our findings might provide a technical foundation for reducing the allergenicity of bee pollen and foods containing profilin family allergens.


Assuntos
Alérgenos , Pólen , Animais , Abelhas , Profilinas/metabolismo , Quercetina/metabolismo , Glicosídeos/metabolismo , Imunoglobulina E , Proteínas de Plantas/metabolismo
18.
Planta Med ; 89(1): 46-61, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35253147

RESUMO

The flavonoid constituents of Aesculus wilsonii, a source of the Chinese medicinal drug Suo Luo Zi, and their in vitro anti-inflammatory effects were investigated. Fifteen flavonoids, including aeswilflavonosides IA-IC (1:  - 3: ) and aeswilflavonosides IIA-IIE (4:  - 8: ), along with seven known derivatives were isolated from a seed extract. Their structures were elucidated by extensive spectroscopic methods, acid and alkaline hydrolysis, and calculated electronic circular dichroism spectra. Among them, compounds 3: and 7: possess a 5-[2-(carboxymethyl)-5-oxocyclopent-yl]pent-3-enylate or oleuropeoylate substituent, respectively, which are rarely reported in flavonoids. Compounds 2, 3, 7: , and 12:  - 15: were found to inhibit lipopolysaccharide-induced nitric oxide production in RAW 264.7 cell lines. In a mechanistic assay, the flavonoid glycosides 2, 3: , and 7: reduced the expressions of interleukin-6 and tumor necrosis factor-alpha induced by lipopolysaccharide. Further investigations suggest that 2: and 3: downregulated the protein expression of tumor necrosis factor-alpha and interleukin-6 by inhibiting the phosphorylation of p38. Compound 7: was found to reduce the production of inducible nitric oxide synthase, and the secretion of tumor necrosis factor-alpha and interleukin-6 through inhibiting nuclear factor kappa-light-chain-enhancer of activated B signaling pathway. Compounds 2, 3: , and 7: possessed moderate inhibitory activity on the expression of signal transducer and activator of transcription-3. Taken together, the data indicate that the flavonoid glycosides of A. wilsonii seeds exhibit nitric oxide release inhibitory activity through mitogen-activated protein kinase (p38), nuclear factor kappa-light-chain-enhancer of activated B, and signal transducer and activator of transcription-3 cross-talk signaling pathways.


Assuntos
Aesculus , NF-kappa B , NF-kappa B/metabolismo , Flavonoides/farmacologia , Aesculus/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Transdução de Sinais , Óxido Nítrico Sintase Tipo II/metabolismo , Glicosídeos/farmacologia , Glicosídeos/metabolismo
19.
Drug Chem Toxicol ; 46(4): 650-664, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35603506

RESUMO

We aimed to explore novel biomarkers involved in alterations of metabolism and gene expression related to the hepatotoxic effects of Tripterygium glycosides tablet (TGT) in rats. Rats were randomly divided into groups based on oral administration of TGTs for 6 weeks: control, low-dose (9.5 mg/kg), and high-dose (18.9 mg/kg). Serum samples and total liver RNA were subjected to metabonomic and transcriptomic analyses. Thirteen metabolites were significantly up-regulated by liver injury induced by Tripterygium glycosides. Five potential biomarkers were more sensitive than Alanine aminotransferase (ALT) for accurate and timely prediction of hepatic damage. The four metabolic pathways most obviously regulated by hepatotoxicity were D-glutamine and D-glutamate metabolism, alanine, aspartate and glutamate metabolism, ether lipid metabolism, and tryptophan metabolism. Transcriptomics revealed significant differences in 1792 mRNAs and 400 long non-coding (lnc) RNAs. Dysregulated lncRNAs in the TGT-induced hepatotoxicity group were associated with genes involved in amino acid metabolism using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Up-regulated expression of Ehhadh, Gpt, and Got1, and down-regulated expression of dopa decarboxylase (Ddc), Cyp1a2, Ido2, Aldh1b1, and asparagine synthetase (Asns) was validated by quantitative real-time PCR. This multiomics study has elucidated the relationship between amino metabolism and liver injury, revealing potential biomarkers.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Ratos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Tripterygium/química , Glicosídeos/toxicidade , Glicosídeos/metabolismo , Transcriptoma , Fígado , Comprimidos/metabolismo , Comprimidos/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Biomarcadores/metabolismo
20.
Plant Signal Behav ; 17(1): 2138041, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36317599

RESUMO

Ulmus parvifolia (U. parvifolia) is a Chinese medicine plant whose bark and leaves are used in the treatment of some diseases such as inflammation, diarrhea and fever. However, metabolic signatures of seeds have not been studied. The seeds and bark of U. parvifolia collected at the seed ripening stage were used for metabolite profiling analysis through the untargeted metabolomics approach. A total of 2,578 and 2,207 metabolites, while 503 and 132 unique metabolites were identified in seeds and bark, respectively. Additionally, 574 differential metabolites (DEMs) were detected in the two different organs of U. parvifolia, which were grouped into 52 classes. Most kinds of metabolites classed into prenol lipids class. The relative content of flavonoids class was the highest. DEMs contained some bioactive compounds (e.g., flavonoids, terpene glycosides, triterpenoids, sesquiterpenoids) with antioxidant, anti-inflammatory, and anti-cancer activities. Most kinds of flavonoids and sesquiterpenes were up-regulated in seeds. There were more varieties of terpene glycosides and triterpenoids showing up-regulated in bark. The pathway enrichment was performed, while flavonoid biosynthesis, flavone and flavonol biosynthesis were worthy of attention. This study identified DEMs with pharmaceutical value between seeds and bark during seed maturation and offered a molecular basis for alternative or complementary use of seeds and bark of U. parvifolia as a Chinese medicinal material.


Assuntos
Triterpenos , Ulmus , Ulmus/metabolismo , Casca de Planta/metabolismo , Medicina Tradicional Chinesa , Extratos Vegetais , Sementes/metabolismo , Flavonoides/metabolismo , Glicosídeos/metabolismo , Triterpenos/metabolismo , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA