Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 328: 118065, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38508432

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cornel iridoid glycosides (CIG) are extracted from Corni fructus, a herbal medicine used in traditional Chinese medicine to treat diabetes. However, the antidiabetic effects of CIG and the underlying metabolic mechanisms require further exploration. AIM OF THE STUDY: This study aimed to assess the antidiabetic effects and metabolic mechanism of CIG by performing metabolomic analyses of serum and urine samples of rats. MATERIALS AND METHODS: A rat model of type 2 diabetes mellitus (T2DM) was established by administering a low dose of streptozotocin (30 mg/kg) intraperitoneally after 4 weeks of feeding a high-fat diet. The model was evaluated based on several parameters, including fasting blood glucose (FBG), random blood glucose (RBG), urine volume, liver index, body weight, histopathological sections, and serum biochemical parameters. Subsequently, serum and urine metabolomics were analyzed using ultra-high-pressure liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS). Data were analyzed using unsupervised principal component analysis (PCA) and supervised orthogonal partial least squares discriminant analysis (OPLS-DA). Differential metabolites were examined by the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways to explore the underlying mechanisms. RESULTS: After 4 weeks of treatment with different doses of CIG, varying degrees of antidiabetic effects were observed, along with reduced liver and pancreatic injury, and improved oxidative stress levels. Compared with the T2DM group, 19 and 23 differential metabolites were detected in the serum and urine of the CIG treatment group, respectively. The key metabolites involved in pathway regulation include taurine, chenodeoxycholic acid, glycocholic acid, and L-tyrosine in the serum and glycine, hippuric acid, phenylacetylglycine, citric acid, and D-glucuronic acid in the urine, which are related to lipid, amino acid, energy, and carbohydrate metabolism. CONCLUSIONS: This study confirmed the antidiabetic effects of CIG and revealed that CIG effectively controlled metabolic disorders in T2DM rats. This seems to be meaningful for the clinical application of CIG, and can benefit further studies on CIG mechanism.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Ratos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glicosídeos Iridoides/farmacologia , Glicosídeos Iridoides/uso terapêutico , Glicemia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/análise , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/uso terapêutico , Metabolômica/métodos
2.
J Ethnopharmacol ; 326: 117934, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38387681

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The desiccative ripe fruits of Gardenia (Gardenia jasminoides Ellis) (called Zhizi in China) are known with cold character and the effects of reducing fire except vexed, clearing away heat evil, and cooling blood and eliminating stasis. Zhizi is often clinical formulated to treat various types of fever. Fever is a sign of inflammation and, geniposide from Zhizi has been proved with anti-inflammatory in various inflammatory models. AIM OF STUDY: The aim of this study was to investigate the antipyretic role of geniposide with three classical inflammatory fever models and explore the underlying mechanisms. MATERIALS AND METHODS: Water extract (WE), high polar part (HP), iridoid glycoside part (IG), and gardenia yellow pigment part (GYP) from Gardeniae Fructus (GF) were obtained from Zhizi. The antipyretic activities of these composes were tested with dry yeast induced fever rats. Geniposide was further purified from IG and the antipyretic activity was evaluated by gavage, intraperitoneal injection, and caudal intravenous injection to rats of fever induced by dry yeast, lipopolysaccharide (LPS), and 2, 4-dinitrophenol (DNP) in rats. Then, the mechanism of geniposide by intragastric administration was studied. The contents of thermoregulatory mediators and inflammatory factors relating to TLR4/NF-κB pathway in serum were determined by ELISA and Western blot, and the pathological changes of the hypothalamus were observed by HE staining. RESULTS: The temperature was decreased by geniposide in the three fever model rats. Geniposide can not only inhibit the increase of inflammatory factors in serum but also protect the hypothalamus from fever pathological damage in the three fever models. Western blot showed that geniposide could inhibit the TLR4/NF-κB pathway. CONCLUSION: Geniposide exerts antipyretic effect in febrile rats through modulating the TLR4/NF-κB signaling pathway.


Assuntos
Antipiréticos , Gardenia , Ratos , Animais , NF-kappa B/metabolismo , Antipiréticos/farmacologia , Antipiréticos/uso terapêutico , Receptor 4 Toll-Like , Frutas/metabolismo , Saccharomyces cerevisiae , Iridoides/farmacologia , Iridoides/uso terapêutico , Transdução de Sinais , Glicosídeos Iridoides/farmacologia
3.
Zhongguo Zhong Yao Za Zhi ; 49(2): 453-460, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403321

RESUMO

This study aimed to investigate the therapeutic effects of Morinda officinalis iridoid glycosides(MOIG) on paw edema and bone loss of rheumatoid arthritis(RA) rats, and analyze its potential mechanism based on ultra-high performance liguid chromatography-guadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS) serum metabolomics. RA rats were established by injecting bovin type Ⅱ collagen. The collagen-induced arthritis(CIA) rats were administered drug by gavage for 8 weeks, the arthritic score were used to evaluate the severity of paw edem, serum bone metabolism biochemical parameters were measured by ELISA kits, Masson staining was used to observe the bone microstructure of the femur in CIA rats. UPLC-Q-TOF-MS was used to analyze the alteration of serum metabolite of CIA rats, principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA) were used to screen the potential biomarkers, KEGG database analysis were used to construct related metabolic pathways. The results demonstrated that the arthritic score, serum levels of IL-6 and parameters related with bone metabolism including OCN, CTX-Ⅰ, DPD and TRAP were significantly increased, and the ratio of OPG and RANKL was significantly decreased, the microstructure of bone tissue and cartilage were destructed in CIA rats, while MOIG treatments could significantly reduce arthritis score, mitigate the paw edema, reverse the changes of serum biochemical indicators related with bone metabolism, and improve the microstructure of bone tissue and cartilage of CIA rats. The non-targeted metabolomics results showed that 24 altered metabolites were identified in serum of CIA rats; compared with normal group, 13 significantly altered metabolites related to RA were identified in serum of CIA rats, mainly involving alanine, aspartate and glutamate metabolism; compared with CIA model group, MOIG treatment reversed the alteration of 15 differential metabolites, mainly involving into alanine, aspartate and glutamate metabolism, D-glutamine and D-glutamate metabolism, taurine and hypotaurine metabolism, valine, leucine and isoleucine biosynthesis. Therefore, MOIG significantly alleviated paw edema, improved the destruction of microstructure of bone and cartilage in CIA rats maybe through involving into the regulation of amino acid metabolism.


Assuntos
Artrite Reumatoide , Morinda , Ratos , Animais , Glicosídeos Iridoides/química , Morinda/química , Cromatografia Líquida de Alta Pressão , Ácido Aspártico , Metabolômica , Artrite Reumatoide/tratamento farmacológico , Edema , Alanina/uso terapêutico , Glutamatos/uso terapêutico , Biomarcadores
4.
Molecules ; 29(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338449

RESUMO

Radix Rehmanniae (RR), a famous traditional Chinese medicine (TCM) widely employed in nourishing Yin and invigorating the kidney, has three common processing forms in clinical practice, including fresh Radix Rehmanniae (FRR), raw Radix Rehmanniae (RRR), and processed Radix Rehmanniae (PRR). However, until now, there has been less exploration of the dynamic variations in the characteristic constituents and degradation products of catalpol as a representative iridoid glycoside with the highest content in RR during the process from FRR to PRR. In this study, an ultra-performance liquid chromatography coupled with photodiode array detector (UPLC-PDA) method was successfully established for the simultaneous determination of ten characteristic components to explore their dynamic variations in different processed products of RR. Among them, iridoid glycosides, especially catalpol, exhibited a sharp decrease from RRR to PRR. Then, three degradation products of catalpol were detected under simulated processing conditions (100 °C, pH 4.8 acetate buffer solution), which were isolated and identified as jiofuraldehyde, cataldehyde, and norviburtinal, respectively. Cataldehyde was first reported as a new compound. Moreover, the specificity of norviburtinal in self-made PRR samples was discovered and validated, which was further confirmed by testing in commercially available PRR samples. In conclusion, our study revealed the decrease in iridoid glycosides and the production of new degradation substances during the process from FRR to PRR, which is critical for unveiling the processing mechanism of RR.


Assuntos
Medicamentos de Ervas Chinesas , Extratos Vegetais , Rehmannia , Terpenos , Glucosídeos Iridoides , Rehmannia/química , Glicosídeos Iridoides/química , Medicamentos de Ervas Chinesas/química
5.
J Ethnopharmacol ; 319(Pt 3): 117368, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38380570

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Nyctanthes arbor-tristis Linn. has been used by Ayruvedic physicians for the cure of different diseases including ulcers, gastric and inflammatory diseases. AIM OF THE STUDY: To isolate and identify compounds from this source and investigate their therapeutic potential for the treatment of gastric ulcer and related disorders. MATERIAL AND METHODS: The ethanol extract of fresh aerial parts of N. arbor-tristis was used in the present studies which was subjected to a bio-assay guided fractionation followed by chromatographic separations. The structures of pure compounds were elucidated using various spectroscopic techniques. The inhibition of urease enzyme was evaluated by weatherburn indophenol method. Molecular docking studies were determined by using Molecular Operating Environment (MOE) version 2020.0901 version. The intracellular ROS production from phagocytes was determined by chemiluminescence assay and NO generation was detected by Griess method. The proinflammatory cytokine TNF-α was quantified by ELISA. Cytotoxic activity was assessed by MTT assay. RESULTS: One previously undescribed iridoid glycoside arborside F (1) and four known iridoid glycosides arborside A (2), arborside C (3), loganin (4) and 7-O-trans-cinnamoyl-6ß-hydroxyloganin (5) were isolated and characterized in the present studies and their urease inhibitory activity was determined. Among these, 2 and 5 showed strong urease inhibition (IC50 = 12.1 ± 1.74 and 14.1 ± 0.59 µM respectively) (standard acetohydroxamic acid IC50 = 20.3 ± 0.42 µM), whereas rest of compounds showed moderate to low inhibition. Kinetic studies revealed that compounds 2 and 5 possess competitive type of inhibition. Molecular docking showed polar and non-polar interactions of compounds 2 and 5 with urease enzyme residues. Compounds 2 and 3 showed inhibition of ROS from whole blood (IC50 = 1.6 ± 0.3 and 2.5 ± 0.09 µg/mL respectively) and PMNs (IC50 = 1.5 ± 0.03 and 1.4 ± 0.0 µg/mL respectively). Compound 2 significantly inhibited nitric oxide and proinflammatory cytokine TNF-α (IC50 = 18.2 ± 3.0 and 73.8 ± 6.6 µg/mL respectively). Compounds 1, 4 and 5 were inactive on ROS. All isolated compounds were non-toxic on normal mouse fibroblasts (NIH-3T3) cells. CONCLUSIONS: The ethno pharmacological repute of N. arbor-tristis in treating gastric and anti-inflammatory ailments is supported by present studies which resulted in isolation of a potent urease inhibitory and anti-inflammatory agent arborside A (2) a potential anti-ulcer and anti-inflammatory drug lead.


Assuntos
Extratos Vegetais , Urease , Camundongos , Animais , Extratos Vegetais/uso terapêutico , Glicosídeos Iridoides/farmacologia , Cinética , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa , Anti-Inflamatórios/farmacologia
6.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279268

RESUMO

Nymphoides peltata has been used as a medicinal herb in traditional medicines to treat strangury, polyuria, and swelling. The phytochemical investigation of the MeOH extract of N. peltata roots led to the isolation of three iridoid glycosides and three coumarin glycoside derivatives, which were characterized as menthiafolin (1), threoninosecologanin (2), callicoside C (3), and scopolin (4), as well as two undescribed peltatamarins A (5) and B (6). The chemical structures of the undescribed compounds were determined by analyzing their 1 dimensional (D) and 2D nuclear magnetic resonance (NMR) spectra and using high-resolution (HR)-electrospray ionization mass spectroscopy (ESI-MS), along with the chemical reaction of acid hydrolysis. The wound healing activities of the isolated compounds 1-6 were evaluated using a HaCaT cell scratch test. Among the isolates, scopolin (4) and peltatamarin A (5) promoted HaCaT cell migration over scratch wounds, and compound 5 was the most effective. Furthermore, compound 5 significantly promoted cell migration without adversely affecting cell proliferation, even when treated at a high dose (100 µM). Our results demonstrate that peltatamarin A (5), isolated from N. peltata roots, has the potential for wound healing effects.


Assuntos
Glicosídeos Cardíacos , Magnoliopsida , Plantas Medicinais , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos Iridoides/química , Cicatrização , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cumarínicos/farmacologia
7.
Phytomedicine ; 123: 155237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056148

RESUMO

BACKGROUND: The prevention and treatment of ischaemic stroke is a worldwide challenge, and effective clinical treatment strategies are lacking. Studies have demonstrated the efficacy of Verbena officinalis in managing cerebrovascular disorders. However, the neuroprotective bioactive components and mechanisms remain unclear. PURPOSE: To investigate the pharmacological combinatorial components and mechanism underlying the anti-ischemic stroke effect of the ethanol extract of Verbena officinalis (VO Ex). STUDY DESIGN AND METHODS: The components of VO Ex were identified by HPLC. A middle cerebral artery occlusion (MCAO) induced brain injury model was used to assess the therapeutic effect of VO Ex. The activity of the chemical components of VO Ex was evaluated using a primary astrocyte injury model induced by oxygen-glucose deprivation/reperfusion (OGD/R). RNA sequencing was used to reveal the potential targets of VO Ex against cerebral ischemia-reperfusion injury (CIRI), and the results were verified by qRT-PCR and western blotting. The key components and target binding ability were predicted by molecular docking. Finally, the mechanism of combinatorial components was verified by experiments. RESULTS: The HPLC results indicated that the main ingredients of VO Ex were hastatoside, verbenalin, acteoside, luteolin, apigenin and hispidulin. In vivo experiments showed that VO Ex improved MCAO-induced acute cerebral ischemic injury. Transcriptomic data and biological experiments suggested that VO Ex exerted therapeutic effects through IL17A signalling pathways. The in vitro experiments indicated that verbenalin, acteoside, luteolin, apigenin and hispidulin exhibited neuroprotective activities. The novel formula of VALAH, derived from the aforementioned active ingredients, exhibited superior efficacy compared to each individual component. Molecular docking and mechanistic studies have confirmed that VALAH functions in the treatment of ischaemic stroke by suppressing the activation of the IL17A signalling pathway. CONCLUSION: This work is the first to reveal that VO Ex effectively inhibits the IL17A signaling pathway and mitigates neuroinflammation following ischemic stroke. Moreover, we identified the novel formula VALAH as the bioactive combinatorial components for VO Ex. Further research suggests that the activity of VALAH is associated with IL17A-mediated regulation of neuroinflammation. This finding provides new insights into the efficacious components and mechanisms of traditional Chinese medicine.


Assuntos
Isquemia Encefálica , Glucosídeos , Glicosídeos Iridoides , AVC Isquêmico , Polifenóis , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Verbena , Humanos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Doenças Neuroinflamatórias , Apigenina , Luteolina/uso terapêutico , Simulação de Acoplamento Molecular , AVC Isquêmico/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Interleucina-17
8.
Food Chem ; 439: 138049, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134568

RESUMO

Since Tang dynasty in China, the fresh leaves of Vaccinium bracteatum (VBL) have been applied as natural pigment to produce black rice. However, detailed information on its biosynthetic mechanism still remained unclear. Following rice dyeing capacity assay, vaccinoside, one of iridoid glycosides, was identified as the key active compound. Increased methodical research demonstrated vaccinoside as a distinct bifunctional precursor, which could be catalyzed by polyphenol oxidase or ß-glucosidase independently, followed by reaction with 15 amino acids to give blue pigments (VBPs; λmax 581-590 nm) of different hues. Two synthetic pathways of VBPs were proposed, using multiple techniques such as HPLC, HPSEC, UV-Vis spectrum and colorimeter as analysis tools. Black rice was interpreted to be prepared by cooking, using vaccinoside, intrinsic enzymes from fresh VBL and rice protein in combination. These findings promote the understanding of VBP formation mechanisms and provide an efficient method of producing novel Vaccinium blue pigments.


Assuntos
Vaccinium myrtillus , Vaccinium , Vaccinium/química , Vaccinium myrtillus/química , Extratos Vegetais/química , Glicosídeos Iridoides , China
9.
Molecules ; 28(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138489

RESUMO

Fresh Rehmanniae Radix, as well as its processed products, are widely used in the clinical practice of traditional Chinese medicine. It is mainly available in four forms: fresh Rehmanniae Radix, raw Rehmanniae Radix, prepared Rehmanniae Radix, and nine-steamed, nine-dried Rehmanniae Radix. Pharmacological studies have shown that all Rehmanniae Radix forms contain iridoid glycosides and sugar compounds with various effects, including hypoglycemic, anti-inflammatory, neuroprotective, immunological enhancement, and bone marrow hematopoiesis-promoting activities. Differences in the efficacy among these Rehmanniae Radix forms and their processed products have been attributed to variations in their chemical compositions, particularly in iridoid glycosides and sugar compounds; however, the specific compositional differences in glycosides and sugars among the four forms of Rehmanniae Radix have not been clarified. Therefore, this study aims to qualitatively characterize the iridoid glycosides and sugar compounds in fresh Rehmanniae Radix, raw Rehmanniae Radix, prepared Rehmanniae Radix, and nine-steamed, nine-dried Rehmanniae Radix.


Assuntos
Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/química , Açúcares , Extratos Vegetais/química , Carboidratos , Glicosídeos Iridoides
10.
Molecules ; 28(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37959800

RESUMO

Traditional Chinese medicine (TCM) possesses unique advantages in the management of blood glucose and lipids. However, there is still a significant gap in the exploration of its pharmacologically active components. Integrated strategies encompassing deep-learning prediction models and active validation based on absorbable ingredients can greatly improve the identification rate and screening efficiency in TCM. In this study, the affinity prediction of 11,549 compounds from the traditional Chinese medicine system's pharmacology database (TCMSP) with dipeptidyl peptidase-IV (DPP-IV) based on a deep-learning model was firstly conducted. With the results, Gardenia jasminoides Ellis (GJE), a food medicine with homologous properties, was selected as a model drug. The absorbed components of GJE were subsequently identified through in vivo intestinal perfusion and oral administration. As a result, a total of 38 prototypical absorbed components of GJE were identified. These components were analyzed to determine their absorption patterns after intestinal, hepatic, and systemic metabolism. Virtual docking and DPP-IV enzyme activity experiments were further conducted to validate the inhibitory effects and potential binding sites of the common constituents of deep learning and sequential metabolism. The results showed a significant DPP-IV inhibitory activity (IC50 53 ± 0.63 µg/mL) of the iridoid glycosides' potent fractions, which is a novel finding. Genipin 1-gentiobioside was screened as a promising new DPP-IV inhibitor in GJE. These findings highlight the potential of this innovative approach for the rapid screening of active ingredients in TCM and provide insights into the molecular mechanisms underlying the anti-diabetic activity of GJE.


Assuntos
Aprendizado Profundo , Inibidores da Dipeptidil Peptidase IV , Gardenia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Gardenia/química , Glicosídeos Iridoides/química , Dipeptidil Peptidases e Tripeptidil Peptidases , Dipeptidil Peptidase 4 , Simulação de Acoplamento Molecular
11.
Fitoterapia ; 171: 105705, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852389

RESUMO

Seven new secoiridoid glycosides (1-7), together with a known analogue (8), were isolated from the fruits of Ligustrum lucidum. Their structures with absolute configurations were determined by HR-ESI-MS, 1D and 2D NMR, and electronic circular dichroism (ECD) spectroscopic analysis, as well as biogenetic consideration. Compounds 1 and 2 are the first examples of secoiridoid glycoside dimers featuring a rare rearranged oleoside-type secoiridoid moiety, and compounds 3-7 represent a new class of oleoside-type secoiridoid glycosides with unusual stereochemistry at C-1 position. A plausible biosynthetic pathway for this group of unusual secoiridoid glycosides was also proposed herein. In addition, the isolates were evaluated for their in vitro anti-inflammatory activity, and all tested compounds exhibited modest inhibitory effects against nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophages.


Assuntos
Glicosídeos Iridoides , Ligustrum , Glicosídeos Iridoides/farmacologia , Glicosídeos Iridoides/química , Ligustrum/química , Estrutura Molecular , Frutas/química , Anti-Inflamatórios/farmacologia , Glicosídeos/farmacologia , Glicosídeos/análise
12.
Biomed Pharmacother ; 168: 115809, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907043

RESUMO

The traditional Chinese medicine (TCM) Rehmanniae Radix (RR) refers to the fresh or dried root tuber of the plant Rehmannia glutinosa Libosch of the family Scrophulariaceae. As a traditional Chinese herbal medicine (CHM), it possesses multiple effects, including analgesia, sedation, anti-inflammation, antioxidation, anti-tumor, immunomodulation, cardiovascular and cerebrovascular regulation, and nerve damage repair, and it has been widely used in clinical practice. In recent years, scientists have extensively studied the active components and pharmacological effects of RR. Active ingredients mainly include iridoid glycosides (such as catalpol and aucuboside), phenylpropanoid glycosides (such as acteoside), other saccharides, and unsaturated fatty acids. In addition, the Chinese patent medicine (CPM) and Chinese decoction related to RR have also become major research subjects for TCM practitioners; one example is the Bolus of Six Drugs, which includes Rehmannia, Lily Bulb and Rehmannia Decoction, and Siwu Decoction. This article reviews recent literature on RR; summarizes the studies on its chemical constituents, pharmacological effects, and clinical applications; and analyzes the progress and limitations of current investigations to provide reference for further exploration and development of RR.


Assuntos
Medicamentos de Ervas Chinesas , Rehmannia , Humanos , Medicina Tradicional Chinesa , Extratos Vegetais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Glicosídeos Iridoides
13.
Artigo em Inglês | MEDLINE | ID: mdl-37714051

RESUMO

Iridoid glycosides (geniposide (GP), genipin-1-gentiobioside (GB), etc.) and crocins (crocin Ⅰ (CR1), crocin Ⅱ(CR2), etc.) are two main bioactive components in Gardeniae Fructus (GF), which is a famous traditional Chinese medicine. Iridoid glycosides exhibit many activities and are used to manufacture gardenia blue pigment for the food industry. Crocins are rare natural water-soluble carotenoids that are often used as food colorants. A sequential macroporous resin column chromatography technology composed of HC-500B and HC-900B resins was developed to selectively separate iridoid glucosides and crocins from GF. The adsorption of GP on HC-900B resin was an exothermic process. The adsorption of CR1 on HC-500B resin was an endothermic process. The two kinds of components were completely separated by a sequential resin column. GB and GP were mainly found in product 1 (P1) with purities of 11.38% and 46.83%, respectively, while CR1 and CR2 were mainly found in product 2 (P2) with purities of 12.32% and 1.40%, respectively. The recovery yields of all the compounds were more than 80%. The above results showed that sequential resin column chromatography technology achieved high selectivity and recovery yields. GF extract, P1 and P2 could significantly inhibit the secretion of nitric oxide (NO), tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-induced RAW264.7 cells, indicating that iridoid glycosides and crocins provide a greater contribution to the anti-inflammatory activity of GF. At the same time, compared to the GF extract and P1, P2 exhibited stronger scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, indicating that crocins may provide a significant contribution to the antioxidant activity of GF.


Assuntos
Medicamentos de Ervas Chinesas , Gardenia , Glucosídeos Iridoides/análise , Antioxidantes/farmacologia , Gardenia/química , Cromatografia Líquida de Alta Pressão/métodos , Carotenoides/farmacologia , Glicosídeos Iridoides/análise , Medicamentos de Ervas Chinesas/análise , Anti-Inflamatórios/farmacologia
14.
J Sep Sci ; 46(14): e2300059, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269052

RESUMO

Premna fulva Craib, rich in iridoid glycosides, is widely used to treat periarthritis, osteoproliferation, pain, and other diseases. However, no studies have reported effective purification methods for obtaining iridoid glycosides as active materials. This paper describes an efficient strategy for separating iridoid glycosides from Premna fulva leaves using high-speed counter-current chromatography and preparative high-performance liquid chromatography. A two-phase solvent system, ethyl acetate/n-butanol/water (7.5:2.5:10, v/v), was selected for high-speed counter-current chromatography separation. The proposed method effectively separated and purified four iridoid glycosides and four lignans, including three new iridoid glycosides (4-6) and five known compounds (1-3, 7, 8), from Premna fulva leaves, indicating that high-speed counter-current chromatography combined with prep-HPLC can efficiently isolate catalpol derivatives from the genus Premna. Additionally, the in vitro anti-inflammatory activities of all isolated compounds were analyzed using lipopolysaccharide-stimulated RAW 264.7 cells, and the results indicated that six compounds (1 and 3-7) exhibited potential anti-inflammatory activities.


Assuntos
Glicosídeos , Iridoides , Glicosídeos/análise , Iridoides/análise , Extratos Vegetais/química , Distribuição Contracorrente/métodos , Glicosídeos Iridoides/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/análise , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão/métodos
15.
Phytochemistry ; 212: 113705, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37172671

RESUMO

Eight previously undescribed iridoid glycosides together with 20 known congeners were isolated from the aerial parts of Paederia scandens (Lour.) Merrill (Rubiaceae). Their structures incorporating absolute configurations were elucidated based on the comprehensive analyses of NMR data, HR-ESI-MS spectrometry, and ECD data. The potential anti-inflammatory activities of the isolated iridoids were evaluated in lipopolysaccharide-stimulated RAW 264.7 macrophages. Compound 6 significantly inhibited the production of nitric oxide with an IC50 value of 15.30 µM. The results of immunoblotting, qPCR, and immunofluorescence staining assays revealed that compound 6 exhibited anti-inflammatory activity by suppressing nuclear translocation of NF-κB and reducing the expression of COX-2, iNOS, IL-1ß, and IL-6. These results provide a basis for further development and utilization of P. scandens as a natural source of potential anti-inflammatory agents.


Assuntos
Glicosídeos Iridoides , Rubiaceae , Glicosídeos Iridoides/farmacologia , Iridoides/farmacologia , Iridoides/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , NF-kappa B , Rubiaceae/química , Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/farmacologia , Óxido Nítrico
16.
Biol Pharm Bull ; 46(6): 848-855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258151

RESUMO

A methanol extract of rhizomes of Picrorhiza kurroa Royle ex Benth. (Plantaginaceae) showed hepatoprotective effects against D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced liver injury in mice. We had previously isolated 46 compounds, including several types of iridoid glycosides, phenylethanoid glycosides, and aromatics, etc., from the extract. Among them, picroside II, androsin, and 4-hydroxy-3-methoxyacetophenone exhibited active hepatoprotective effects at doses of 50-100 mg/kg, per os (p.o.) To characterize the mechanisms of action of these isolates and to clarify the structural requirements of phenylethanoid glycosides for their hepatoprotective effects, their effects were assessed in in vitro studies on (i) D-GalN-induced cytotoxicity in mouse primary hepatocytes, (ii) LPS-induced nitric oxide (NO) production in mouse peritoneal macrophages, and (iii) tumor necrosis factor-α (TNF-α)-induced cytotoxicity in L929 cells. These isolates decreased the cytotoxicity caused by D-GalN without inhibiting LPS-induced macrophage activation and also reduced the sensitivity of hepatocytes to TNF-α. In addition, the structural requirements of phenylethanoids for the protective effects of D-GalN-induced cytotoxicity in mouse primary hepatocytes were evaluated.


Assuntos
Picrorhiza , Rizoma , Camundongos , Animais , Rizoma/química , Picrorhiza/química , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa , Glicosídeos Iridoides/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/análise , Galactosamina/toxicidade
17.
Nutrients ; 15(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36904246

RESUMO

The genus Ajuga (Lamiaceae) is rich in medicinally important species with biological activities ranging from anti-inflammatory, antitumor, neuroprotective, and antidiabetic to antibacterial, antiviral, cytotoxic, and insecticidal effects. Every species contains a unique and complex mixture of bioactive metabolites-phytoecdysteroids (PEs), iridoid glycosides, withanolides, neo-clerodane terpenoids, flavonoids, phenolics, and other chemicals with high therapeutic potential. Phytoecdysteroids, the main compounds of interest, are natural anabolic and adaptogenic agents that are widely used as components of dietary supplements. Wild plants remain the main source of Ajuga bioactive metabolites, particularly PEs, which leads to frequent overexploitation of their natural resources. Cell culture biotechnologies offer a sustainable approach to the production of vegetative biomass and individual phytochemicals specific for Ajuga genus. Cell cultures developed from eight Ajuga taxa were capable of producing PEs, a variety of phenolics and flavonoids, anthocyanins, volatile compounds, phenyletanoid glycosides, iridoids, and fatty acids, and demonstrated antioxidant, antimicrobial, and anti-inflammatory activities. The most abundant PEs in the cell cultures was 20-hydroxyecdysone, followed by turkesterone and cyasterone. The PE content in the cell cultures was comparable or higher than in wild or greenhouse plants, in vitro-grown shoots, and root cultures. Elicitation with methyl jasmonate (50-125 µM) or mevalonate and induced mutagenesis were the most effective strategies that stimulated cell culture biosynthetic capacity. This review summarizes the current progress in cell culture application for the production of pharmacologically important Ajuga metabolites, discusses various approaches to improve the compound yield, and highlights the potential directions for future interventions.


Assuntos
Ajuga , Ajuga/química , Antocianinas , Flavonoides , Fenóis , Glicosídeos Iridoides , Anti-Inflamatórios , Técnicas de Cultura de Células
18.
Amino Acids ; 55(12): 1765-1774, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36939919

RESUMO

Oxidative stress can be a series burden on human health and may lead to many chronic diseases such as diabetes and neurological disorders. The use of natural products to scavenge the reactive oxygen species has attracted the attention of many researchers, to safely manage these conditions with fewer side effects, in available and cost-effective ways. The current study aimed at the isolation and structure elucidation of sweroside from Schenkia spicata (Gentianaceae) and the evaluation of its antioxidant, antidiabetic, neuroprotective, and enzyme inhibitory potential via in vitro and in silico studies. The antioxidant potential was evaluated by a variety of assays as ABTS, CUPRAC and FRAP, showing values of 0.34 ± 0.08, 21.14 ± 0.43, and 12.32 ± 0.20 mg TE/g, respectively, while demonstrating 0.75 ± 0.03 mmol TE/g for phosphomolybdenum (PBD) assay. Acetylcholinestrase (AChE), butyrylcholinesterase (BChE) and tyrosinase inhibitory activities were used to evaluate the neuroprotective effect, while the antidiabetic potential was evaluated by measuring α-amylase and glucosidase inhibitory activities. Results revealed that sweroside showed antioxidant and inhibitory effects on the enzymes tested with the exception of AChE. It demonstrated good tyrosinase inhibitory ability with 55.06 ± 1.85 mg Kojic acid equivalent /g. Regarding the antidiabetic ability, the compound displayed both amylase and glucosidase (0.10 ± 0.01 and 1.54 ± 0.01 mmol Acarbose equivalent/g, respectively) inhibitory activities. Molecular docking studies of sweroside on the active sites of the aforementioned enzymes in addition to NADPH oxidase were performed using Discovery Studio 4.1 software. Results revealed good binding affinities of sweroside to these enzymes mainly through hydrogen bonds and van der Waals interactions. Sweroside can be an important antioxidant and enzyme inhibitory supplement, yet further in vivo and clinical studies are required.


Assuntos
Antioxidantes , Hipoglicemiantes , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Antioxidantes/farmacologia , Antioxidantes/química , Simulação de Acoplamento Molecular , Glicosídeos Iridoides , Butirilcolinesterase , Monofenol Mono-Oxigenase , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glucosidases
19.
DNA Cell Biol ; 42(2): 91-96, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36730809

RESUMO

Cornus officinalis is a perennial deciduous tree or shrub. Its mature fruits are extracted and used in Traditional Chinese Medicine, called Shanzhuyu. The characteristic active components of C. officinalis include loganin and morroniside, which belong to iridoid glycosides. 3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS) is a key enzyme in the cytoplasmic mevalonate pathway providing the precursor molecules isopentenyl pyrophosphate and dimethylallyl pyrophosphate for isoprenoid biosynthesis such as sterols, triterpenes, and their derivatives such as iridoid glycosides. Different concentrations of methyl jasmonate (MeJA) and ethephon (ETH) solutions were sprayed on C. officinalis seedlings, and the effect of hormones on CoHMGS gene expression was detected by real-time fluorescence quantitative PCR. The quantitative real-time PCR results showed that 750 mg/L ETH treatment had the most significant induction effect on CoHMGS gene expression. The HPLC analysis of extracts revealed that the treatment could also significantly increase the content of morroniside and loganin in the leaves of C. officinalis. By use of a CoHMGS-green fluorescent protein (GFP) fusion construct for heterologous expression in tobacco, laser scanning confocal microscopy revealed a cytoplasmic localization. This preliminary study of the CoHMGS gene could prepare the ground for more precisely elucidating the synthesis of secondary metabolite in C. officinalis.


Assuntos
Cornus , Medicamentos de Ervas Chinesas , Cornus/genética , Iridoides/farmacologia , Glicosídeos Iridoides
20.
J Ethnopharmacol ; 307: 116193, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36746295

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lamiophlomis rotata (Benth.) Kudo (L. rotata), a Tibetan medicinal plant, is used to treat "yellow-water diseases", such as skin disease, jaundice and rheumatism. Our previous study showed that the iridoid glycoside extract of L. rotata (IGLR) is the major constituent of skin wound healing. However, the role of IGLR in the biological process of trauma repair and the probable mechanism of the action remain largely unknown. AIM OF THE STUDY: To investigate the role of IGLR in the biological process of trauma repair and the probable mechanism of the action. MATERIALS AND METHODS: The role of IGLR in wound healing was investigated by overall skin wound in mice with Hematoxylin and Eosin (H&E) and Masson trichrome staining. The anti-inflammatory, angiogenesis-promoting and fibril formation effects of IGLR were visualized in wound skin tissue by immunofluorescence staining, and the proinflammatory factors and growth factors were assayed by real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Macrophages, dermal fibroblasts, and endothelial cells were cultured to measure the direct/indirect interaction effects of IGLR on the proliferation and migration of cells, and flow cytometry was employed to assess the role of IGLR on macrophage phenotype. Network pharmacology combined with Western blot experiments were conducted to explore possible mechanisms of the actions. RESULTS: IGLR increased the expression of CD206 (M2 markers) through the RAS/p38 MAPK/NF-κB signaling pathway during wound injury in vivo and in vitro. IGLR suppressed the inflammatory cytokines iNOS, IL-1ß and TNF-α in the early stage of wound healing. During the proliferation step of wound repair, IGLR promoted angiogenesis and fibril formation by increasing the expression of VEGF, CD31, TGF-ß and α-SMA in wound tissue, and similar results were verified by RT-PCR and ELISA. In a paracrine mechanism, the extract promoted the proliferation of dermal fibroblasts, and endothelial cells were founded by the conditioned medium (CM). CONCLUSION: IGLR induced M2 macrophage polarization in the early stage of wound healing; in turn, IGLR played a key role in the transition from inflammation to cell proliferation during the biological process of wound healing.


Assuntos
Iridoides , NF-kappa B , Animais , Camundongos , Células Endoteliais , Glicosídeos Iridoides/farmacologia , Iridoides/farmacologia , Macrófagos , Cicatrização , Extratos Vegetais/farmacologia , Lamiaceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA