Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosurg ; 139(5): 1354-1365, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883631

RESUMO

OBJECTIVE: Functional MRI (fMRI) has been used to investigate the therapeutic mechanisms underlying deep brain stimulation (DBS) for Parkinson's disease (PD). However, the alterations in stimulation site-seeded functional connectivity induced by DBS at the internal globus pallidus (GPi) remain unclear. Furthermore, whether DBS-modulated functional connectivity is differentially affected within particular frequency bands remains unknown. The present study aimed to reveal the alterations in stimulation site-seeded functional connectivity induced by GPi-DBS and to examine whether there exists a frequency band effect in blood oxygen level-dependent (BOLD) signals related to DBS. METHODS: Patients with PD receiving GPi-DBS (n = 28) were recruited for resting-state fMRI with DBS on and DBS off under a 1.5-T MR scanner. Age- and sex-matched healthy controls (n = 16) and DBS-naïve PD patients (n = 24) also received fMRI scanning. The alterations in stimulation site-seeded functional connectivity in the stimulation-on state versus stimulation-off state, as well as the relationship between alterations in connectivity and improvement in motor function induced by GPi-DBS, were examined. Furthermore, the modulatory effect of GPi-DBS on the BOLD signals within the 4 frequency subbands (slow-2 to slow-5) was investigated. Finally, the functional connectivity of the motor-related network, consisting of multiple cortical and subcortical regions, was also examined among the groups. In this study, p < 0.05 with Gaussian random field correction indicates statistical significance. RESULTS: Functional connectivity seeding from the stimulation site (i.e., the volume of tissue activated [VTA]) increased in the cortical sensorimotor areas and decreased in the prefrontal regions with GPi-DBS. Alterations in connectivity between the VTA and the cortical motor areas were correlated with motor improvement by pallidal stimulation. The alterations in connectivity were dissociable between the frequency subbands in the occipital and cerebellar areas. The motor network analysis indicated decreased connectivity among most cortical and subcortical regions but increased connectivity between the motor thalamus and the cortical motor area in patients with GPi-DBS compared with those in DBS-naïve patients. The DBS-induced decrease in several cortical-subcortical connectivities within the slow-5 band correlated with motor improvement with GPi-DBS. CONCLUSIONS: These findings indicate that the alterations in functional connectivity from the stimulation site to the cortical motor areas, as well as multiple connectivities among the motor-related network, were associated with the efficacy of GPi-DBS for PD. Furthermore, the changing pattern of functional connectivity within the 4 BOLD frequency subbands is partially dissociable.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Globo Pálido/fisiologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Tálamo , Imageamento por Ressonância Magnética
2.
Hum Brain Mapp ; 43(2): 833-843, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738281

RESUMO

A better understanding of gait disorders that are associated with aging is crucial to prevent adverse outcomes. The functional study of gait remains a thorny issue due to technical constraints inherent to neuroimaging procedures, as most of them require to stay supine and motionless. Using an MRI-compatible system of boots reproducing gait-like plantar stimulation, we investigated the correlation between age and brain fMRI activation during simulated gait in healthy adults. Sixty-seven right-handed healthy volunteers aged between 20 and 77 years old (49.2 ± 18.0 years; 35 women) were recruited. Two paradigms were assessed consecutively: (a) gait-like plantar stimulation and (b) chaotic and not gait-related plantar stimulation. Resulting statistical parametric maps were analyzed with a multiple-factor regression that included age and a threshold determined by Monte-Carlo simulation to fulfill a family-wise error rate correction of p < .05. In the first paradigm, there was an age-correlated activation of the right pallidum, thalamus and putamen. The second paradigm showed an age-correlated deactivation of both primary visual areas (V1). The subtraction between results of the first and second paradigms showed age-correlated activation of the right presupplementary motor area (Brodmann Area [BA] 6) and right mid-dorsolateral prefrontal cortex (BA9-10). Our results show age-correlated activity in areas that have been associated with the control of gait, highlighting the relevance of this simulation model for functional gait study. The specific progressive activation of top hierarchical control areas in simulated gait and advancing age corroborate a progressive loss of automation in healthy older adults.


Assuntos
Mapeamento Encefálico , Marcha/fisiologia , Córtex Motor/fisiologia , Adulto , Idoso , Envelhecimento , Encéfalo , Feminino , Antepé Humano/fisiologia , Globo Pálido/diagnóstico por imagem , Globo Pálido/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Estimulação Física , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Putamen/diagnóstico por imagem , Putamen/fisiologia , Tálamo/diagnóstico por imagem , Tálamo/fisiologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Adulto Jovem
3.
Neural Netw ; 135: 78-90, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33360930

RESUMO

Absence epilepsy, characterized by transient loss of awareness and bilaterally synchronous 2-4 Hz spike and wave discharges (SWDs) on electroencephalography (EEG) during absence seizures, is generally believed to arise from abnormal interactions between the cerebral cortex (Ctx) and thalamus. Recent animal electrophysiological studies suggested that changing the neural activation level of the external globus pallidus (GPe) neurons can remarkably modify firing rates of the thalamic reticular nucleus (TRN) neurons through the GABAergic GPe-TRN pathway. However, the existing experimental evidence does not provide a clear answer as to whether the GPe-TRN pathway contributes to regulating absence seizures. Here, using a biophysically based mean-field model of the GPe-corticothalamic (GCT) network, we found that both directly decreasing the strength of the GPe-TRN pathway and inactivating GPe neurons can effectively suppress absence seizures. Also, the pallido-cortical pathway and the recurrent connection of GPe neurons facilitate the regulation of absence seizures through the GPe-TRN pathway. Specifically, in the controllable situation, enhancing the coupling strength of either of the two pathways can successfully terminate absence seizures. Moreover, the competition between the GPe-TRN and pallido-cortical pathways may lead to the GPe bidirectionally controlling absence seizures, and this bidirectional control manner can be significantly modulated by the Ctx-TRN pathway. Importantly, when the strength of the Ctx-TRN pathway is relatively strong, the bidirectional control of absence seizures by changing GPe neural activities can be observed at both weak and strong strengths of the pallido-cortical pathway.These findings suggest that the GPe-TRN pathway may have crucial functional roles in regulating absence seizures, which may provide a testable hypothesis for further experimental studies and new perspectives on the treatment of absence epilepsy.


Assuntos
Córtex Cerebral/fisiologia , Globo Pálido/fisiologia , Redes Neurais de Computação , Convulsões/fisiopatologia , Tálamo/fisiologia , Eletroencefalografia/métodos , Humanos , Vias Neurais/fisiologia , Neurônios/fisiologia
4.
Curr Biol ; 31(2): 310-321.e5, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33157020

RESUMO

Corticothalamic (CT) neurons comprise the largest component of the descending sensory corticofugal pathway, but their contributions to brain function and behavior remain an unsolved mystery. To address the hypothesis that layer 6 (L6) CTs may be activated by extra-sensory inputs prior to anticipated sounds, we performed optogenetically targeted single-unit recordings and two-photon imaging of Ntsr1-Cre+ L6 CT neurons in the primary auditory cortex (A1) while mice were engaged in an active listening task. We found that L6 CTs and other L6 units began spiking hundreds of milliseconds prior to orofacial movements linked to sound presentation and reward, but not to other movements such as locomotion, which were not linked to an explicit behavioral task. Rabies tracing of monosynaptic inputs to A1 L6 CT neurons revealed a narrow strip of cholinergic and non-cholinergic projection neurons in the external globus pallidus, suggesting a potential source of motor-related input. These findings identify new pathways and local circuits for motor modulation of sound processing and suggest a new role for CT neurons in active sensing.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Movimento/fisiologia , Tálamo/fisiologia , Estimulação Acústica , Animais , Córtex Auditivo/citologia , Globo Pálido/fisiologia , Microscopia Intravital , Masculino , Camundongos , Vias Neurais/fisiologia , Neurônios/fisiologia , Imagem Óptica , Recompensa , Técnicas Estereotáxicas , Tálamo/citologia
5.
PLoS Biol ; 18(10): e3000829, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33048920

RESUMO

Task-related activity in the ventral thalamus, a major target of basal ganglia output, is often assumed to be permitted or triggered by changes in basal ganglia activity through gating- or rebound-like mechanisms. To test those hypotheses, we sampled single-unit activity from connected basal ganglia output and thalamic nuclei (globus pallidus-internus [GPi] and ventrolateral anterior nucleus [VLa]) in monkeys performing a reaching task. Rate increases were the most common peri-movement change in both nuclei. Moreover, peri-movement changes generally began earlier in VLa than in GPi. Simultaneously recorded GPi-VLa pairs rarely showed short-time-scale spike-to-spike correlations or slow across-trials covariations, and both were equally positive and negative. Finally, spontaneous GPi bursts and pauses were both followed by small, slow reductions in VLa rate. These results appear incompatible with standard gating and rebound models. Still, gating or rebound may be possible in other physiological situations: simulations show how GPi-VLa communication can scale with GPi synchrony and GPi-to-VLa convergence, illuminating how synchrony of basal ganglia output during motor learning or in pathological conditions may render this pathway effective. Thus, in the healthy state, basal ganglia-thalamic communication during learned movement is more subtle than expected, with changes in firing rates possibly being dominated by a common external source.


Assuntos
Potenciais de Ação/fisiologia , Gânglios da Base/fisiologia , Análise e Desempenho de Tarefas , Tálamo/fisiologia , Animais , Mapeamento Encefálico , Simulação por Computador , Bases de Dados como Assunto , Feminino , Globo Pálido/fisiologia , Macaca , Microeletrodos , Movimento , Neurônios/fisiologia , Tempo de Reação/fisiologia , Descanso/fisiologia , Núcleos Ventrais do Tálamo/fisiologia
6.
Ann Neurol ; 88(6): 1178-1193, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32951262

RESUMO

OBJECTIVE: Current understanding of the neuromodulatory effects of deep brain stimulation (DBS) on large-scale brain networks remains elusive, largely due to the lack of techniques that can reveal DBS-induced activity at the whole-brain level. Using a novel 3T magnetic resonance imaging (MRI)-compatible stimulator, we investigated whole-brain effects of subthalamic nucleus (STN) stimulation in patients with Parkinson disease. METHODS: Fourteen patients received STN-DBS treatment and participated in a block-design functional MRI (fMRI) experiment, wherein stimulations were delivered during "ON" blocks interleaved with "OFF" blocks. fMRI responses to low-frequency (60Hz) and high-frequency(130Hz) STN-DBS were measured 1, 3, 6, and 12 months postsurgery. To ensure reliability, multiple runs (48 minutes) of fMRI data were acquired at each postsurgical visit. Presurgical resting-state fMRI (30 minutes) data were also acquired. RESULTS: Two neurocircuits showed highly replicable, but distinct responses to STN-DBS. A circuit involving the globus pallidus internus (GPi), thalamus, and deep cerebellar nuclei was significantly activated, whereas another circuit involving the primary motor cortex (M1), putamen, and cerebellum showed DBS-induced deactivation. These 2 circuits were dissociable in terms of their DBS-induced responses and resting-state functional connectivity. The GPi circuit was frequency-dependent, selectively responding to high-frequency stimulation, whereas the M1 circuit was responsive in a time-dependent manner, showing enhanced deactivation over time. Finally, activation of the GPi circuit was associated with overall motor improvement, whereas M1 circuit deactivation was related to reduced bradykinesia. INTERPRETATION: Concurrent DBS-fMRI using 3T revealed 2 distinct circuits that responded differentially to STN-DBS and were related to divergent symptoms, a finding that may provide novel insights into the neural mechanisms underlying DBS. ANN NEUROL 2020;88:1178-1193.


Assuntos
Núcleos Cerebelares/fisiologia , Cerebelo/fisiologia , Globo Pálido/fisiologia , Córtex Motor/fisiologia , Doença de Parkinson/fisiopatologia , Putamen/fisiologia , Tálamo/fisiologia , Estimulação Encefálica Profunda , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Núcleo Subtalâmico/fisiologia
7.
J Neurol Neurosurg Psychiatry ; 91(9): 928-937, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32651244

RESUMO

OBJECTIVES: Deep brain stimulation (DBS), targeting the subthalamic nucleus (STN) and globus pallidus interna, is a surgical therapy with class 1 evidence for Parkinson's disease (PD). Bilateral DBS electrodes may be implanted within a single operation or in separate staged surgeries with an interval of time that varies patient by patient. In this study, we used the variation in the timing of implantation from the first to the second implantation allowing for examination of potential volumetric changes of the basal ganglia in patients with PD who underwent staged STN DBS. METHODS: Thirty-two patients with a mean time interval between implantations of 141.8 (±209.1; range: 7-700) days and mean duration of unilateral stimulation of 244.7 (±227.7; range: 20-672) days were included in this study. Using volumetric analysis of whole hemisphere and subcortical structures, we observed whether implantation or stimulation affected structural volume. RESULTS: We observed that DBS implantation, but not the duration of stimulation, induced a significant reduction of volume in the caudate, pallidum, putamen and thalamus ipsilateral to the implanted hemisphere. These findings were not dependent on the trajectory of the implanted electrode nor on first surgery pneumocephalus (0.07%: %Δ for intracranial volume between first and second surgery). In addition, unique regional atrophy differences were evident in each of the structures. CONCLUSION: Our results demonstrate that DBS implantation surgery may affect hemisphere volume at the level of subcortical structures connected to the surgical target.


Assuntos
Núcleo Caudado/patologia , Globo Pálido/patologia , Doença de Parkinson/terapia , Putamen/patologia , Tálamo/patologia , Atrofia/patologia , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/métodos , Feminino , Globo Pálido/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Núcleo Subtalâmico/fisiologia , Fatores de Tempo
8.
Epilepsy Behav ; 110: 107119, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526686

RESUMO

PURPOSE: The purpose of the present study was to investigate the relationship between subcortical nuclei volume and cognition in children with post-convulsive status epilepticus (CSE). METHODS: Structural T1-weighted magnetic resonance imaging (MRI) scans (Siemens Avanto, 1.5 T) and neuropsychological assessments (full-scale intelligence quotient (FSIQ) and Global Memory Scores (GMS)) were collected from subjects at a mean 8.5 years post-CSE (prolonged febrile seizures (PFS), n = 30; symptomatic/known, n = 28; and other, n = 12) and from age- and sex-matched healthy controls (HC). Subjects with CSE were stratified into those with lower cognitive ability (LCA) (CSE+, n = 22) and those without (CSE-, n = 48). Quantitative volumetric analysis using Functional MRI of the Brain Software Library (FSL) (Analysis Group, FMRIB, Oxford) provided segmented MRI brain volumes. Univariate analysis of covariance (ANCOVA) was performed to compare subcortical nuclei volumes across subgroups. Multivariable linear regression was performed for each subcortical structure and for total subcortical volume (SCV) to identify significant predictors of LCA (FSIQ <85) while adjusting for etiology, age, socioeconomic status, sex, CSE duration, and intracranial volume (ICV); Bonferroni correction was applied for the analysis of individual subcortical nuclei. RESULTS: Seventy subjects (11.8 ±â€¯3.4 standard deviation (SD) years; 34 males) and 72 controls (12.1 ±â€¯3.0SD years; 29 males) underwent analysis. Significantly smaller volumes of the left thalamus, left caudate, right caudate, and SCV were found in subjects with CSE+ compared with HC, after adjustment for intracranial, gray matter (GM), or cortical/cerebellar volume. When compared with subjects with CSE-, subjects with CSE+ also had smaller volumes of the left thalamus, left pallidum, right pallidum, and SCV. Individual subcortical nuclei were not associated, but SCV was associated with FSIQ (p = 0.005) and GMS (p = 0.014). Intracranial volume and etiology were similarly predictive. CONCLUSIONS: Nine years post-CSE, SCV is significantly lower in children who have LCA compared with those that do not. However, in this cohort, we are unable to determine whether the relationship is independent of ICV or etiology. Future, larger scale studies may help tease this out.


Assuntos
Cérebro/diagnóstico por imagem , Cognição/fisiologia , Imageamento por Ressonância Magnética/tendências , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/psicologia , Adolescente , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Cérebro/fisiologia , Criança , Estudos de Coortes , Feminino , Seguimentos , Globo Pálido/diagnóstico por imagem , Globo Pálido/fisiologia , Humanos , Testes de Inteligência , Imageamento por Ressonância Magnética/métodos , Masculino , Testes Neuropsicológicos , Tamanho do Órgão/fisiologia , Tálamo/diagnóstico por imagem , Tálamo/fisiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-31981719

RESUMO

Abnormalities in the structure of subcortical regions are central to numerous behaviors affected by autism spectrum disorder (ASD), and these regions may undergo atypical coordinated neurodevelopment. However, relatively little is known about morphological correlations among subcortical structures in young children with ASD. In this study, using volumetric-based methodology and structural covariance approach, we investigated structural covariance of subcortical brain volume in 40 young children with ASD (<7.5 years old) and 38 age-, gender-, and handedness-matched typically developing (TD) children. Results showed that compared with TD children, children with ASD exhibited decreased structural covariation between the left and right cerebral hemispheres, specifically between the left and right thalami, right globus pallidus and left nucleus accumbens, and left globus pallidus and right nucleus accumbens. Compared with TD children, children with ASD exhibited increased structural covariation between adjacent regions, such as between the right globus pallidus and right putamen. Additionally, abnormalities in subcortical structural covariance can predict social communication and repetitive and stereotypic behavior in young children with ASD. Overall, these results suggest decreased long-range structural covariation and enhanced local covariation in subcortical structures in children with ASD, highlighting aberrant developmental coordination or synchronized maturation between subcortical regions that play crucial roles in social cognition and behavior in ASD.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Mapeamento Encefálico/métodos , Lateralidade Funcional , Globo Pálido/diagnóstico por imagem , Núcleo Accumbens/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Transtorno do Espectro Autista/psicologia , Criança , Pré-Escolar , Feminino , Lateralidade Funcional/fisiologia , Globo Pálido/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Núcleo Accumbens/fisiologia , Tálamo/fisiologia
10.
Clin Imaging ; 59(1): 56-60, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31760278

RESUMO

PURPOSE: To investigate the relationship between healthy brain aging and T1 relaxation time obtained by T1 mapping. MATERIALS AND METHODS: A total of 211 (102 males, 109 females; age range: 20-89 years; mean age: 54 years) healthy volunteers underwent T1 mapping between July 2018 and January 2019. Regions of interest (ROIs) were placed on T1 maps in different anatomical regions, including the thalamus, putamen, globus pallidus, head of the caudate nucleus, nucleus accumbens, genu of the corpus callosum, and frontal lobe white matter (WM). Additionally, linear and quadratic regression analyses of ROIs were performed. RESULTS: There were significant quadratic and negative linear correlations between T1 relaxation times in the thalamus, putamen, and age (p < .001). Although the nucleus accumbens did not show a significant relationship between T1 relaxation times and age by linear regression (p = .624), a statistically significant relationship was obtained by quadratic regression (p < .001). For the globus pallidus, head of the caudate nucleus, genu of the corpus callosum and frontal lobe WM the quadratic regression analysis showed a better relationship than the linear correlation analysis. CONCLUSION: Age-related changes in T1 relaxation time vary by location in GM and WM.


Assuntos
Envelhecimento/fisiologia , Encéfalo/anatomia & histologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Núcleo Caudado/anatomia & histologia , Núcleo Caudado/fisiologia , Corpo Caloso/anatomia & histologia , Corpo Caloso/fisiologia , Feminino , Globo Pálido/anatomia & histologia , Globo Pálido/fisiologia , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tálamo/anatomia & histologia , Tálamo/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/fisiologia , Adulto Jovem
11.
Hum Brain Mapp ; 40(18): 5269-5288, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31452289

RESUMO

While numerous studies have used magnetic resonance imaging (MRI) to elucidate normative age-related trajectories in subcortical structures across the human lifespan, there exists substantial heterogeneity among different studies. Here, we investigated the normative relationships between age and morphology (i.e., volume and shape), and microstructure (using the T1-weighted/T2-weighted [T1w/T2w] signal ratio as a putative index of myelin and microstructure) of the striatum, globus pallidus, and thalamus across the adult lifespan using a dataset carefully quality controlled, yielding a final sample of 178 for the morphological analyses, and 162 for the T1w/T2w analyses from an initial dataset of 253 healthy subjects, aged 18-83. In accordance with previous cross-sectional studies of adults, we observed age-related volume decrease that followed a quadratic relationship between age and bilateral striatal and thalamic volumes, and a linear relationship in the globus pallidus. Our shape indices consistently demonstrated age-related posterior and medial areal contraction bilaterally across all three structures. Beyond morphology, we observed a quadratic inverted U-shaped relationship between T1w/T2w signal ratio and age, with a peak value occurring in middle age (at around 50 years old). After permutation testing, the Akaike information criterion determined age relationships remained significant for the bilateral globus pallidus and thalamus, for both the volumetric and T1w/T2w analyses. Our findings serve to strengthen and expand upon previous volumetric analyses by providing a normative baseline of morphology and microstructure of these structures to which future studies investigating patients with various disorders can be compared.


Assuntos
Envelhecimento , Corpo Estriado/diagnóstico por imagem , Globo Pálido/diagnóstico por imagem , Longevidade , Imageamento por Ressonância Magnética/tendências , Tálamo/diagnóstico por imagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Corpo Estriado/fisiologia , Feminino , Globo Pálido/fisiologia , Voluntários Saudáveis , Humanos , Longevidade/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tálamo/fisiologia , Adulto Jovem
12.
J Neurosurg ; 132(2): 574-582, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30797189

RESUMO

OBJECTIVE: Neuronal loss within the cholinergic nucleus basalis of Meynert (nbM) correlates with cognitive decline in dementing disorders such as Alzheimer's disease and Parkinson's disease (PD). In nonhuman primates, the nbM firing pattern (5-40 Hz) has also been correlated with working memory and sustained attention. In this study, authors performed microelectrode recordings of the globus pallidus pars interna (GPi) and the nbM immediately prior to the implantation of bilateral deep brain stimulation (DBS) electrodes in PD patients to treat motor symptoms and cognitive impairment, respectively. Here, the authors evaluate the electrophysiological properties of the nbM in patients with PD. METHODS: Five patients (4 male, mean age 66 ± 4 years) with PD and mild cognitive impairment underwent bilateral GPi and nbM DBS lead implantation. Microelectrode recordings were performed through the GPi and nbM along a single trajectory. Firing rates and burst indices were characterized for each neuronal population with the patient at rest and performing a sustained-attention auditory oddball task. Action potential (AP) depolarization and repolarization widths were measured for each neuronal population at rest. RESULTS: In PD patients off medication, the authors identified neuronal discharge rates that were specific to each area populated by GPi cells (92.6 ± 46.1 Hz), border cells (34 ± 21 Hz), and nbM cells (13 ± 10 Hz). During the oddball task, firing rates of nbM cells decreased (2.9 ± 0.9 to 2.0 ± 1.1 Hz, p < 0.05). During baseline recordings, the burst index for nbM cells (1.7 ± 0.6) was significantly greater than those for GPi cells (1.2 ± 0.2, p < 0.05) and border cells (1.1 ± 0.1, p < 0.05). There was no significant difference in the nbM burst index during the oddball task relative to baseline (3.4 ± 1.7, p = 0.20). With the patient at rest, the width of the depolarization phase of APs did not differ among the GPi cells, border cells, and nbM cells (p = 0.60); however, during the repolarization phase, the nbM spikes were significantly longer than those for GPi high-frequency discharge cells (p < 0.05) but not the border cells (p = 0.20). CONCLUSIONS: Neurons along the trajectory through the GPi and nbM have distinct firing patterns. The profile of nbM activity is similar to that observed in nonhuman primates and is altered during a cognitive task associated with cholinergic activation. These findings will serve to identify these targets intraoperatively and form the basis for further research to characterize the role of the nbM in cognition.


Assuntos
Núcleo Basal de Meynert/fisiopatologia , Doença de Parkinson/fisiopatologia , Estimulação Acústica , Potenciais de Ação , Idoso , Antiparkinsonianos/uso terapêutico , Neurônios Colinérgicos/fisiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Estimulação Encefálica Profunda , Feminino , Globo Pálido/fisiologia , Humanos , Masculino , Microeletrodos , Pessoa de Meia-Idade , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/terapia , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/terapia
13.
Mol Psychiatry ; 24(9): 1351-1368, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30755721

RESUMO

Encoding and predicting aversive events are critical functions of circuits that support survival and emotional well-being. Maladaptive circuit changes in emotional valence processing can underlie the pathophysiology of affective disorders. The lateral habenula (LHb) has been linked to aversion and mood regulation through modulation of the dopamine and serotonin systems. We have defined the identity and function of glutamatergic (Vglut2) control of the LHb, comparing the role of inputs originating in the globus pallidus internal segment (GPi), and lateral hypothalamic area (LHA), respectively. We found that LHb-projecting LHA neurons, and not the proposed GABA/glutamate co-releasing GPi neurons, are responsible for encoding negative value. Monosynaptic rabies tracing of the presynaptic organization revealed a predominantly limbic input onto LHA Vglut2 neurons, while sensorimotor inputs were more prominent onto GABA/glutamate co-releasing GPi neurons. We further recorded the activity of LHA Vglut2 neurons, by imaging calcium dynamics in response to appetitive versus aversive events in conditioning paradigms. LHA Vglut2 neurons formed activity clusters representing distinct reward or aversion signals, including a population that responded to mild foot shocks and predicted aversive events. We found that the LHb-projecting LHA Vglut2 neurons encode negative valence and rapidly develop a prediction signal for negative events. These findings establish the glutamatergic LHA-LHb circuit as a critical node in value processing.


Assuntos
Aprendizagem da Esquiva/fisiologia , Habenula/fisiologia , Hipotálamo/fisiologia , Afeto/fisiologia , Animais , Dopamina/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , Globo Pálido/fisiologia , Ácido Glutâmico/metabolismo , Habenula/metabolismo , Região Hipotalâmica Lateral/fisiologia , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/fisiologia , Neurônios/fisiologia , Recompensa
14.
JAMA Neurol ; 75(3): 353-359, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29340590

RESUMO

Importance: Collective evidence has strongly suggested that deep brain stimulation (DBS) is a promising therapy for Tourette syndrome. Objective: To assess the efficacy and safety of DBS in a multinational cohort of patients with Tourette syndrome. Design, Setting, and Participants: The prospective International Deep Brain Stimulation Database and Registry included 185 patients with medically refractory Tourette syndrome who underwent DBS implantation from January 1, 2012, to December 31, 2016, at 31 institutions in 10 countries worldwide. Exposures: Patients with medically refractory symptoms received DBS implantation in the centromedian thalamic region (93 of 163 [57.1%]), the anterior globus pallidus internus (41 of 163 [25.2%]), the posterior globus pallidus internus (25 of 163 [15.3%]), and the anterior limb of the internal capsule (4 of 163 [2.5%]). Main Outcomes and Measures: Scores on the Yale Global Tic Severity Scale and adverse events. Results: The International Deep Brain Stimulation Database and Registry enrolled 185 patients (of 171 with available data, 37 females and 134 males; mean [SD] age at surgery, 29.1 [10.8] years [range, 13-58 years]). Symptoms of obsessive-compulsive disorder were present in 97 of 151 patients (64.2%) and 32 of 148 (21.6%) had a history of self-injurious behavior. The mean (SD) total Yale Global Tic Severity Scale score improved from 75.01 (18.36) at baseline to 41.19 (20.00) at 1 year after DBS implantation (P < .001). The mean (SD) motor tic subscore improved from 21.00 (3.72) at baseline to 12.91 (5.78) after 1 year (P < .001), and the mean (SD) phonic tic subscore improved from 16.82 (6.56) at baseline to 9.63 (6.99) at 1 year (P < .001). The overall adverse event rate was 35.4% (56 of 158 patients), with intracranial hemorrhage occurring in 2 patients (1.3%), infection in 4 patients with 5 events (3.2%), and lead explantation in 1 patient (0.6%). The most common stimulation-induced adverse effects were dysarthria (10 [6.3%]) and paresthesia (13 [8.2%]). Conclusions and Relevance: Deep brain stimulation was associated with symptomatic improvement in patients with Tourette syndrome but also with important adverse events. A publicly available website on outcomes of DBS in patients with Tourette syndrome has been provided.


Assuntos
Estimulação Encefálica Profunda/métodos , Sistema de Registros , Síndrome de Tourette/terapia , Resultado do Tratamento , Adolescente , Adulto , Estudos de Coortes , Bases de Dados Factuais/estatística & dados numéricos , Feminino , Globo Pálido/fisiologia , Humanos , Cooperação Internacional , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Método Simples-Cego , Tálamo/fisiologia , Adulto Jovem
15.
Neuromodulation ; 21(6): 527-531, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29164735

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the globus pallidus pars interna (GPi) and the subthalamic nucleus (STN) are established treatment option in Parkinson's disease (PD). If DBS does not provide the desired effect, re-operation to the alternative target is a treatment option, but data on the effect of re-operation are scarce. OBJECTIVES: The objective of this study is to evaluate the clinical effect of re-operation the alternative target after failure of initial STN or GPi DBS for Parkinson's disease. MATERIALS AND METHODS: We descriptively analyzed the baseline characteristics, the effect of initial surgery and re-operation of eight NSTAPS (Netherlands SubThalamic and Pallidal Stimulation) patients and six previously published cases that underwent re-operation to a different target. RESULTS: In the NSTAPS cohort, two of the eight patients showed more than 30% improvement of off-drug motor symptoms after re-operation. The initial DBS leads of these patients were off target. In the cases from the literature, 30% off-drug motor improvement was seen in all three patients re-operated from GPi to STN and none of the three patients re-operated from STN to GPi. Only one of the three cases from the literature where any improvement was seen with the operation had a confirmed on target lead location after the first surgery, while the other two patients did not undergo post-operative imaging after the first surgery. CONCLUSIONS: Re-operation to a different target due to lack of effect appears to have a limited chance of leading to objective improvement if the leads were correctly placed during initial surgery.


Assuntos
Bases de Dados Bibliográficas , Estimulação Encefálica Profunda , Doença de Parkinson , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Etários , Antiparkinsonianos/efeitos adversos , Estudos de Coortes , Bases de Dados Bibliográficas/estatística & dados numéricos , Estimulação Encefálica Profunda/métodos , Globo Pálido/fisiologia , Levodopa/efeitos adversos , Países Baixos , Doença de Parkinson/psicologia , Doença de Parkinson/terapia , Qualidade de Vida/psicologia , Núcleo Subtalâmico/fisiologia , Inquéritos e Questionários , Resultado do Tratamento
16.
Mov Disord ; 33(1): 36-47, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29194808

RESUMO

Neurosurgical interventions have been used to treat PD for over a century. We examined the changing landscape of surgery for PD to appraise the value of various procedures in the context of advances in our understanding and technology. We assessed the number of articles published on neurosurgical procedures for PD over time as an albeit imprecise surrogate for their usage level. We identified over 8,000 publications associated with PD surgery. Over half the publications were on DBS. The field of DBS for PD showed a rapid rise in articles, but is now in a steady state. Thalamotomy and, to a lesser extent, pallidotomy follow a biphasic publication distribution with peaks approximately 30 years apart. Articles on gene therapy and transplantation experienced initial rapid rises and significant recent declines. Procedures using novel technologies, including gamma knife and focused ultrasound, are emerging, but are yet to have significant impact as measured by publication numbers. Pallidotomy and thalamotomy are prominent examples of procedures that were popular, declined, and re-emerged and redeclined. Transplantation and gene therapy have never broken into clinical practice. DBS overtook all procedures as the dominant surgical intervention and drove widespread use of surgery for PD. Notwithstanding, the number of DBS articles appears to have plateaued. As advances continue, emerging treatments may compete with DBS in the future. © 2017 International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda/métodos , Procedimentos Neurocirúrgicos/métodos , Doença de Parkinson/cirurgia , Radiocirurgia , Terapia Genética , Globo Pálido/fisiologia , Humanos , Palidotomia/métodos , Tálamo/fisiologia , Tálamo/cirurgia
17.
Neuron ; 95(5): 1181-1196.e8, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28858620

RESUMO

Basal ganglia (BG) circuits orchestrate complex motor behaviors predominantly via inhibitory synaptic outputs. Although these inhibitory BG outputs are known to reduce the excitability of postsynaptic target neurons, precisely how this change impairs motor performance remains poorly understood. Here, we show that optogenetic photostimulation of inhibitory BG inputs from the globus pallidus induces a surge of action potentials in the ventrolateral thalamic (VL) neurons and muscle contractions during the post-inhibitory period. Reduction of the neuronal population with this post-inhibitory rebound firing by knockout of T-type Ca2+ channels or photoinhibition abolishes multiple motor responses induced by the inhibitory BG input. In a low dopamine state, the number of VL neurons showing post-inhibitory firing increases, while reducing the number of active VL neurons via photoinhibition of BG input, effectively prevents Parkinson disease (PD)-like motor symptoms. Thus, BG inhibitory input generates excitatory motor signals in the thalamus and, in excess, promotes PD-like motor abnormalities. VIDEO ABSTRACT.


Assuntos
Globo Pálido/fisiologia , Neurônios Motores/fisiologia , Inibição Neural/fisiologia , Tálamo/fisiologia , Potenciais de Ação/fisiologia , Oxirredutases do Álcool/genética , Animais , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/fisiologia , Dopamina/metabolismo , Distonia/dietoterapia , Distonia/tratamento farmacológico , Distonia/fisiopatologia , Feminino , Globo Pálido/citologia , Globo Pálido/metabolismo , Levodopa/uso terapêutico , Masculino , Erros Inatos do Metabolismo/dietoterapia , Erros Inatos do Metabolismo/tratamento farmacológico , Erros Inatos do Metabolismo/fisiopatologia , Camundongos , Camundongos Knockout , Contração Muscular/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Transtornos Psicomotores/dietoterapia , Transtornos Psicomotores/tratamento farmacológico , Transtornos Psicomotores/fisiopatologia , Tálamo/citologia
18.
Hum Brain Mapp ; 38(3): 1224-1232, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27862612

RESUMO

BACKGROUND: Deep Brain Stimulation (DBS) of the Globus pallidus internus (GPi) is gold standard treatment in medically refractory dystonia. Recent evidence indicates that stimulation effects are also due to axonal modulation and affection of a fibre network. For the GPi, the pallidothalamic tracts are known to be the major motor efferent pathways. The aim of this study is to explore the anatomic vicinity of these tracts and DBS electrodes in dystonia applying diffusion tractography. METHODS: Diffusion MRI was acquired in ten patients presenting for DBS for dystonia. We applied both a conventionally used probabilistic tractography algorithm (FSL) as well as a probabilistic streamline tracking approach, based on constrained spherical deconvolution and particle filtering with anatomic priors, to the datasets. DBS electrodes were coregistered to the diffusion datasets. RESULTS: We were able to delineate the pallidothalamic tracts in all patients. Using the streamline approach, we were able to distinguish between the two sub-components of the tracts, the ansa lenticularis and the fasciculus lenticularis. Clinically efficient DBS electrodes displayed a close anatomic vicinity pathway of the pallidothalamic tracts, and their course was consistent with previous tracer labelling studies. Although we present only anatomic data, we interpret these findings as evidence of the possible involvement of fibre tracts to the clinical effect in DBS. Electrophysiological intraoperative recordings would be needed to complement our findings. In the future, a clear and individual delineation of the pallidothalamic tracts could optimize the stereotactic process of optimal electrode localization. Hum Brain Mapp 38:1224-1232, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Estimulação Encefálica Profunda/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Distonia/terapia , Globo Pálido/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Tálamo/fisiologia , Adulto , Idoso , Algoritmos , Mapeamento Encefálico , Distonia/diagnóstico por imagem , Feminino , Globo Pálido/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Tálamo/diagnóstico por imagem
19.
Brain Stimul ; 10(1): 126-138, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27839724

RESUMO

BACKGROUND: The motor thalamus is a key nodal point in the pallidothalamocortical "motor" circuit, which has been implicated in the pathogenesis of Parkinson's disease (PD) and other movement disorders. Although a critical structure in the motor circuit, the role of the motor thalamus in mediating the therapeutic effects of deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) is not fully understood. OBJECTIVE: To characterize the changes in neuronal activity in the pallidal (ventralis lateralis pars oralis (VLo) and ventralis anterior (VA)) and cerebellar (ventralis posterior lateralis pars oralis (VPLo)) receiving areas of the motor thalamus during therapeutic GPi DBS. METHODS: Neuronal activity from the VA/VLo (n = 134) and VPLo (n = 129) was recorded from two non-human primates made parkinsonian using the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. For each isolated unit, one minute of data was recorded before, during and after DBS; a pulse width of 90 µs and a frequency of 135 Hz were used for DBS to replicate commonly used clinical settings. Stimulation amplitude was determined based on the parameters required to improve motor signs. Severity of motor signs was assessed using the UPDRS modified for nonhuman primates. Discharge rate, presence and characteristics of bursts, and oscillatory activity were computed and compared across conditions (pre-, during, and post-stimulation). RESULTS: Neurons in both the pallidal and cerebellar receiving areas demonstrated significant changes in their pattern of activity during therapeutic GPi DBS. A majority of the neurons in each nucleus were inhibited during DBS (VA/VLo: 47% and VPLo: 49%), while a smaller subset was excited (VA/VLo: 21% and VPLo: 17%). Bursts changed in structure, becoming longer in duration and both intra-burst and inter-spike intervals and variability were increased in both subnuclei. High frequency oscillatory activity was significantly increased during stimulation with 33% of VA/VLo (likelihood ratio: p < 0.0001) and 34% of VPLo (p < 0.0001) neurons entrained to the stimulation pulse train. CONCLUSIONS: Therapeutic GPi DBS produced a significant change in neuronal activity in both pallidal and cerebellar receiving areas of the motor thalamus. DBS suppressed activity in the majority of neurons, changed the structure of bursting activity and locked the neuronal response of one-third of cells to the stimulation pulse, leading to an increase in the power of gamma oscillations. These data support the hypothesis that stimulation activates output from the stimulated structure and that GPi DBS produces network-wide changes in neuronal activity that includes both the pallidal and cerebellar thalamo-cortical circuits.


Assuntos
Estimulação Encefálica Profunda/métodos , Globo Pálido/fisiologia , Neurônios/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/terapia , Tálamo/fisiologia , Potenciais de Ação/fisiologia , Animais , Cerebelo/fisiologia , Feminino , Macaca mulatta , Primatas
20.
Neuron ; 92(5): 1093-1105, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27866799

RESUMO

We developed a circuit model of spiking neurons that includes multiple pathways in the basal ganglia (BG) and is endowed with feedback mechanisms at three levels: cortical microcircuit, corticothalamic loop, and cortico-BG-thalamocortical system. We focused on executive control in a stop signal task, which is known to depend on BG across species. The model reproduces a range of experimental observations and shows that the newly discovered feedback projection from external globus pallidus to striatum is crucial for inhibitory control. Moreover, stopping process is enhanced by the cortico-subcortical reverberatory dynamics underlying persistent activity, establishing interdependence between working memory and inhibitory control. Surprisingly, the stop signal reaction time (SSRT) can be adjusted by weights of certain connections but is insensitive to other connections in this complex circuit, suggesting novel circuit-based intervention for inhibitory control deficits associated with mental illness. Our model provides a unified framework for inhibitory control, decision making, and working memory.


Assuntos
Gânglios da Base/fisiologia , Tomada de Decisões/fisiologia , Função Executiva/fisiologia , Memória/fisiologia , Modelos Neurológicos , Inibição Neural/fisiologia , Córtex Pré-Frontal/fisiologia , Tálamo/fisiologia , Animais , Córtex Cerebral , Globo Pálido/fisiologia , Humanos , Neostriado/fisiologia , Vias Neurais/fisiologia , Tempo de Reação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA