Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.691
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Ethnopharmacol ; 328: 118128, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38561056

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In the clinic, Shenqi Fuzheng Injection (SFI) is used as an adjuvant for cancer chemotherapy. However, the molecular mechanism is unclear. AIM OF THE STUDY: We screened potential targets of SFI action on gliomas by network pharmacology and performed experiments to validate possible molecular mechanisms against gliomas. MATERIALS AND METHODS: We consulted relevant reports on the SFI and glioma incidence from PubMed and Web of Science and focused on the mechanism through which the SFI inhibits glioma. According to the literature, two primary SFI components-Codonopsis pilosula (Franch.) Nannf. and Astragalus membranaceus (Fisch.) Bunge-have been found. All plant names have been sourced from "The Plant List" (www.theplantlist.org). The cell lines U87, T98G and GL261 were used in this study. The inhibitory effects of SFI on glioma cells U87 and T98G were detected by CCK-8 assay, EdU, plate cloning assay, scratch assay, Transwell assay, immunofluorescence, flow cytometry and Western blot. A subcutaneous tumor model of C57BL/6 mice was constructed using GL261 cells, and the SFI was evaluated by HE staining and immunohistochemistry. The targets of glioma and the SFI were screened using network pharmacology. RESULTS: A total of 110 targets were enriched, and a total of 26 major active components in the SFI were investigated. There were a total of 3,343 targets for gliomas, of which 79 targets were shared between the SFI and glioma tissues. SFI successfully prevented proliferation and caused cellular S-phase blockage in U87 and T98G cells, thus decreasing their growth. Furthermore, SFI suppressed cell migration by downregulating EMT marker expression. According to the results of the in vivo tests, the SFI dramatically decreased the development of tumors in a transplanted tumour model. Network pharmacological studies revealed that the SRC/PI3K/AKT signaling pathway may be the pathway through which SFI exerts its anti-glioma effects. CONCLUSIONS: The findings revealed that the SRC/PI3K/AKT signaling pathway may be involved in the mechanism through which SFI inhibits the proliferation and migration of glioma cells.


Assuntos
Medicamentos de Ervas Chinesas , Glioma , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Farmacologia em Rede , Camundongos Endogâmicos C57BL , Transdução de Sinais , Glioma/tratamento farmacológico , Proliferação de Células
2.
CNS Neurosci Ther ; 30(3): e14563, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38481068

RESUMO

BACKGROUND: Glioblastoma is the most common primary malignant brain tumor in adults. TTFields is a therapy that use intermediate-frequency and low-intensity alternating electric fields to treat tumors. For patients with ndGBM, the addition of TTFields after the concurrent chemoradiotherapy phase of the Stupp regimen can improve prognosis. However, TTFields still has the potential to further prolong the survival of ndGBM patients. AIM: By summarizing the mechanism and application status of TTFields in the treatment of ndGBM, the application prospect of TTFields in ndbm treatment is prospected. METHODS: We review the recent literature and included 76 articles to summarize the mechanism of TTfields in the treatment of ndGBM. The current clinical application status and potential health benefits of TTFields in the treatment of ndGBM are also discussed. RESULTS: TTFields can interfere with tumor cell mitosis, lead to tumor cell apoptosis and increased autophagy, hinder DNA damage repair, induce ICD, activate tumor immune microenvironment, reduce cancer cell metastasis and invasion, and increase BBB permeability. TTFields combines with chemoradiotherapy has made progress, its optimal application time is being explored and the problems that need to be considered when retaining the electrode patches for radiotherapy are further discussed. TTFields shows potential in combination with immunotherapy, antimitotic agents, and PARP inhibitors, as well as in patients with subtentorial gliomas. CONCLUSION: This review summarizes mechanisms of TTFields in the treatment of ndGBM, and describes the current clinical application of TTFields in ndGBM. Through the understanding of its principle and application status, we believe that TTFields still has the potential to further prolong the survival of ndGBM patients. Thus,research is still needed to explore new ways to combine TTFields with other therapies and optimize the use of TTFields to realize its full potential in ndGBM patients.


Assuntos
Neoplasias Encefálicas , Terapia por Estimulação Elétrica , Glioblastoma , Glioma , Adulto , Humanos , Glioblastoma/patologia , Terapia Combinada , Glioma/terapia , Terapia por Estimulação Elétrica/métodos , Prognóstico , Neoplasias Encefálicas/patologia , Microambiente Tumoral
3.
ACS Nano ; 18(14): 10142-10155, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38526307

RESUMO

Fully mobilizing the activities of multiple immune cells is crucial to achieve the desired tumor immunotherapeutic efficacy yet still remains challenging. Herein, we report a nanomedicine formulation based on phosphorus dendrimer (termed AK128)/programmed cell death protein 1 antibody (aPD1) nanocomplexes (NCs) that are camouflaged with M1-type macrophage cell membranes (M1m) for enhanced immunotherapy of orthotopic glioma. The constructed AK128-aPD1@M1m NCs with a mean particle size of 160.3 nm possess good stability and cytocompatibility. By virtue of the decorated M1m having α4 and ß1 integrins, the NCs are able to penetrate the blood-brain barrier to codeliver both AK128 with intrinsic immunomodulatory activity and aPD1 to the orthotopic glioma with prolonged blood circulation time. We show that the phosphorus dendrimer AK128 can boost natural killer (NK) cell proliferation in peripheral blood mononuclear cells, while the delivered aPD1 enables immune checkpoint blockade (ICB) to restore the cytotoxic T cells and NK cells, thus promoting tumor cell apoptosis and simultaneously decreasing the tumor distribution of regulatory T cells vastly for improved glioma immunotherapy. The developed nanomedicine formulation with a simple composition achieves multiple modulations of immune cells by utilizing the immunomodulatory activity of nanocarrier and antibody-mediated ICB therapy, providing an effective strategy for cancer immunotherapy.


Assuntos
Dendrímeros , Glioma , Humanos , Fósforo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Biomimética , Glioma/terapia , Glioma/patologia , Imunoterapia , Células Matadoras Naturais , Anticorpos/metabolismo , Linfócitos T Citotóxicos , Barreira Hematoencefálica/metabolismo , Microambiente Tumoral
4.
Phytomedicine ; 128: 155417, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518642

RESUMO

BACKGROUND: The role of the glioblastoma (GBM) microenvironment is pivotal in the development of gliomas. Discovering drugs that can traverse the blood-brain barrier and modulate the tumor microenvironment is crucial for the treatment of GBM. Dioscin, a steroidal saponin derived from various kinds of plants and herbs known to penetrate the blood-brain barrier, has shown its powerful anti-tumor activity. However, little is known about its effects on GBM microenvironment. METHODS: Bioinformatics analysis was conducted to assess the link between GBM patients and their prognosis. Multiple techniques, including RNA sequencing, immunofluorescence staining, Western blot analysis, RNA-immunoprecipitation (RIP) assays, and Chromatin immunoprecipitation (CHIP) analysis were employed to elucidate the mechanism through which Dioscin modulates the immune microenvironment. RESULTS: Dioscin significantly impaired the polarization of macrophages into the M2 phenotype and enhanced the phagocytic ability of macrophages in vitro and in vivo. A strong correlation between high expression of RBM47 in GBM and a detrimental prognosis for patients was demonstrated. RNA-sequencing analysis revealed an association between RBM47 and the immune response. The inhibition of RBM47 significantly impaired the recruitment and polarization of macrophages into the M2 phenotype and enhanced the phagocytic ability of macrophages. Moreover, RBM47 could stabilize the mRNA of inflammatory genes and enhance the expression of these genes by activating the NF-κB pathway. In addition, NF-κB acts as a transcription factor that enhances the transcriptional activity of RBM47. Notably, we found that Dioscin could significantly inhibit the activation of NF-κB and then downregulate the expression of RBM47 and inflammatory genes protein. CONCLUSION: Our study reveals that the positive feedback loop between RBM47 and NF-κB could promote immunosuppressive microenvironment in GBM. Dioscin effectively inhibits M2 polarization in GBM by disrupting the positive feedback loop between RBM47 and NF-κB, indicating its potential therapeutic effects in GBM treatment.


Assuntos
Diosgenina , Diosgenina/análogos & derivados , NF-kappa B , Microambiente Tumoral , Diosgenina/farmacologia , Humanos , NF-kappa B/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Camundongos , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Retroalimentação Fisiológica/efeitos dos fármacos
5.
Adv Neurobiol ; 36: 445-468, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468047

RESUMO

Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique able to depict the magnetic susceptibility produced by different substances, such as deoxyhemoglobin, calcium, and iron. The main application of SWI in clinical neuroimaging is detecting microbleedings and venous vasculature. Quantitative analyses of SWI have been developed over the last few years, aimed to offer new parameters, which could be used as neuroimaging biomarkers. Each technique has shown pros and cons, but no gold standard exists yet. The fractal dimension (FD) has been investigated as a novel potential objective parameter for monitoring intratumoral space-filling properties of SWI patterns. We showed that SWI patterns found in different tumors or different glioma grades can be represented by a gradient in the fractal dimension, thereby enabling each tumor to be assigned a specific SWI fingerprint. Such results were especially relevant in the differentiation of low-grade versus high-grade gliomas, as well as from high-grade gliomas versus lymphomas.Therefore, FD has been suggested as a potential image biomarker to analyze intrinsic neoplastic architecture in order to improve the differential diagnosis within clinical neuroimaging, determine appropriate therapy, and improve outcome in patients.These promising preliminary findings could be extended into the field of neurotraumatology, by means of the application of computational fractal-based analysis for the qualitative and quantitative imaging of microbleedings in traumatic brain injury patients. In consideration of some evidences showing that SWI signals are correlated with trauma clinical severity, FD might offer some objective prognostic biomarkers.In conclusion, fractal-based morphometrics of SWI could be further investigated to be used in a complementary way with other techniques, in order to form a holistic understanding of the temporal evolution of brain tumors and follow-up response to treatment, with several further applications in other fields, such as neurotraumatology and cerebrovascular neurosurgery as well.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Fractais , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Biomarcadores
6.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473776

RESUMO

Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.


Assuntos
Glioblastoma , Glioma , Hipertermia Induzida , Humanos , Fosfatidilinositol 3-Quinases , Terapia Combinada , Microambiente Tumoral
7.
Phys Med Biol ; 69(8)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38417178

RESUMO

Objective.Alternating electric fields (AEF) therapy is a treatment modality for patients with glioblastoma. Tumor characteristics such as size, location, and extent of peritumoral edema may affect the AEF strength and distribution. We evaluated the sensitivity of the AEFs in a realistic 3D rat glioma model with respect to these properties.Approach.The electric properties of the peritumoral edema were varied based on calculated and literature-reported values. Models with different tumor composition, size, and location were created. The resulting AEFs were evaluated in 3D rat glioma models.Main results.In all cases, a pair of 5 mm diameter electrodes induced an average field strength >1 V cm-1. The simulation results showed that a negative relationship between edema conductivity and field strength was found. As the tumor core size was increased, the average field strength increased while the fraction of the shell achieving >1.5 V cm-1decreased. Increasing peritumoral edema thickness decreased the shell's mean field strength. Compared to rostrally/caudally, shifting the tumor location laterally/medially and ventrally (with respect to the electrodes) caused higher deviation in field strength.Significance.This study identifies tumor properties that are key drivers influencing AEF strength and distribution. The findings might be potential preclinical implications.


Assuntos
Neoplasias Encefálicas , Terapia por Estimulação Elétrica , Glioblastoma , Glioma , Linfocinas , Humanos , Ratos , Animais , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Terapia por Estimulação Elétrica/métodos , Glioma/terapia , Glioblastoma/patologia
8.
J Vis Exp ; (204)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38372384

RESUMO

In vitro drug sensitivity screens are important tools in the discovery of anti-cancer drug combination therapies. Typically, these in vitro drug screens are performed on cells grown in a monolayer. However, these two-dimensional (2D) models are considered less accurate compared to three-dimensional (3D) spheroid cell models; this is especially true for glioma stem cell lines. Cells grown in spheres activate different signaling pathways and are considered more representative of in vivo models than monolayer cell lines. This protocol describes a method for in vitro drug screening of spheroid lines; mouse and human glioma stem cell lines are used as an example. This protocol describes a 3D spheroid drug sensitivity and synergy assay that can be used to determine if a drug or drug combination induces cell death and if two drugs synergize. Glioma stem cell lines are modified to express RFP. Cells are plated in low attachment round well bottom 96 plates, and spheres are allowed to form overnight. Drugs are added, and the growth is monitored by measuring the RFP signal over time using the Incucyte live imaging system, a fluorescence microscope embedded in the tissue culture incubator. Half maximal inhibitory concentration (IC50), median lethal dose (LD50), and synergy score are subsequently calculated to evaluate sensitivities to drugs alone or in combination. The three-dimensional nature of this assay provides a more accurate reflection of tumor growth, behavior, and drug sensitivities in vivo, thus forming the basis for further preclinical investigation.


Assuntos
Glioma , Esferoides Celulares , Humanos , Camundongos , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Linhagem Celular Tumoral , Esferoides Celulares/patologia , Glioma/patologia , Células-Tronco Neoplásicas/patologia
9.
J Colloid Interface Sci ; 661: 930-942, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330665

RESUMO

Photothermal therapy (PTT) has gained widespread attention due to its significant advantages, such as noninvasiveness and ability to perform laser localization. However, PTT usually reaches temperatures exceeding 50 °C, which causes tumor coagulation necrosis and unfavorable inflammatory reactions, ultimately decreasing its efficacy. In this study, multifunctional two-dimensional Bi2Se3 nanodisks were synthesized as noninflammatory photothermal agents for glioma therapy. The Bi2Se3 nanodisks showed high photothermal stability and biocompatibility and no apparent toxicology. In addition, in vitro and in vivo studies revealed that the Bi2Se3 nanodisks effectively ablated gliomas at relatively low concentrations and inhibited tumor proliferation and migration. Moreover, the multienzymatic activity of the Bi2Se3 nanodisks inhibited the PTT-induced inflammatory response through their high ability to scavenge reactive oxygen species. Finally, the Bi2Se3 nanodisks demonstrated computed tomography capabilities for integrating diagnosis and treatment. These findings suggest that multifunctional Bi2Se3 nanodisk nanozymes can enable more effective cancer therapy and noninflammatory PTT.


Assuntos
Glioma , Hipertermia Induzida , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Glioma/tratamento farmacológico , Hipertermia Induzida/métodos , Linhagem Celular Tumoral
10.
Redox Biol ; 69: 103030, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181705

RESUMO

Ferroptosis is a type of programmed cell death resulting from iron overload-dependent lipid peroxidation, and could be promoted by activating transcription factor 3 (ATF3). SIRT1 is an enzyme accounting for removing acetylated lysine residues from target proteins by consuming NAD+, but its role remains elusive in ferroptosis and activating ATF3. In this study, we found SIRT1 was activated during the process of RSL3-induced glioma cell ferroptosis. Moreover, the glioma cell death was aggravated by SIRT1 activator SRT2183, but suppressed by SIRT inhibitor EX527 or when SIRT1 was silenced with siRNA. These indicated SIRT1 sensitized glioma cells to ferroptosis. Furthermore, we found SIRT1 promoted RSL3-induced expressional upregulation and nuclear translocation of ATF3. Silence of ATF3 with siRNA attenuated RSL3-induced increases of ferrous iron and lipid peroxidation, downregulation of SLC7A11 and GPX4 and depletion of cysteine and GSH. Thus, SIRT1 promoted glioma cell ferroptosis by inducting ATF3 activation. Mechanistically, ATF3 activation was reinforced when RSL3-induced decline of NAD+ was aggravated by FK866 that could inhibit NAD + synthesis via salvage pathway, but suppressed when intracellular NAD+ was maintained at higher level by supplement of exogenous NAD+. Notably, the NAD + decline caused by RSL3 was enhanced when SIRT1 was further activated by SRT2183, but attenuated when SIRT1 activation was inhibited by EX527. These indicated SIRT1 promoted ATF3 activation via consumption of NAD+. Finally, we found RSL3 activated SIRT1 by inducing reactive oxygen species-dependent upregulation of AROS. Together, our study revealed SIRT1 activated by AROS sensitizes glioma cells to ferroptosis via activation of ATF3-dependent inhibition of SLC7A11 and GPX4.


Assuntos
Ferroptose , Glioma , Humanos , NAD , Fator 3 Ativador da Transcrição/genética , Linhagem Celular Tumoral , Sirtuína 1/genética , Glioma/genética , Glioma/metabolismo , RNA Interferente Pequeno
11.
Neuroradiol J ; 37(2): 229-233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37002537

RESUMO

Following completion of adjuvant radiation and chemotherapy imaging surveillance forms a major role in the management of diffuse gliomas. The primary role of imaging is to detect recurrences earlier than clinical symptomatology. Magnetic resonance imaging (MRI) is considered the gold standard in follow-up protocols owing to better soft tissue delineation and multiparametric nature. True recurrence can often mimic treatment-related changes, it is of paramount importance to differentiate between the two entities as the clinical course is divergent. Addition of functional sequences like perfusion, spectroscopy and metabolic imaging can provide further details into the microenvironment. In equivocal cases, a follow-up short interval imaging might be obtained to settle the diagnostic dilemma. Here, we present a patient with diagnosis of recurrent oligodendroglioma treated with adjuvant chemoradiation, presenting with seizures five years post-completion of chemotherapy for recurrence. On MRI, subtle new onset gyral thickening of the left frontal region with mild increase in perfusion and patchy areas of raised choline. FET-PET (fluoro-ethyltyrosine) showed an increased tumour-to-white matter (T/Wm) ratio favouring tumour recurrence. Based on discussion in a multi-disciplinary joint clinic, short interval follow-up MRI was undertaken at two months showing decrease in gyral thickening and resolution of enhancing areas in left frontal lobe. Repeat imaging one year later demonstrated stable disease status without further new imaging findings. Given the changes resolving completely without any anti-tumoral intervention, we conclude this to be peri-ictal pseudoprogression, being the second such case described in India.


Assuntos
Neoplasias Encefálicas , Glioma , Oligodendroglioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/terapia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Oligodendroglioma/diagnóstico por imagem , Oligodendroglioma/terapia , Tomografia por Emissão de Pósitrons/métodos , Microambiente Tumoral
12.
J Nucl Med ; 65(1): 16-21, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37884332

RESUMO

Contrast-enhanced MRI is the method of choice for brain tumor diagnostics, despite its low specificity for tumor tissue. This study compared the contribution of MR spectroscopic imaging (MRSI) and amino acid PET to improve the detection of tumor tissue. Methods: In 30 untreated patients with suspected glioma, O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) PET; 3-T MRSI with a short echo time; and fluid-attenuated inversion recovery, T2-weighted, and contrast-enhanced T1-weighted MRI were performed for stereotactic biopsy planning. Serial samples were taken along the needle trajectory, and their masks were projected to the preoperative imaging data. Each sample was individually evaluated neuropathologically. 18F-FET uptake and the MRSI signals choline (Cho), N-acetyl-aspartate (NAA), creatine, myoinositol, and derived ratios were evaluated for each sample and classified using logistic regression. The diagnostic accuracy was evaluated by receiver operating characteristic analysis. Results: On the basis of the neuropathologic evaluation of tissue from 88 stereotactic biopsies, supplemented with 18F-FET PET and MRSI metrics from 20 areas on the healthy-appearing contralateral hemisphere to balance the glioma/nonglioma groups, 18F-FET PET identified glioma with the highest accuracy (area under the receiver operating characteristic curve, 0.89; 95% CI, 0.81-0.93; threshold, 1.4 × background uptake). Among the MR spectroscopic metabolites, Cho/NAA normalized to normal brain tissue showed the highest diagnostic accuracy (area under the receiver operating characteristic curve, 0.81; 95% CI, 0.71-0.88; threshold, 2.2). The combination of 18F-FET PET and normalized Cho/NAA did not improve the diagnostic performance. Conclusion: MRI-based delineation of gliomas should preferably be supplemented by 18F-FET PET.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/metabolismo , Espectroscopia de Ressonância Magnética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Tomografia por Emissão de Pósitrons/métodos , Tirosina , Biópsia
13.
Cells ; 12(23)2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067099

RESUMO

BACKGROUND: Gliomas are the most malignant tumors of the central nervous system. One of the factors in their high drug resistance is avoiding programmed death (PCD) induction. This is related to the overexpression of intracellular survival pathways: PI3K-Akt/PKB-mTOR and Ras-Raf-MEK-ERK. Apoptosis and autophagy are co-existing processes due to the interactions between Bcl-2 and beclin-1 proteins. Their complex may be a molecular "toggle-switch" between PCD types. The aim of this research was to investigate the role of Bcl-2:beclin-1 complex in glioma cell elimination through the combined action of LY294002 and sorafenib. METHODS: Drug cytotoxicity was estimated with an MTT test. The type of cell death was evaluated using variant microscopy techniques (fluorochrome staining, immunocytochemistry, and transmission electron microscopy), as well as the Bcl-2:beclin-1 complex formation and protein localization. Molecular analysis of PCD indicators was conducted through immunoblotting, immunoprecipitation, and ELISA testing. SiRNA was used to block Bcl-2 and beclin-1 expression. RESULTS: The results showed the inhibitors used in simultaneous application resulted in Bcl-2:beclin-1 complex formation and apoptosis becoming dominant. This was accompanied by changes in the location of the tested proteins. CONCLUSIONS: "Switching" between apoptosis and autophagy using PI3K and Raf inhibitors with Bcl-2:beclin-1 complex formation opens new therapeutic perspectives against gliomas.


Assuntos
Glioma , Fosfatidilinositol 3-Quinases , Sorafenibe , Humanos , Apoptose , Autofagia , Proteína Beclina-1 , Glioma/tratamento farmacológico , Glioma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico
14.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003496

RESUMO

Glioma treatment in traditional Chinese medicine has a lengthy history. Astragalus membranaceus, a traditional Chinese herb that is frequently utilized in therapeutic practice, is a component of many Traditional Chinese Medicine formulas that have been documented to have anti-glioma properties. Uncertainty persists regarding the molecular mechanism behind the therapeutic effects. Based on results from network pharmacology and molecular docking, we thoroughly identified the molecular pathways of Astragalus membranaceus' anti-glioma activities in this study. According to the findings of the enrichment analysis, 14 active compounds and 343 targets were eliminated from the screening process. These targets were mainly found in the pathways in cancer, neuroactive ligand-receptor interaction, protein phosphorylation, inflammatory response, positive regulation of phosphorylation, and inflammatory mediator regulation of Transient Receptor Potential (TRP) channels. The results of molecular docking showed that the active substances isoflavanone and 1,7-Dihydroxy-3,9-dimethoxy pterocarpene have strong binding affinities for the respective targets ESR2 and PTGS2. In accordance with the findings of our investigation, Astragalus membranaceus active compounds exhibit a multicomponent and multitarget synergistic therapeutic impact on glioma by actively targeting several targets in various pathways. Additionally, we propose that 1,7-Dihydroxy-3,9-dimethoxy pterocarpene and isoflavanone may be the main active ingredients in the therapy of glioma.


Assuntos
Medicamentos de Ervas Chinesas , Glioma , Astragalus propinquus , Simulação de Acoplamento Molecular , Farmacologia em Rede , Glioma/tratamento farmacológico , Ciclo-Oxigenase 2 , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia
15.
Curr Neurol Neurosci Rep ; 23(12): 849-856, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37921944

RESUMO

PURPOSE OF REVIEW: Diffuse midline gliomas (DMGs) generally carry a poor prognosis, occur during childhood, and involve midline structures of the central nervous system, including the thalamus, pons, and spinal cord. RECENT FINDINGS: To date, irradiation has been shown to be the only beneficial treatment for DMG. Various genetic modifications have been shown to play a role in the pathogenesis of this disease. Current treatment strategies span targeting epigenetic dysregulation, cell cycle, specific genetic alterations, and the immune microenvironment. Herein, we review the complex features of this disease as it relates to current and past therapeutic approaches.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Glioma/genética , Glioma/terapia , Sistema Nervoso Central/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Tálamo , Microambiente Tumoral
16.
Biochem Biophys Res Commun ; 687: 149196, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37939504

RESUMO

Brain gliomas are difficult in the field of tumor therapy because of their high recurrence rate, high mortality rate, and low selectivity of therapeutic agents. The efficacy of Traditional Chinese Medicine (TCM) in the treatment for tumours has been widely recognized. Here, three Chinese herb related molecules, namely Catechins, Caudatin and Cucurbitacin-I, were screened by bioinformatic means, and were found to inhibit the proliferation of glioblastoma T98G cells using Colony-forming and CCK-8 assays. Notably, the simultaneous use of all three molecules could more significantly inhibit the proliferation of glioma cells. Consistent with this, temozolomide, each in the combination with three molecules, could synergistically inhibit the proliferation of T98G cells. Results of qPCR assay was also showed that this inhibition was through the activation of the KDELR2-mediated endoplasmic reticulum stress (ER) pathway. Molecular docking experiments further revealed that Catechins, Caudatin and Cucurbitacin-I could activate ER stress might by targeting KDELR2. Taken together, these results suggest that these herbal molecules have the potential to inhibit the growth of glioma cells and could provide a reference for clinical therapeutic drug selection.


Assuntos
Antineoplásicos , Catequina , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Catequina/farmacologia , Cucurbitacinas/farmacologia , Cucurbitacinas/uso terapêutico , Simulação de Acoplamento Molecular , Glioma/patologia , Antineoplásicos/farmacologia , Proliferação de Células , Estresse do Retículo Endoplasmático , Linhagem Celular Tumoral , Apoptose , Proteínas de Transporte Vesicular/metabolismo
17.
Biomed Pharmacother ; 168: 115720, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839110

RESUMO

The aggressive and incurable diffuse gliomas constitute 80% of malignant brain tumors, and patients succumb to recurrent surgeries and drug resistance. Epidemiological research indicates that substantial consumption of fruits and vegetables diminishes the risk of developing this tumor type. Broccoli consumption has shown beneficial effects in both cancer and neurodegenerative diseases. These effects are partially attributed to the isothiocyanate sulforaphane (SFN), which can regulate the Keap1/Nrf2/ARE signaling pathway, stimulate detoxifying enzymes, and activate cellular antioxidant defense processes. This study employs a C6 rat glioma model to assess the chemoprotective potential of aqueous extracts from broccoli seeds, sprouts, and inflorescences, all rich in SFN, and pure SFN as positive control. The findings reveal that administering a dose of 100 mg/kg of broccoli sprout aqueous extract and 0.1 mg/kg of SFN to animals for 30 days before introducing 1 × 104 cells effectively halts tumor growth and progression. This study underscores the significance of exploring foods abundant in bioactive compounds, such as derivatives of broccoli, for potential preventive integration into daily diets. Using broccoli sprouts as a natural defense against cancer development might seem idealistic, yet this investigation establishes that administering this extract proves to be a valuable approach in designing strategies for glioma prevention. Although the findings stem from a rat glioma model, they offer promising insights for subsequent preclinical and clinical research endeavors.


Assuntos
Brassica , Glioma , Humanos , Ratos , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Glioma/prevenção & controle
18.
Int Rev Neurobiol ; 172: 303-319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37833016

RESUMO

Glioma is the most common primary central nervous tumor and its malignant and high recurrence rate are seriously threatening patient's life. The prognosis of glioma patients is still poor with a variety of modern treatments. Traditional Chinese medicine (TCM) is widely used in the adjuvant treatment or alternative medicine of glioma. Curcumae Rhizoma is one of the most commonly used in traditional Chinese medicine prescriptions for its anti-tumor characteristics. There are also many studies that reveals the anti-tumor effect of its active ingredients and some of which have been made into drugs and have been used in clinical practice. This review summarizes the new research progress on Curcumae Rhizoma for the treatment of glioma in recent years.


Assuntos
Medicamentos de Ervas Chinesas , Glioma , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/uso terapêutico , Curcuma , Rizoma , Glioma/tratamento farmacológico
19.
J Agric Food Chem ; 71(40): 14432-14457, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37786984

RESUMO

Neurological disorders are diverse, have complex causes, and often result in disability; yet, effective treatments remain scarce. The resveratrol derivative pterostilbene possesses numerous physiological activities that hold promise as a novel therapy for the central nervous system (CNS) disorders. This review aimed to summarize the protective mechanisms of pterostilbene in in vitro and in vivo models of CNS disorders and the pharmacokinetics and safety to assess its possible effects on CNS disorders. Available evidence supports the protective effects of pterostilbene in CNS disorders involving mechanisms such as antioxidant and anti-inflammatory activity, regulation of lipid metabolism and vascular smooth muscle cell proliferation, improvement of synaptic function and neurogenesis, induction of glioma cell cycle arrest, and inhibition of glioma cell migration and invasion. Studies have identified possible molecular targets and pathways for the protective actions of pterostilbene in CNS disorders including the AMPK/STAT3, Akt, NF-κB, MAPK, and ERK signaling pathways. The possible pharmacological effects and molecular pathways of pterostilbene in CNS disorders are critically discussed in this review. Future studies should aim to increase our understanding of pterostilbene in animal models and humans to further evaluate its role in CNS disorders and the detailed mechanisms.


Assuntos
Doenças do Sistema Nervoso Central , Glioma , Estilbenos , Animais , Humanos , Transdução de Sinais , NF-kappa B/metabolismo , Estilbenos/farmacologia , Doenças do Sistema Nervoso Central/tratamento farmacológico , Glioma/tratamento farmacológico
20.
BMC Complement Med Ther ; 23(1): 371, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865727

RESUMO

BACKGROUND: An anti-tumour activity has been demonstrated for α-solanine, a bioactive compound extracted from the traditional Chinese herb Solanum nigrum L. However, its efficacy in the treatment of gliomas and the underlying mechanisms remain unclear. The aim of this study was to investigate the inhibitory effects of α-solanine on glioma and elucidate its mechanisms and targets using network pharmacology, molecular docking, and molecular biology experiments. METHODS: Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was utilized to predict the potential targets of α-solanine. GeneCards was used to gather glioma-related targets, and the STRING online database was used to analyze protein-protein interaction (PPI) networks for the shared targets. Hub genes were identified from the resulting PPI network and further investigated using Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Additionally, prognostic and gene set enrichment analyses (GSEA) were carried out to identify potential therapeutic targets and their underlying mechanisms of action in relation to the prognosis of gliomas. In vitro experiments were conducted to verify the findings from the network pharmacology analysis. RESULTS: A total of 289 α-solanine targets and 1149 glioma-related targets were screened, of which 78 were common targets. 11 hub genes were obtained, including SRC, HRAS, HSP90AA1, IGF1, MAPK1, MAPK14, KDR, STAT1, JAK2, MAP2K1, and IGF1R. The GO and KEGG pathway analyses unveiled that α-solanine was strongly associated with several signaling pathways, including positive regulation of MAP kinase activity and PI3K-Akt. Moreover, α-solanine (10 µM and 15 µM) inhibited the proliferation and migration but promoted the apoptosis of glioma cells. Finally, STAT1 was identified as a potential mediator of the effect of α-solanine on glioma prognosis. CONCLUSION: α-Solanine can inhibit the proliferation and migration of gliomas by regulating multiple targets and signalling pathways. These findings lay the foundation for the creation of innovative clinical anti-glioma agents.


Assuntos
Glioma , Farmacologia em Rede , Humanos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Glioma/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA