Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 99(8): 4043-4053, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30737796

RESUMO

BACKGROUND: Resveratrol, an extensively recognized phytochemical that belongs to the stilbene family, is abundant in grape peel which is discarded as a by-product during grape juice processing. RESULTS: In this study, we established that pre-heating grape peel above 75 °C significantly improved the extractability of resveratrol and its glucoside piceid. In particular, thermal heating of grape peel at 95 °C for 10 min, followed by treatment with a mixture of exo-1,3-ß-glucanase and pectinases at 50 °C for 60 min, dramatically increased the conversion of piceid into resveratrol and the overall extractability of this phytochemical by 50%. Furthermore, thermal pre-treatment promoted a substantial increase in the total phenol, flavonoid, and anthocyanin concentrations in the grape peel extract. Ultimately, resveratrol-enriched grape peel extract significantly augmented the antioxidant response in vitro, possibly by attenuating the accumulation of intracellular reactive oxygen species via the Nrf2 signaling pathway. CONCLUSION: The method developed in this study for preparing grape peel extract introduces a potential low-cost green processing for the industrial fortification of food products with resveratrol and other health-beneficial antioxidants. © 2019 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Manipulação de Alimentos/métodos , Extratos Vegetais/química , Resveratrol/química , Vitis/química , Antioxidantes/isolamento & purificação , Biocatálise , Manipulação de Alimentos/instrumentação , Frutas/química , Glucana 1,3-beta-Glucosidase/química , Temperatura Alta , Extratos Vegetais/isolamento & purificação , Poligalacturonase/química , Resveratrol/isolamento & purificação , Resíduos/análise
2.
PLoS One ; 10(7): e0133066, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26177095

RESUMO

Endo-ß-1,3-glucanases are widespread enzymes with glycosyl hydrolitic activity involved in carbohydrate remodelling during the germination and pollen tube growth. Although members of this protein family with allergenic activity have been reported, their effective contribution to allergy is little known. In this work, we identified Fra e 9 as a novel allergenic ß-1,3-glucanase from ash pollen. We produced the catalytic and carbohydrate-binding domains as two independent recombinant proteins and characterized them from structural, biochemical and immunological point of view in comparison to their counterparts from olive pollen. We showed that despite having significant differences in biochemical activity Fra e 9 and Ole e 9 display similar IgE-binding capacity, suggesting that ß-1,3-glucanases represent an heterogeneous family that could display intrinsic allergenic capacity. Specific cDNA encoding Fra e 9 was cloned and sequenced. The full-length cDNA encoded a polypeptide chain of 461 amino acids containing a signal peptide of 29 residues, leading to a mature protein of 47760.2 Da and a pI of 8.66. An N-terminal catalytic domain and a C-terminal carbohydrate-binding module are the components of this enzyme. Despite the phylogenetic proximity to the olive pollen ß-1,3-glucanase, Ole e 9, there is only a 39% identity between both sequences. The N- and C-terminal domains have been produced as independent recombinant proteins in Escherichia coli and Pichia pastoris, respectively. Although a low or null enzymatic activity has been associated to long ß-1,3-glucanases, the recombinant N-terminal domain has 200-fold higher hydrolytic activity on laminarin than reported for Ole e 9. The C-terminal domain of Fra e 9, a cysteine-rich compact structure, is able to bind laminarin. Both molecules retain comparable IgE-binding capacity when assayed with allergic sera. In summary, the structural and functional comparison between these two closely phylogenetic related enzymes provides novel insights into the complexity of ß-1,3-glucanases, representing a heterogeneous protein family with intrinsic allergenic capacity.


Assuntos
Alérgenos/química , Glucana 1,3-beta-Glucosidase/química , Imunoglobulina E/química , Proteínas de Plantas/química , Pólen/química , Alérgenos/imunologia , Alérgenos/metabolismo , Sequência de Aminoácidos , Antígenos de Plantas/química , Antígenos de Plantas/genética , Antígenos de Plantas/imunologia , Domínio Catalítico , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Fraxinus/química , Expressão Gênica , Glucana 1,3-beta-Glucosidase/genética , Glucana 1,3-beta-Glucosidase/imunologia , Humanos , Soros Imunes/química , Imunoglobulina E/metabolismo , Dados de Sequência Molecular , Olea/química , Fases de Leitura Aberta , Pichia/genética , Pichia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Pólen/enzimologia , Pólen/imunologia , Ligação Proteica , Sinais Direcionadores de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Hipersensibilidade Respiratória/sangue , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/fisiopatologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , beta-Glucosidase/química , beta-Glucosidase/genética , beta-Glucosidase/imunologia
3.
Arch Biochem Biophys ; 580: 93-101, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26151774

RESUMO

Ole e 9 and Fra e 9 are two allergenic ß-1,3-glucanases from olive and ash tree pollens, respectively. Both proteins present a modular structure with a catalytic N-terminal domain and a carbohydrate-binding module (CBM) at the C-terminus. Despite their significant sequence resemblance, they differ in some functional properties, such as their catalytic activity and the carbohydrate-binding ability. Here, we have studied the different capability of the recombinant C-terminal domain of both allergens to bind laminarin by NMR titrations, binding assays and ultracentrifugation. We show that rCtD-Ole e 9 has a higher affinity for laminarin than rCtD-Fra e 9. The complexes have different exchange regimes on the NMR time scale in agreement with the different affinity for laminarin observed in the biochemical experiments. Utilising NMR chemical shift perturbation data, we show that only one side of the protein surface is affected by the interaction and that the binding site is located in the inter-helical region between α1 and α2, which is buttressed by aromatic side chains. The binding surface is larger in rCtD-Ole e 9 which may account for its higher affinity for laminarin relative to rCtD-Fra e 9.


Assuntos
Alérgenos/química , Antígenos de Plantas/química , Glucana 1,3-beta-Glucosidase/química , Glucanos/química , Proteínas de Plantas/química , beta-Glucosidase/química , Alérgenos/genética , Alérgenos/imunologia , Sequência de Aminoácidos , Antígenos de Plantas/genética , Antígenos de Plantas/imunologia , Sítios de Ligação , Fraxinus/química , Fraxinus/enzimologia , Expressão Gênica , Glucana 1,3-beta-Glucosidase/genética , Glucana 1,3-beta-Glucosidase/imunologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Olea/química , Olea/enzimologia , Pichia/genética , Pichia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Pólen/química , Pólen/imunologia , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Homologia de Sequência de Aminoácidos , beta-Glucosidase/genética , beta-Glucosidase/imunologia
4.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 1): 52-62, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23275163

RESUMO

Plant endo-1,3-ß-glucanases are involved in important physiological processes such as defence mechanisms, cell division and flowering. They hydrolyze (1→3)-ß-glucans, with very limited activity towards mixed (1→3,1→4)-ß-glucans and branched (1→3,1→6)-ß-glucans. Here, crystal structures of the potato (Solanum tuberosum) endo-1,3-ß-glucanase GLUB20-2 with the nucleophilic Glu259 residue substituted by alanine (E259A) are reported. Despite this active-site mutation, the protein retained residual endoglucanase activity and when incubated in the crystallization buffer with a linear hexameric substrate derived from (1→3)-ß-glucan (laminarahexose) cleaved it in two different ways, generating trisaccharides and tetrasaccharides, as confirmed by mass spectrometry. The trisaccharide (laminaratriose) shows higher binding affinity and was found to fully occupy the -1, -2 and -3 sites of the active-site cleft, even at a low molar excess of the substrate. At elevated substrate concentration the tetrasaccharide molecule (laminaratetrose) also occupies the active site, spanning the opposite sites +1, +2, +3 and +4 of the cleft. These are the first crystal structures of a plant glycoside hydrolase family 17 (GH17) member to reveal the protein-saccharide interactions and were determined at resolutions of 1.68 and 1.55 Å, respectively. The geometry of the active-site cleft clearly precludes any (1→4)-ß-glucan topology at the subsites from -3 to +4 and could possibly accommodate ß-1,6-branching only at subsites +1 and +2. The glucose units at subsites -1 and -2 interact with highly conserved protein residues. In contrast, subsites -3, +3 and +4 are variable, suggesting that the mode of glucose binding at these sites may vary between different plant endo-1,3-ß-glucanases. Low substrate affinity is observed at subsites +1 and +2, as manifested by disorder of the glycosyl units there.


Assuntos
Substituição de Aminoácidos/genética , Glucana 1,3-beta-Glucosidase/química , Glucana 1,3-beta-Glucosidase/genética , Oligossacarídeos/química , Solanum tuberosum/enzimologia , Sítios de Ligação/genética , Domínio Catalítico/genética , Cristalização , Cristalografia por Raios X , Hidrólise , Ligantes , Oligossacarídeos/genética , Solanum tuberosum/genética , Trissacarídeos/química
5.
Acta Biochim Pol ; 55(4): 791-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19081847

RESUMO

The synthesis and degradation of (1-->3)-beta-glycosidic bonds between glucose moieties are essential metabolic processes in plant cell architecture and function. We have found that a unique, conserved cysteine residue, positioned outside the catalytic centre of potato endo-(1-->3)-beta-glucanase - product of the gluB20-2 gene, participates in determining the substrate specificity of the enzyme. The same residue is largely responsible for endo-(1-->3)-beta-glucanase inhibition by mercury ions. Our results confirm that the spatial adjustment between an enzyme and its substrate is one of the essential factors contributing to the specificity and accuracy of enzymatic reactions.


Assuntos
Cisteína/metabolismo , Glucana 1,3-beta-Glucosidase/metabolismo , Solanum tuberosum/enzimologia , Sequência de Aminoácidos , Catálise , Cisteína/química , Glucana 1,3-beta-Glucosidase/antagonistas & inibidores , Glucana 1,3-beta-Glucosidase/química , Mercúrio/farmacologia , Dados de Sequência Molecular , Especificidade por Substrato
6.
Prikl Biokhim Mikrobiol ; 43(4): 511-7, 2007.
Artigo em Russo | MEDLINE | ID: mdl-17929583

RESUMO

Nutritional attractiveness of the brown alga Laminaria japonica for the sea urchin Strongylocentrotus intermedius was studied. The composition of L. japonica was analyzed after one and two years of its life under natural conditions, in its seedlings, and in the alga partially degraded by natural factors. Substances extracted with various solvents were tested for the presence of inhibitors and activators of 1,3-beta-D-glucanase, a digestive enzyme of the sea urchin. Ethanolic extract of freshly harvested L. japonica was found to suppress the enzyme activity. Substances present in ethanolic extracts of the alga after one or two years of its life cycle and in the alga, partly degraded by natural factors, activated the sea urchin enzyme. This fact is in agreement with earlier natural observations concerning the nutritional attractiveness of such L. japonica samples for Strongylocentrotus intermedius.


Assuntos
Glucana 1,3-beta-Glucosidase/química , Laminaria/química , Strongylocentrotus/enzimologia , Animais , Glucana 1,3-beta-Glucosidase/antagonistas & inibidores , Extratos Vegetais/química
7.
Biophys J ; 88(1): 467-74, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15516527

RESUMO

Conformational characteristics and the adsorption behavior of endo-beta-1,3-glucanase from the hyperthermophilic microorganism Pyrococcus furiosus were studied by circular dichroism, steady-state and time-resolved fluorescence spectroscopy, and calorimetry in solution and in the adsorbed state. The adsorption isotherms were determined on two types of surfaces: hydrophobic Teflon and hydrophilic silica particles were specially designed so that they do not interact with light and therefore do not interfere with spectroscopic measurements. We present the most straightforward method to study structural features of adsorbed macromolecules in situ using common spectroscopic techniques. The enzyme was irreversibly adsorbed and immobilized in the adsorbed state even at high temperatures. Adsorption offered further stabilization to the heat-stable enzyme and in the case of adsorption on Teflon its denaturation temperature was measured at 133 degrees C, i.e., the highest experimentally determined for a protein. The maintenance of the active conformation and biological function particularly at high temperatures is important for applications in biocatalysis and biotechnology. With this study we also suggest that nature may employ adsorption as a complementary mode to maintain structural integrity of essential biomolecules at extreme conditions of temperature.


Assuntos
Glucana 1,3-beta-Glucosidase/química , Adsorção , Anisotropia , Calorimetria , Varredura Diferencial de Calorimetria , Catálise , Dicroísmo Circular , Relação Dose-Resposta a Droga , Temperatura Alta , Concentração de Íons de Hidrogênio , Luz , Modelos Moleculares , Fosfatos/química , Politetrafluoretileno/química , Conformação Proteica , Desnaturação Proteica , Estrutura Secundária de Proteína , Pyrococcus furiosus/enzimologia , Dióxido de Silício/química , Espectrometria de Fluorescência , Espectrofotometria , Temperatura , Fatores de Tempo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA