RESUMO
Quercetin is a key flavonol in tea plants (Camellia sinensis (L.) O. Kuntze) with various health benefits, and it often occurs in the form of glucosides. The roles of quercetin and its glucosylated forms in plant defense are generally not well-studied, and remain unknown in the defense of tea. Here, we found higher contents of quercetin glucosides and a decline of the aglucone upon Ectropis grisescens (E. grisescens) infestation of tea. Nine UGTs were strongly induced, among which UGT89AC1 exhibited the highest activity toward quercetin in vitro and in vivo. The mass of E. grisescens larvae that fed on plants with repressed UGT89AC1 or varieties with lower levels of UGT89AC1 was significantly lower than that of larvae fed on controls. Artificial diet supplemented with quercetin glucoside also reduced the larval growth rate, whereas artificial diet supplemented with free quercetin had no significant effect on larval growth. UGT89AC1 was located in both the cytoplasm and nucleus, and its expression was modulated by JA, JA-ILE, and MeJA. These findings demonstrate that quercetin glucosylation serves a defensive role in tea against herbivory. Our results also provide novel insights into the ecological relevance of flavonoid glycosides under biotic stress in plants.
Assuntos
Camellia sinensis , Lepidópteros , Animais , Camellia sinensis/metabolismo , Quercetina/farmacologia , Quercetina/metabolismo , Herbivoria , Larva , Chá/metabolismo , Glucosídeos/metabolismo , Proteínas de Plantas/metabolismoRESUMO
The increasing demand for tea consumption calls for the development of more products with distinct characteristics. The sensory quality of tencha is significantly determined by innate differences among tea cultivars. However, the correlations between the chemical composition and sensory traits of tencha are still unclear. To enhance the understanding of the flavor formation mechanism in tencha and further to develop new cultivars resources, we investigated non-volatiles and volatile metabolites as well as sensory traits in tencha from different tea cultivars (Camellia sinensis cv. Yabukita, Longjing 43 and Baiye 1); the relationships between the flavor traits and non-volatiles/volatiles were further evaluated by partial least squares - discriminate analysis (PLS-DA), multiple factor analysis (MFA) and multidimensional alignment (MDA) analysis. A total of 64 non-volatiles and 116 volatiles were detected in all samples, among which 71 metabolites were identified as key flavor-chemical contributors involving amino acids, flavonol glycosides, flavones, catechins, ketones, alcohols, hydrocarbons, aldehydes, esters and acids. The levels of taste-related amino acids, flavonol glycosides and gallic acid varied significantly among the tencha samples made from different tea cultivars. All the samples exhibited typical quality characteristics of tencha. The tencha from Camellia sinensis cv. Longjing 43 and Camellia sinensis cv. Baiye 1 (cultivated in the open) exhibited higher levels of amino acids and gallic acid, which were associated with the umami taste and mellow taste of tea infusion. Abundant flavonol glycosides were related to the astringency, while partial tri-glycosides specifically quercetin-3-O-galactoside-rhamnoside-glucoside and total of flavonol galactoside-rhamnoside-glucoside were associated with mellow taste. The floral alcohols were identified as significant contributors to the refreshing aroma traits of tencha. The green, almond-like, acidic and fruity odorants were associated with a green and fresh aroma, while the green, cheesy and waxy odorants such as ketones, esters, acids and hydrocarbons were associated with seaweed-like aroma. This study provides insight into sensory-related chemical profiles of tencha from different tea cultivars, supplying valuable information on flavor and quality identification for tencha.
Assuntos
Camellia sinensis , Camellia sinensis/química , Chá/química , Quimiometria , Flavonóis/análise , Aminoácidos/metabolismo , Glicosídeos/análise , Ácidos , Álcoois/análise , Ácido Gálico/análise , Glucosídeos/metabolismo , Cetonas/análiseRESUMO
Nanotechnology has recently been emerged as a transformative technology that offers efficient and sustainable options for nano-bio interface. There has been a considerable interest in exploring the factors affecting elicitation mechanism and nanomaterials have been emerged as strong elicitors in medicinal plants. Stevia rebaudiana is well-known bio-sweetener and the presence of zero calorie, steviol glycosides (SGs) in the leaves of S. rebaudiana have made it a desirable crop to be cultivated on large scale to obtain its higher yield and maximal content of high quality natural sweeteners. Besides, phenolics, flavonoids, and antioxidants are abundant in stevia which contribute to its medicinal importance. Currently, scientists are trying to increase the market value of stevia by the enhancement in production of its bioactive compounds. As such, various in vitro and cell culture strategies have been adopted. In stevia agronanotechnology, nanoparticles behave as elicitors for the triggering of its secondary metabolites, specifically rebaudioside A. This review article discusses the importance of S. rebaudiana and SGs, conventional approaches that have failed to increase the desired yield and quality of stevia, modern approaches that are currently being applied to obtain utmost benefits of SGs, and future needs of advanced technologies for further exploitation of this wonder of nature.
Assuntos
Diterpenos do Tipo Caurano , Stevia , Stevia/metabolismo , Glucosídeos/metabolismo , Edulcorantes/metabolismo , Flavonoides/metabolismo , Diterpenos do Tipo Caurano/metabolismo , Folhas de Planta/metabolismo , Glicosídeos/metabolismoRESUMO
Pinellia ternata (Thunb.) Breit. (P. ternata) is a very important plant that is commonly used in traditional Chinese medicine. Its corms can be used as medicine and function to alleviate cough, headache, and phlegm. The epidermis of P. ternata corms is often light yellow to yellow in color; however, within the range of P. ternata found in JingZhou City in Hubei Province, China, there is a form of P. ternata in which the epidermis of the corm is red. We found that the total flavonoid content of red P. ternata corms is significantly higher than that of yellow P. ternata corms. The objective of this study was to understand the molecular mechanisms behind the difference in epidermal color between the two forms of P. ternata. The results showed that a high content of anthocyanidin was responsible for the red epidermal color in P. ternata, and 15 metabolites, including cyanidin-3-O-rutinoside-5-O-glucoside, cyanidin-3-O-glucoside, and cyanidin-3-O-rutinoside, were screened as potential color markers in P. ternata through metabolomic analysis. Based on an analysis of the transcriptome, seven genes, including PtCHS1, PtCHS2, PtCHI1, PtDFR5, PtANS, PtUPD-GT2, and PtUPD-GT3, were found to have important effects on the biosynthesis of anthocyanins in the P. ternata corm epidermis. Furthermore, two transcription factors (TFs), bHLH1 and bHLH2, may have regulatory functions in the biosynthesis of anthocyanins in red P. ternata corms. Using an integrative analysis of the metabolomic and transcriptomic data, we identified five genes, PtCHI, PtDFR2, PtUPD-GT1, PtUPD-GT2, and PtUPD-GT3, that may play important roles in the presence of the red epidermis color in P. ternata corms.
Assuntos
Pinellia , Transcriptoma , Antocianinas/genética , Antocianinas/metabolismo , Pinellia/genética , Perfilação da Expressão Gênica , Glucosídeos/metabolismoRESUMO
Oxidative stress and inflammation play a key role in diverse pathological conditions such as cancer and metabolic disorders. The objective of this study was to determine the antioxidant and anti-inflammatory potentials of crude extract (CE) and phenolic-enriched extract (PHE) obtained from the seed coats (SCs) of black bean (BB) and pinto bean (PB) varieties. Delphinidin-3-O-glucoside (46 mg/g SC), malvidin-3-O-glucoside (29.9 mg/g SC), and petunidin-3-O-glucoside (7.5 mg/g SC) were found in major concentrations in the PHE-BB. Pelargonidin (0.53 mg/g SC) was only identified in the PHE-PB. PHE from both varieties showed antioxidant and radical scavenging capacities, with strong correlations associated with total phenolic content (TPC). Polyphenolics, including catechin, myricetin, kaempferol, quercetin, and isorhamnetin glucosides, were identified in the extracts. In terms of the anti-inflammatory potentials, PHE-PB had an IC50 of 10.5 µg dry extract/mL (µg DE/mL) for cyclooxygenase-2 (COX-2) inhibition. The inhibition values for cyclooxygenase-1 (COX-1) ranged from 118.1 to 162.7 µg DE/mL. Regarding inducible nitric oxide synthase (iNOS) inhibition, PHE-BB had an IC50 of 62.6 µg DE/mL. As determined via in silico analysis, pelargonidin showed binding affinities of -7.8 and -8.5 kcal/mol for COX-1 and iNOS, respectively, and catechin had a value of -8.3 kcal/mol for COX-2. Phenolic-enriched extracts from seed coats of black and pinto beans showed good antioxidant and anti-inflammatory potential that warrants in vitro and in vivo studies.
Assuntos
Catequina , Phaseolus , Phaseolus/química , Antioxidantes/química , Extratos Vegetais/química , Ciclo-Oxigenase 2/metabolismo , Catequina/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Fenóis/análise , Glucosídeos/metabolismoRESUMO
Verbascoside, which was first discovered in 1963, is a well-known phenylethanoid glycoside (PhG) that exhibits antioxidant, anti-inflammatory, antimicrobial, and neuroprotective activities and contributes to the therapeutic effects of many medicinal plants. However, the biosynthetic pathway of verbascoside remains to be fully elucidated. Here, we report the identification of two missing enzymes in the verbascoside biosynthesis pathway by transcriptome mining and in vitro enzymatic assays. Specifically, a BAHD acyltransferase (hydroxycinnamoyl-CoA:salidroside hydroxycinnamoyltransferase [SHCT]) was shown to catalyze the regioselective acylation of salidroside to form osmanthuside A, and a CYP98 hydroxylase (osmanthuside B 3,3'-hydroxylase [OBH]) was shown to catalyze meta-hydroxylations of the p-coumaroyl and tyrosol moieties of osmanthuside B to complete the biosynthesis of verbascoside. Because SHCTs and OBHs are found in many Lamiales species that produce verbascoside, this pathway may be general. The findings from the study provide novel insights into the formation of caffeoyl and hydroxytyrosol moieties in natural product biosynthetic pathways. In addition, with the newly acquired enzymes, we achieved heterologous production of osmanthuside B, verbascoside, and ligupurpuroside B in Escherichia coli; this work lays a foundation for sustainable production of verbascoside and other PhGs in micro-organisms.
Assuntos
Glucosídeos , Glicosídeos , Glucosídeos/metabolismo , Fenóis/metabolismoRESUMO
Paeoniflorin is a glycoside compound found in Paeonia lactiflora Pall that is used in traditional herbal medicine and shows various protective effects on the cardio-cerebral vascular system. It has been reported that the pharmacological effects of paeoniflorin might be generated by its metabolites. However, the bioavailability of paeoniflorin by oral administration is low, which greatly limits its clinical application. In this paper, a paeoniflorin-converting enzyme gene (G6046, GenBank accession numbers: OP856858) from Cunninghamella blakesleeana (AS 3.970) was identified by comparative analysis between MS analysis and transcriptomics. The expression, purification, enzyme activity, and structure of the conversion products produced by this paeoniflorin-converting enzyme were studied. The optimal conditions for the enzymatic activity were found to be pH 9, 45 °C, resulting in a specific enzyme activity of 14.56 U/mg. The products were separated and purified by high-performance counter-current chromatography (HPCCC). Two main components were isolated and identified, 2-amino-2-p-hydroxymethyl-methyl alcohol-benzoate (tirs-benzoate) and 1-benzoyloxy-2,3-propanediol (1-benzoyloxypropane-2,3-diol), via UPLC-Q-TOF-MS and NMR. Additionally, paeoniflorin demonstrated the ability to metabolize into benzoic acid via G6046 enzyme, which might exert antidepressant effects through the blood-brain barrier into the brain.
Assuntos
Cunninghamella , Paeonia , Glucosídeos/metabolismo , Glicosídeos/metabolismo , Cunninghamella/metabolismo , Monoterpenos/química , Benzoatos/metabolismo , Paeonia/químicaRESUMO
BACKGROUND: Stevia rebaudiana is a medicinal herb that accumulates non-caloric sweeteners called steviol glycosides (SGs) which are approximately 300 times sweeter than sucrose. This study used alginate (ALG) as an elicitor to increase steviol glycosides accumulation and elucidate gene transcription in the steviol glycosides biosynthesis pathway. METHODS AND RESULTS: To minimize the grassy taste associated with stevia sweeteners, plantlets were grown in complete darkness. ALG was applied to stevia plants grown in suspension culture with a Murashige and Skoog (MS) medium to determine its effect on SGs' content and the transcription profile of SG-related genes using the HPLC and RT-qPCR methods, respectively. Treatment with alginate did not significantly affect plantlet growth parameters such as shoot number, dry and fresh weight. Rebaudioside A (Reb A) content increased approximately sixfold in the presence of 1g L-1 alginate and KS, KAH, and UGT74G1 genes showed significant up-regulation. When the concentration was increased to 2g L-1, the transcription of KO and UGT76G1, responsible for the conversion of stevioside to Reb A, was increased about twofold. CONCLUSIONS: The current study proposes that adding alginate to the MS suspension medium can increase Reb A levels by altering the SG biosynthesize pathway's transcription profile. The present experiment provides new insights into the biochemical and transcriptional response mechanisms of suspension-cultured stevia plants to alginate.
Assuntos
Diterpenos do Tipo Caurano , Stevia , Stevia/genética , Stevia/metabolismo , Edulcorantes/farmacologia , Edulcorantes/química , Edulcorantes/metabolismo , Alginatos , Glucosídeos/metabolismo , Diterpenos do Tipo Caurano/metabolismo , Glicosídeos/farmacologia , Folhas de Planta/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Osbeckia nepalensis Hook. f. is an ICMR documented plant well known for its antidiabetic uses among the folk people of Northeast Region of India. In-depth study with scientific substantiation of the plant may uphold the therapeutic potential against the treatment of type 2 diabetes mellitus (T2DM). AIM OF THE STUDY: The present study evaluates the traditionally claimed prophylactic potential of O. nepalensis and its extracts along with the isolated compound taxifolin-3-O-glucoside (TG) against the downregulation of T2DM related hepatic gluconeogenesis through in vitro, in vivo and in silico conditions as a means of ameliorating hyperglycemia. MATERIALS AND METHODS: Antidiabetic potential of O. nepalensis was carried out in both CC1 hepatocytes (in vitro) and STZ-induced diabetic male Wistar rats (in vivo). Enriched bioactive fraction and bioactive molecules were isolated through bioactivity-guided fractionation, yielding two major molecules, taxifolin-3-O-glucoside and quercitin-3-O-rhamnoside. The bioactivity of taxifolin-3-O-glucoside was validated through immunoblotting techniques aided by in silico molecular docking and simulations. RESULTS: Methanolic extract of O. nepalensis and taxifolin-3-O-glucoside (TG) isolated thereof enhanced the uptake of glucose in CC1 hepatocytes and downregulates the gluconeogenic enzymes (G6Pase and PEPCK) and its related transcription factors (FOXO1, HNF4α and PGC1α) through the stimulation of AMPK phosphorylation in in vitro condition. Moreover, in in vivo experiments, the in vitro most active fraction BuSFr1 (consisting of the two active major compounds taxifolin-3-O-glucoside and quercitin-3-O-rhamnoside) exhibited a substantial decrease in elevated blood glucose level and increase the glucose tolerance as well as plasma insulin level. In silico molecular docking and simulations for TG with the protein G6Pase inferred the docking sites and stability and showed taxifolin-3-O-glucoside as more potent and non-toxic as compared to quercitin-3-O-rhamnoside. CONCLUSION: The traditionally claimed antidiabetic effect of O. nepalensis has been proved to be effective in lowering the blood glucose level through in vitro, in vivo and in silico analysis which will pave a way for the development of antidiabetic phytopharmaceutical drugs which can be validated through further clinical studies.
Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Ratos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Ratos Wistar , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Glicemia/metabolismo , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Glucosídeos/metabolismo , Simulação de Acoplamento Molecular , Hepatócitos , Glucose/metabolismo , FígadoRESUMO
Astragalus mongholicus is a widely used Traditional Chinese Medicine. However, cultivated A. mongholicus is often threatened by water shortage at all growth stage, and the content of medicinal compounds of cultivated A. mongholicus is much lower than that of wild plants. To alleviate drought stress on A. mongholicus and improve the accumulation of medicinal components in roots of A. mongholicus, we combined different bacteria with plant growth promotion or abiotic stress resistance characteristics and evaluated the role of bacterial consortium in helping plants tolerate drought stress and improving medicinal component content in roots simultaneously. Through the determination of 429 bacterial strains, it was found that 97 isolates had phosphate solubilizing ability, 63 isolates could release potassium from potash feldspar, 123 isolates could produce IAA, 58 isolates could synthesize ACC deaminase, and 21 isolates could secret siderophore. Eight bacterial consortia were constructed with 25 bacterial isolates with more than three functions or strong growth promoting ability, and six out of eight bacterial consortia significantly improved the root dry weight. However, only consortium 6 could increase the root biomass, astragaloside IV and calycosin-7-glucoside content in roots simultaneously. Under drought challenge, the consortium 6 could still perform these functions. Compared with non-inoculated plants, the root dry weight of consortium inoculated-plants increased by 120.0% and 78.8% under mild and moderate drought stress, the total content of astragaloside IV increased by 183.83% and 164.97% under moderate and severe drought stress, calycosin-7-glucoside content increased by 86.60%, 148.56% and 111.45% under mild, moderate and severe drought stress, respectively. Meanwhile, consortium inoculation resulted in a decrease in MDA level, while soluble protein and proline content and SOD, POD and CAT activities increased. These findings provide novel insights about multiple bacterial combinations to improve drought stress responses and contribute to accumulate more medicinal compounds.
Assuntos
Astragalus propinquus , Secas , Bactérias , Glucosídeos/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Plantas , Potássio/metabolismo , Prolina/metabolismo , Saponinas , Sideróforos/metabolismo , Superóxido Dismutase/metabolismo , Triterpenos , Água/metabolismoRESUMO
This research characterizes key metabolites in the leaf from Citronella gongonha Martius (Mart.) Howard (Cardiopteridaceae). All metabolites were assessed in intact leaf tissue by proton (1H) high-resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy integrated with the principal component analysis (PCA) to depict molecular association with the seasonal change. The major 'known unknown' metabolites detected in 1H HR-MAS NMR were derivatives of flavonoid, polyphenolic and monoterpenoid compounds such as kaempferol-3-O-dihexoside, caffeoyl glucoside (2), 3-O-caffeoylquinic acid (3), 5-O-caffeoylquinic acid (4), kingiside (5), 8-epi-kingisidic acid (6), (7α)-7-O-methylmorroniside (7), (7ß)-7-O-methylmorroniside (8) and alpigenoside (9) together with the universally occurring sucrose (10), α-glucoses (11, 12), alanine (13), and fatty (linolenic) acid (14). Several of the major metabolites (1, 2-9) were additionally confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). In regard with the PCA results, metabolites 1, 2-9 and 14 were influenced by seasonal variation and/or from further (a) biotic environmental conditions. The findings in this work indicate that C. gongonha Mart. is an effective medicinal plant by preserving particularly compounds 2, 3-9 in abundant amounts. Because of close susceptibility with seasonal shift and ecological trends, further longitudinal studies are needed to realize the physiology and mechanism involved in the production of these and new metabolites in this plant under controlled conditions. Also, future studies are recommended to classify different epimers, especially of the phenolics and monoterpenoids in the given plant.
Assuntos
Cymbopogon , Magnoliopsida , Quempferóis/metabolismo , Prótons , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Folhas de Planta/metabolismo , Monoterpenos/análise , Alanina/metabolismo , Sacarose/metabolismo , Glucosídeos/metabolismoRESUMO
Paeoniflorin, a representative pinane monoterpene glycoside, is the main active component and quality index of Paeoniae Radix Alba and Paeoniae Radix Rubra.The possible biosynthesis of paeoniflorin is as follows: GPP is derived from mevalonate(MVA) and/or 2-C-methyl-D-erythritol 4-phosphate(MEP) pathway(s) followed by the catalysis with terpene synthase, cytochrome P450(CYP450), UDP-glucuronosyltransferase(UGT), and acyltransferase(AT), respectively.This study aims to explore the genes rela-ted to the biosynthesis of paeoniflorin.To be specific, the cDNA libraries for flowers, leaves, and roots of Paeonia lactiflora were established and sequenced.A total of 30 609 open reading frames(ORFs) were yielded.Through functional annotation and expression analysis of all CYP450 genes in the transcriptome, 11 CYP450 genes belonging to CYP71 A and CYP71 D subfamilies and showing expression trend consistent with monoterpene synthase PlPIN that may be involved in paeoniflorin biosynthesis were screened out.Subsequently, 7 UGT genes and 9 AT genes demonstrating the expression trend consistent with PlPIN which were possibly involved in paeoniflorin biosynthesis were further screened by functional annotation analysis, full-length sequence analysis, expression analysis, and phylogeny analysis.This study provided a systematic screening method with smaller number of candidate genes, thus reducing the workload of functional gene verification.The result laid a foundation for analyzing the biosynthesis pathway of paeoniflorin and the formation mechanism.
Assuntos
Paeonia , Hidrocarbonetos Aromáticos com Pontes , Perfilação da Expressão Gênica , Glucosídeos/genética , Glucosídeos/metabolismo , Monoterpenos/metabolismo , Paeonia/genéticaRESUMO
Protosappanoside D (PTD) is a new component isolated from the extract of Caesalpinia decapetala for the first time. Its structure was identified as protosappanin B-3-O-ß-D-glucoside by 1H-NMR, 13C-NMR, 2D-NMR and MS techniques. To date, the pharmacological activities, metabolism or pharmacokinetics of PTD has not been reported. Therefore, this research to study the anti-inflammatory activity of PTD was investigated via the LPS-induced RAW264.7 cells model. At the same time, we also used the UHPLC/Q Exactive Plus MS and UPLC-MS/MS methods to study the metabolites and pharmacokinetics of PTD, to calculate its bioavailability for the first time. The results showed that PTD could downregulate secretion of the pro-inflammatory cytokines. In the metabolic study, four metabolites were identified, and the primary degradative pathways in vivo involved the desaturation, oxidation, methylation, alkylation, dehydration, degradation and desugarization. In the pharmacokinetic study, PTD and its main metabolite protosappanin B (PTB) were measured after oral and intravenous administration. After oral administration of PTD, its Tmax was 0.49 h, t1/2z and MRT(0-t) were 3.47 ± 0.78 h and 3.06 ± 0.63 h, respectively. It shows that PTD was quickly absorbed into plasma and it may be eliminated quickly in the body, and its bioavailability is about 0.65%.
Assuntos
Caesalpinia , Espectrometria de Massas em Tandem , Administração Oral , Caesalpinia/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Citocinas , Glucosídeos/metabolismo , Lipopolissacarídeos/farmacologia , Oxocinas , Extratos Vegetais/farmacocinética , Espectrometria de Massas em Tandem/métodosRESUMO
A combined intake of cooked sweet potato and fried onion in humans was found to suppress the increase of plasma quercetin metabolite concentration. Experiments using rat ß-glucosidase indicated that excess carbohydrate digestion products, especially glucose-containing saccharides, interfere with the deglycosylation of quercetin glucosides during intestinal epithelial uptake. Combined meals of sweet potato and onion may lower the bioavailability of onion quercetin glucosides.
Assuntos
Ipomoea batatas , Cebolas , Humanos , Ratos , Animais , Quercetina/metabolismo , Glucosídeos/metabolismo , beta-Glucosidase/metabolismoRESUMO
BACKGROUND: Pueraria is the common name of the dried root of either Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) or Pueraria montana var. thomsonii (Benth.) M.R.Almeida (syn. Pueraria thomsonii Benth.). Puerarin is a C-glucoside of the isoflavone daidzein extracted from Pueraria. It has been widely investigated to explore its therapeutic role in eye diseases and the molecular mechanisms. PURPOSE: To collect the available literature from 2000 to 2022 on puerarin in the treatment of ocular diseases and suggest the future required directions to improve its medicinal value. METHOD: The content of this review was obtained from databases such as Web of Science, PubMed, Google Scholar, China National Knowledge Infrastructure (CNKI), and the Wanfang Database. RESULTS: The search yielded 428 articles, of which 159 articles were included after excluding duplicate articles and articles related to puerarin but less relevant to the topic of the review. In eleven articles, the bioavailability of puerarin was discussed. Despite puerarin possesses diverse biological activities, its bioavailability on its own is poor. There are 95 articles in which the therapeutic mechanisms of puerarin in ocular diseases was reported. Of these, 54 articles discussed the various signalling pathways related to occular diseases affected by puerarin. The other 41 articles discussed specific biological activities of puerarin. It plays a therapeutic role in ophthalmopathy via regulating nuclear factor kappa-B (NF-ĸB), mitogen-activated protein kinases (MAPKs), PI3K/AKT, JAK/STAT, protein kinase C (PKC) and other related pathways, affecting the expression of tumour necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1), superoxide dismutase (SOD), B-cell lymphoma-2 (Bcl-2) and other cytokines resulting in anti-inflammatory, antioxidant and anti-apoptotic effects. The clinical applications of puerarin in ophthalmology were discussed in 25 articles. Eleven articles discussed the toxicity of puerarin. The literature suggests that puerarin has a good curative effect and can be used safely in clinical practice. CONCLUSION: This review has illustrated the diverse applications of puerarin acting on ocular diseases and suggested that puerarin can be used for treating diabetic retinopathy, retinal vascular occlusion, glaucoma and other ocular diseases in the clinic. Some ocular diseases are the result of the combined action of multiple factors, and the effect of puerarin on different factors needs to be further studied to improve a more complete mechanism of action of puerarin. In addition, it is necessary to increase the number of subjects in clinical trials and conduct clinical trials for other ocular diseases. The information presented here will guide future research studies.
Assuntos
Isoflavonas , Oftalmologia , Pueraria , Anti-Inflamatórios/metabolismo , Antioxidantes/farmacologia , Quimiocina CCL2/metabolismo , Glucosídeos/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/metabolismo , Isoflavonas/uso terapêutico , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pueraria/química , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Potato starch (PS), a natural and structured semicrystalline polymer, exhibits a distinct capacity to bind cyanidin-3-O-glucoside (C3G) at different pH values (3, 5, and 7). In this study, levels of NaCl (0.05%, 0.5%, and 5%, w/v) were introduced as electrostatic disturbing agents to the PS-C3G complexes to quantitatively reveal the role electrostatic interactions played in the binding at different pH conditions. The binding rate dropped from 31.60% to 2.19% as the pH value shifted from 3 to 7, indicating a decreasing affinity from C3G to PS. Further zeta potentials showed the possibility of electrostatic interactions in the PS-C3G complexes at pH 3 as well as screened charges in the presence of NaCl. The binding rate at pH 3 then exhibited a progressive decline to a final approximate one-third as the concentration of NaCl increased, which implied that the electrostatic interactions constituted the primary two-thirds of the driving forces involving complex stability at pH 3. The results of attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, however, showed that hydrogen bonds had a negligible effect on the binding of C3G to PS at all pH conditions. Finally, the confocal laser scanning microscopy (CLSM) images, particle size and color differences were consistent with the change in the binding rate. Overall, electrostatic interactions were considered the key pH-modulated interactions between PS and C3G at different pH conditions.
Assuntos
Solanum tuberosum , Antocianinas , Glucosídeos/metabolismo , Concentração de Íons de Hidrogênio , Cloreto de Sódio , Solanum tuberosum/metabolismo , Espectrometria de Fluorescência , Amido , Eletricidade EstáticaRESUMO
2,3,5,4'-Tetrahydrostilbene-2-o-ß-d-glucoside (TSG) is the main active component of Polygonum multiflorum Thunb. It has effects on hypertension. However, the mechanism is unclear. Current research is devoted to exploring the mechanism of TSG improving HHcy-induced hypertension. The mice received a subcutaneous injection of Hcy in the presence or absence of TSG for 4 weeks. Blood pressure (BP) was measured using a noninvasive tail-cuff plethysmography method. Levels of plasma Hcy and endothelin-1 were measured using ELISA. Rat SMA without endothelium was cultured in a serum-free medium in the presence or absence of TSG with or without Hcy. The contractile response to sarafotoxin 6c or endothein-1 was studied using a sensitive myography. The levels of protein were detected using Western blotting. The results showed that TSG lowered HHcy-elevated BP and decreased levels of plasma Hcy and endothelin-1 in mice. Furthermore, the results showed that TSG inhibited Hcy-upregulated ET receptor expression and ET receptor-mediated contractile responses as well as the levels of p-ERK1/2 and p-p65 in SMA. In vivo results further validate the in vitro results. In conclusion, TSG can decrease the levels of plasma Hcy and ET-1 and downregulate Hcy-upregulated ET receptors in VSMCs by inhibiting the ERK1/2 /NF-κB/ETB2 pathway to lower the BP.
Assuntos
Hipertensão , Estilbenos , Animais , Endotelina-1/metabolismo , Endotelina-1/farmacologia , Glucosídeos/metabolismo , Glucosídeos/farmacologia , Homocisteína/metabolismo , Homocisteína/farmacologia , Camundongos , Músculo Liso Vascular , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Endotelina/metabolismo , Transdução de Sinais , Estilbenos/farmacologiaRESUMO
Linalool, which is one of the most representative aroma substances in tea, is transformed into other aroma-related compounds, including linalool 3,6-oxides and linalool 3,7-oxides. The objective of this study was to elucidate the linalool oxide synthesis pathway and its response to stress in tea. By feeding experiment, chemical synthesis, and compound analysis, it was found that linalool can be transformed to linalool oxides via 6,7-epoxylinalool. The conversion rate from 6,7-epoxylinalool to linalool oxides was relatively high under acidic conditions. Four linalool oxide glucosides obtained from tea were structurally characterized. Additionally, tea green leafhopper infestation was observed to activate the whole metabolic flow from linalool into linalool oxides and their glucosides (p < 0.01). Moreover, light treatments further increased the accumulation of linalool oxides and their glucosides (p < 0.05). These results will be useful for elucidating the mechanism mediating linalool oxides content changes in response to stress in tea.
Assuntos
Camellia sinensis , Hemípteros , Monoterpenos Acíclicos , Animais , Camellia sinensis/química , Cicloexanóis , Glucosídeos/metabolismo , Óxidos/metabolismo , Chá/química , Compostos de TritilRESUMO
BACKGROUND: GIGANTEA (GI) is a plant-specific, circadian clock-regulated, nuclear protein with pleiotropic functions found in many plant species. This protein is involved in flowering, circadian clock control, chloroplast biogenesis, carbohydrate metabolism, stress responses, and volatile compound synthesis. In potato (Solanum tuberosum L.), its only role appears to be tuber initiation; however, based on findings in other plant species, we hypothesised that the function of GI in potatoes is not restricted only to tuberisation. RESULTS: To test this hypothesis, the expression of a GI gene in the commercial potato cultivar 'Désirée' was repressed, and the effects of repression at morphological and transcriptome level were investigated. Previously, two copies of GI genes in potato were found. A construct to reduce the mRNA levels of one of these genes (StGI.04) was assembled, and the effects of antisense repression were studied in greenhouse-grown plants. The highest level of repression reached around 50%. However, this level did not influence tuber formation and yield but did cause a reduction in tuber colour. Using high-performance liquid chromatography (HPLC), significant reductions in cyanidin 3,5-di-O-glucoside and pelargonidin 3,5-di-O-glucoside contents of tuber peels were detected. Anthocyanins are synthesized through a branch of the phenylpropanoid pathway. The transcriptome analysis indicated down-regulation in the expression of PHENYLALANINE AMMONIA LYASE (PAL), the LEUCOANTHOCYANIDIN OXIDISING enzyme gene LDOX, and the MYB-RELATED PROTEIN Hv1 (MYB-Hv1), a transcription factor coding gene, which is presumably involved in the regulation of flavonoid biosynthesis, in the leaves of a selected StGI.04-repressed line. Furthermore, alterations in expression of genes affecting the circadian clock, flowering, starch synthesis, and stress responses were detected in the leaves of the selected StGI.04-repressed line. CONCLUSIONS: We tested the effects of antisense repression of StGI.04 expression in potatoes and found that as with GI in other plant species, it influences the expression of the key genes of the circadian clock, flowering, starch synthesis, and stress responses. Furthermore, we detected a novel function of a GI gene in influencing the anthocyanin synthesis and potato tuber skin colour.
Assuntos
Solanum tuberosum , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosídeos/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Amido/metabolismo , TranscriptomaRESUMO
In this study, we performed an association analysis of metabolomics and transcriptomics to reveal the anthocyanin biosynthesis mechanism in a new purple-leaf tea cultivar Zikui (Camellia sinensis cv. Zikui) (ZK). Three glycosylated anthocyanins were identified, including petunidin 3-O-glucoside, cyanidin 3-O-galactoside, and cyanidin 3-O-glucoside, and their contents were the highest in ZK leaves at 15 days. This is the first report on petunidin 3-O-glucoside in purple-leaf tea. Integrated analysis of the transcriptome and metabolome identified eleven dependent transcription factors, among which CsMYB90 had strong correlations with petunidin 3-O-glucoside, cyanidin 3-O-galactoside, and cyanidin 3-O-glucoside (PCC > 0.8). Furthermore, we also identified key correlated structural genes, including two positively correlated F3'H (flavonoid-3'-hydroxylase) genes, two positively correlated ANS (anthocyanin synthase) genes, and three negatively correlated PPO (polyphenol oxidase) genes. Overexpression of CsMYB90 in tobacco resulted in dark-purple transgenic calluses. These results showed that the increased accumulation of three anthocyanins in ZK may promote purple-leaf coloration because of changes in the expression levels of genes, including CsMYB90, F3'Hs, ANSs, and PPOs. These findings reveal new insight into the molecular mechanism of anthocyanin biosynthesis in purple-leaf tea plants and provide a series of candidate genes for the breeding of anthocyanin-rich cultivars.