Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int. j. morphol ; 42(1): 197-204, feb. 2024. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1528841

RESUMO

SUMMARY: Obesity-related pathophysiologies such as insulin resistance and the metabolic syndrome show a markedly increased risk for type 2 diabetes and atherosclerotic cardiovascular disease. This risk appears to be linked to alterations in adipose tissue function, leading to chronic inflammation and the dysregulation of adipocyte-derived factors. Brassica rapa have been used in traditional medicine for the treatment of several diseases, including diabetes. This study aimed to investigate the effect of nutritional stress induced by a high-fat and high-sucrose diet on the pathophysiology of visceral adipose tissue and the therapeutic effect of Brassica rapa in male Wistar rats. We subjected experimental rats to a high-fat (10 %) high-sucrose (20 %)/per day for 11 months and treated them for 20 days with aqueous extract Br (AEBr) at 200 mg/kg at the end of the experiment. At the time of sacrifice, we monitored plasma and tissue biochemical parameters as well as the morpho-histopathology of visceral adipose tissue. We found AEBr corrected metabolic parameters and inflammatory markers in homogenized visceral adipose tissue and reduced hypertrophy, hyperplasia, and lipid droplets. These results suggest that AEBr enhances anti-diabetic, anti-inflammatory and a protective effect on adipose tissue morphology in type 2 diabetes and obesity.


La fisiopatología relacionadas con la obesidad, como la resistencia a la insulina y el síndrome metabólico, muestran un riesgo notablemente mayor de diabetes tipo 2 y enfermedad cardiovascular aterosclerótica. Este riesgo parece estar relacionado con alteraciones en la función del tejido adiposo, lo que lleva a una inflamación crónica y a la desregulación de los factores derivados de los adipocitos. Brassica rapa se ha utilizado en la medicina tradicional para el tratamiento de varias enfermedades, incluida la diabetes. Este estudio tuvo como objetivo investigar el efecto del estrés nutricional inducido por una dieta rica en grasas y sacarosa sobre la fisiopatología del tejido adiposo visceral y el efecto terapéutico de Brassica rapa en ratas Wistar macho. Sometimos a ratas experimentales a una dieta rica en grasas (10 %) y alta en sacarosa (20 %)/por día durante 11 meses y las tratamos durante 20 días con extracto acuoso de Br (AEBr) a 200 mg/kg al final del experimento. En el momento del sacrificio, monitoreamos los parámetros bioquímicos plasmáticos y tisulares, así como la morfohistopatología del tejido adiposo visceral. Encontramos parámetros metabólicos corregidos por AEBr y marcadores inflamatorios en tejido adiposo visceral homogeneizado y reducción de hipertrofia, hiperplasia y gotitas de lípidos. Estos resultados sugieren que AEBr mejora el efecto antidiabético, antiinflamatorio y protector sobre la morfología del tejido adiposo en la diabetes tipo 2 y la obesidad.


Assuntos
Animais , Masculino , Ratos , Extratos Vegetais/administração & dosagem , Tecido Adiposo/efeitos dos fármacos , Brassica rapa/química , Resistência à Insulina , Extratos Vegetais/uso terapêutico , Ratos Wistar , Diabetes Mellitus Tipo 2/tratamento farmacológico , Gordura Intra-Abdominal , Glucose/toxicidade , Inflamação , Lipídeos/toxicidade , Obesidade/tratamento farmacológico
2.
Planta Med ; 90(4): 256-266, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38040033

RESUMO

Hyperglycemia is a potent risk factor for the development and progression of diabetes-induced nephropathy. Dendropanoxide (DPx) is a natural compound isolated from Dendropanax morbifera (Araliaceae) that exerts various biological effects. However, the role of DPx in hyperglycemia-induced renal tubular cell injury remains unclear. The present study explored the protective mechanism of DPx on high glucose (HG)-induced cytotoxicity in kidney tubular epithelial NRK-52E cells. The cells were cultured with normal glucose (5.6 mM), HG (30 mM), HG + metformin (10 µM), or HG + DPx (10 µM) for 48 h, and cell cycle and apoptosis were analyzed. Malondialdehyde (MDA), advanced glycation end products (AGEs), and reactive oxygen species (ROS) were measured. Protein-based nephrotoxicity biomarkers were measured in both the culture media and cell lysates. MDA and AGEs were significantly increased in NRK-52E cells cultured with HG, and these levels were markedly reduced by pretreatment with DPx or metformin. DPx significantly reduced the levels of kidney injury molecule-1 (KIM-1), pyruvate kinase M2 (PKM2), selenium-binding protein 1 (SBP1), or neutrophil gelatinase-associated lipocalin (NGAL) in NRK-52E cells cultured under HG conditions. Furthermore, treatment with DPx significantly increased antioxidant enzyme activity. DPx protects against HG-induced renal tubular cell damage, which may be mediated by its ability to inhibit oxidative stress through the protein kinase B/mammalian target of the rapamycin (AKT/mTOR) signaling pathway. These findings suggest that DPx can be used as a new drug for the treatment of high glucose-induced diabetic nephropathy.


Assuntos
Hiperglicemia , Metformina , Triterpenos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular , Glucose/toxicidade , Estresse Oxidativo , Transdução de Sinais , Antioxidantes/farmacologia , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Metformina/metabolismo , Metformina/farmacologia , Células Epiteliais/metabolismo
3.
Molecules ; 28(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630213

RESUMO

Diabetic retinopathy (DR), a complication of diabetes mellitus (DM), can cause severe visual loss. The retinal pigment epithelium (RPE) plays a crucial role in retinal physiology but is vulnerable to oxidative damage. We investigated the protective effects of selenium (Se) on retinal pigment epithelium (ARPE-19) and primary human retinal microvascular endothelial (ACBRI 181) cells against high glucose (HG)-induced oxidative stress and apoptotic cascade. To achieve this objective, we utilized varying concentrations of D-glucose (ranging from 5 to 80 mM) to induce the HG model. HG-induced oxidative stress in ARPE-19 and ACBRI 181 cells and the apoptotic cascade were evaluated by determining Ca2+ overload, mitochondrial membrane depolarization, caspase-3/-9 activation, intracellular reactive oxygen species (ROS), lipid peroxidation (LP), glutathione (GSH), glutathione peroxidase (GSH-Px), vascular endothelial growth factor (VEGF) and apoptosis levels. A cell viability assay utilizing MTT was conducted to ascertain the optimal concentration of Se to be employed. The quantification of MTT, ROS, VEGF levels, and caspase-3 and -9 activation was accomplished using a plate reader. To quantitatively assess LP and GSH levels, GSH-Px activities were utilized by spectrophotometer and apoptosis, mitochondrial membrane depolarization, and the release of Ca2+ from intracellular stores were evaluated by spectrofluorometer. Our investigation revealed a significant augmentation in oxidative stress induced by HG, leading to cellular damage through modulation of mitochondrial membrane potential, ROS levels, and intracellular Ca2+ release. Incubation with Se resulted in a notable reduction in ROS production induced by HG, as well as a reduction in apoptosis and the activation of caspase-3 and -9. Additionally, Se incubation led to decreased levels of VEGF and LP while concurrently increasing levels of GSH and GSH-Px. The findings from this study strongly suggest that Se exerts a protective effect on ARPE-19 and ACBRI 181 cells against HG-induced oxidative stress and apoptosis. This protective mechanism is partially mediated through the intracellular Ca2+ signaling pathway.


Assuntos
Selênio , Humanos , Selênio/farmacologia , Fator A de Crescimento do Endotélio Vascular , Caspase 3 , Espécies Reativas de Oxigênio , Estresse Oxidativo , Glucose/toxicidade
4.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2530-2537, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282882

RESUMO

This study aimed to observe the effect of terpinen-4-ol(T4O) on the proliferation of vascular smooth muscle cells(VSMCs) exposed to high glucose(HG) and reveal the mechanism via the Krüppel-like factor 4(KLF4)/nuclear factor kappaB(NF-κB) signaling pathway. The VSMCs were first incubated with T4O for 2 h and then cultured with HG for 48 h to establish the model of inflammatory injury. The proliferation, cell cycle, and migration rate of VSMCs were examined by MTT method, flow cytometry, and wound healing assay, respectively. The content of inflammatory cytokines including interleukin(IL)-6 and tumor necrosis factor-alpha(TNF-α) in the supernatant of VSMCs was measured by enzyme-linked immunosorbent assay(ELISA). Western blot was employed to determine the protein levels of proliferating cell nuclear antigen(PCNA), Cyclin D1, KLF4, NF-κB p-p65/NF-κB p65, IL-1ß, and IL-18. The KLF4 expression in VSMCs was silenced by the siRNA technology, and then the effects of T4O on the cell cycle and protein expression of the HG-induced VSMCs were observed. The results showed that different doses of T4O inhibited the HG-induced proliferation and migration of VSMCs, increased the percentage of cells in G_1 phase, and decreased the percentage of cells in S phase, and down-regulated the protein levels of PCNA and Cyclin D1. In addition, T4O reduced the HG-induced secretion and release of the inflammatory cytokines IL-6 and TNF-α and down-regulated the expression of KLF4, NF-κB p-p65/NF-κB p65, IL-1ß, and IL-18. Compared with si-NC+HG, siKLF4+HG increased the percentage of cells in G_1 phase, decreased the percentage of cells in S phase, down-regulated the expression of PCNA, Cyclin D1, and KLF4, and inhibited the activation of NF-κB signaling pathway. Notably, the combination of silencing KLF4 with T4O treatment further promoted the changes in the above indicators. The results indicate that T4O may inhibit the HG-induced proliferation and migration of VSMCs by down-regulating the level of KLF4 and inhibiting the activation of NF-κB signaling pathway.


Assuntos
Interleucina-18 , NF-kappa B , NF-kappa B/genética , NF-kappa B/metabolismo , Interleucina-18/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Ciclina D1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Músculo Liso Vascular , Proliferação de Células , Transdução de Sinais , Citocinas/metabolismo , Glucose/toxicidade , Glucose/metabolismo
5.
In Vitro Cell Dev Biol Anim ; 58(5): 419-428, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35678985

RESUMO

Folate (vitamin B9) and its biologically active derivatives are well-known antioxidant molecules protecting cells from oxidative degradation. The presence of high glucose, often found in diabetic patients, causes oxidative stress resulting in cellular stress and inflammatory injury. Cells in organs such as the lung are highly prone to inflammation, and various protective mechanisms exist to prevent the progressive disorders arising from inflammation. In the present study, the synthetic form of folate, i.e. folic acid, and active forms of folate, i.e. 5-methyltetrahydrofolate and 10-formyltetrahydrofolate, were evaluated for their antioxidant and antiinflammatory potential against high glucose (50 mM)-mediated oxidative stress and inflammation in BEAS-2B cells, an immortalised bronchial epithelial cell line. High glucose treatment showed a 67% reduction in the viability of BEAS-2B cells, which was restored to the viability levels seen in control cultures by the addition of active folate derivatives to the culture media. The DCFH-DA fluorometric assay was performed for oxidative stress detection. The high glucose-treated cells showed a significantly higher fluorescence intensity (1.81- and 3.8-fold for microplate assay and microscopic observation, respectively), which was normalised to control levels on supplementation with active folate derivatives. The proinflammatory NF-κB p50 protein expression in the active folate derivative-supplemented high glucose-treated cells was significantly lower compared to the folic acid treatment. In support of these findings, in silico microarray GENVESTIGATOR database analysis showed that in bronchiolar small airway epithelial cells exposed to inflammatory condition, folate utilization pathway genes are largely downregulated. However, the folate-binding protein gene, which encodes to the folate receptor 1 (FOLR1), is significantly upregulated, suggesting a high demand for folate by these cells  in inflammatory situations. Supplementation of the active folate derivatives 5-methyltetrahydrofolate and 10-formyltetrahydrofolate resulted in significantly higher protection over the folic acid from high glucose-induced oxidative stress and inflammation. Therefore, the biologically active folate derivatives could be a suitable alternative over the folic acid for alleviating inflammatory injury-causing oxidative stress.


Assuntos
Antioxidantes , Ácido Fólico , Animais , Antioxidantes/metabolismo , Células Epiteliais/metabolismo , Ácido Fólico/metabolismo , Ácido Fólico/farmacologia , Glucose/metabolismo , Glucose/toxicidade , Inflamação/metabolismo , Leucovorina/análogos & derivados , Estresse Oxidativo , Tetra-Hidrofolatos
6.
J Ethnopharmacol ; 284: 114782, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34728316

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Euonymus alatus (Thunb.) Siebold (family Celastraceae) is a deciduous woody shrub that is recorded in ShenNong BenCaoJing. It has been widely used for diabetes in traditional Chinese medicine. AIM OF THE STUDY: This study aimed to identify the most effective extract of Euonymus alatus (EA) against high glucose-induced endothelial cells in vitro, evaluate its pharmacological effect on retinopathy in diabetic mice and explore its underlying mechanism by RNA sequencing. METHODS: Retinal vascular endothelial cells (RF/6A) were treated with normal glucose (5.5 mmol/L glucose), high glucose (25 mmol/L glucose) or high glucose plus methanol extracts of EA (MEA), ethyl acetate extracts of EA (EEA) or water extracts of EA (WEA). The cytotoxicity and cell viability were determined by Cell Counting Kit-8 (CCK-8) assay. Cell migration was examined using the Transwell assay, and tube formation ability was measured using the Matrigel assay. Then, the KK-Ay mice were administered WEA or water for 12 weeks. The velocities of ocular blood flow were determined by Doppler ultrasound. RNA sequencing and reverse transcription quantitative PCR (RT-qPCR) were performed on WEA-stimulated RF/6A cells to reveal the underlying mechanism. RESULTS: The cytotoxicity assay found that 30 µg/mL MEA, 20 µg/mL EEA and 30 µg/mL WEA had no toxic effect on RF/6A cells. The cell viability results showed that MEA, EEA and WEA all decreased cell viability. Compared with the high-glucose group, both MEA and WEA decreased the number of migrated cells, while the inhibition rate of WEA was higher. The Matrigel results showed that 30 µg/mL WEA effectively reduced the total tube length. Moreover, WEA improved the haemodynamics of the central retinal artery. RNA sequencing coupled with RT-qPCR verified that WEA regulated angiogenesis-related factors in high glucose-stimulated RF/6A cells. CONCLUSIONS: WEA inhibits the migration and tube formation of RF/6A cells and improves diabetic retinopathy (DR) by mediating angiogenesis.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Euonymus/química , Fitoterapia , Animais , Glicemia/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Diabetes Mellitus , Medicamentos de Ervas Chinesas/química , Glucose/toxicidade , Haplorrinos , Masculino , Camundongos , Camundongos Endogâmicos A
7.
PLoS One ; 16(12): e0260968, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34860856

RESUMO

Diabetic retinopathy (DR), the most common complication of diabetes mellitus, is associated with oxidative stress, nuclear factor-κB (NFκB) activation, and excess production of vascular endothelial growth factor (VEGF) and intracellular adhesion molecule-1 (ICAM-1). Muller glial cells, spanning the entirety of the retina, are involved in DR inflammation. Mitigation of DR pathology currently occurs via invasive, frequently ineffective therapies which can cause adverse effects. The application of far-red to near-infrared (NIR) light (630-1000nm) reduces oxidative stress and inflammation in vitro and in vivo. Thus, we hypothesize that 670nm light treatment will diminish oxidative stress preventing downstream inflammatory mechanisms associated with DR initiated by Muller cells. In this study, we used an in vitro model system of rat Müller glial cells grown under normal (5 mM) or high (25 mM) glucose conditions and treated with a 670 nm light emitting diode array (LED) (4.5 J/cm2) or no light (sham) daily. We report that a single 670 nm light treatment diminished reactive oxygen species (ROS) production and preserved mitochondrial integrity in this in vitro model of early DR. Furthermore, treatment for 3 days in culture reduced NFκB activity to levels observed in normal glucose and prevented the subsequent increase in ICAM-1. The ability of 670nm light treatment to prevent early molecular changes in this in vitro high glucose model system suggests light treatment could mitigate early deleterious effects modulating inflammatory signaling and diminishing oxidative stress.


Assuntos
Metabolismo Energético , Células Ependimogliais/efeitos da radiação , Glucose/toxicidade , Raios Infravermelhos , Mitocôndrias/efeitos da radiação , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Cultivadas , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Ratos , Edulcorantes/toxicidade
8.
Cells ; 10(11)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34831306

RESUMO

In diabetic patients, medial vascular calcification is common and associated with increased cardiovascular mortality. Excessive glucose concentrations can activate the nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB) and trigger pro-calcific effects in vascular smooth muscle cells (VSMCs), which may actively augment vascular calcification. Zinc is able to mitigate phosphate-induced VSMC calcification. Reduced serum zinc levels have been reported in diabetes mellitus. Therefore, in this study the effects of zinc supplementation were investigated in primary human aortic VSMCs exposed to excessive glucose concentrations. Zinc treatment was found to abrogate the stimulating effects of high glucose on VSMC calcification. Furthermore, zinc was found to blunt the increased expression of osteogenic and chondrogenic markers in high glucose-treated VSMCs. High glucose exposure was shown to activate NF-kB in VSMCs, an effect that was blunted by additional zinc treatment. Zinc was further found to increase the expression of TNFα-induced protein 3 (TNFAIP3) in high glucose-treated VSMCs. The silencing of TNFAIP3 was shown to abolish the protective effects of zinc on high glucose-induced NF-kB-dependent transcriptional activation, osteogenic marker expression, and the calcification of VSMCs. Silencing of the zinc-sensing receptor G protein-coupled receptor 39 (GPR39) was shown to abolish zinc-induced TNFAIP3 expression and the effects of zinc on high glucose-induced osteogenic marker expression. These observations indicate that zinc may be a protective factor during vascular calcification in hyperglycemic conditions.


Assuntos
Glucose/toxicidade , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Osteogênese/efeitos dos fármacos , Zinco/farmacologia , Aorta/patologia , Biomarcadores/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Miócitos de Músculo Liso/efeitos dos fármacos , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Biomed Res Int ; 2021: 4604258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660789

RESUMO

Diabetes mellitus- (DM-) associated hyperglycemia promotes apoptosis of disc nucleus pulposus (NP) cells, which is a contributor to intervertebral disc degeneration (IDD). Melatonin is able to protect against cell apoptosis. However, its effects on apoptosis of NP cell in a high-glucose culture remain unclear. The purpose of the present study was to investigate the effects and molecular mechanism of melatonin on NP cell apoptosis in a high-glucose culture. NP cells were cultured in the baseline medium supplemented with a high-glucose concentration (0.2 M) for 3 days. The control cells were only cultured in the baseline medium. Additionally, the pharmaceutical inhibitor LY294002 was added along with the culture medium to investigate the possible role of the PI3K/Akt pathway. Apoptosis, autophagy, and activity of the PI3K/Akt pathway of NP cells among these groups were evaluated. Compared with the control NP cells, high glucose significantly increased cell apoptosis ratio and caspase-3/caspase-9 activity and decreased mRNA expression of Bcl-2, whereas it increased mRNA or protein expression of Bax, caspase-3, cleaved caspase-3, cleaved PARP, and autophagy-related molecules (Atg3, Atg5, Beclin-1, and LC3-II) and decreased protein expression of p-Akt compared with the control cells. Additionally, melatonin partly inhibited the effects of high glucose on those parameters of cell apoptosis, autophagy, and activation of PI3K/Akt. In conclusion, melatonin attenuates apoptosis of NP cells through inhibiting the excessive autophagy via the PI3K/Akt pathway in a high-glucose culture. This study provides new theoretical basis of the protective effects of melatonin against disc degeneration in a DM patient.


Assuntos
Apoptose , Autofagia , Glucose/toxicidade , Melatonina/farmacologia , Núcleo Pulposo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Células Cultivadas , Depressores do Sistema Nervoso Central/farmacologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Edulcorantes/toxicidade
10.
Biomed Pharmacother ; 140: 111735, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34020251

RESUMO

Bark is the traditional medicinal component of Eucommia ulmoides Oliver (E. ulmoides). However, the demand for E. ulmoides medicinal materials seriously limits their sustainability. To alleviate resource constraints, the bioactivity of E. ulmoides leaves and its pharmacodynamic basis were investigated. In the present study, extracts of E. ulmoides leaves were found to display potential renal protective properties in rat glomerular mesangial (HBZY-1) cells treated with high levels of glucose, suggesting that they possess potential factors capable of treating diabetic nephropathy. Ultra-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was used to comprehensively characterize the chemical components of E. ulmoides leaves. A total of 83 possible chemical components, including 12 iridoids, 13 flavonoids, 14 lignans, 20 phenylpropanoids, 14 phenolic acids, and 10 additional components, were identified in E. ulmoides leaves. Network pharmacology was used for a preliminary exploration of the potential mechanism of action of renal protection afforded by E. ulmoides leaves towards diabetic nephropathy. The network pharmacology results were verified using a series of biological experiments. The present study provided the basis for the comprehensive development and utilization of E. ulmoides leaves and the discovery of potential drugs.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Eucommiaceae , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Aldeído Redutase/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Glucose/toxicidade , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Substâncias Protetoras/química , Ratos , Receptor de Insulina/metabolismo , Espectrometria de Massas em Tandem
11.
Aging (Albany NY) ; 13(4): 5342-5357, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33536350

RESUMO

Diabetes-induced oxidative stress is vital in initiating neuronal damage in the diabetic retina, leading to diabetic retinopathy (DR). This study investigates the possible effects of coumestrol (CMS) on streptozotocin (STZ)-induced DR. First, we established a rat model of DR by STZ injection and a cell model involving high-glucose (HG) exposure of human retinal microvascular endothelial cells (hRMECs). We characterized the expression patterns of oxidative stress indicators, pro-inflammatory cytokines, and pro-apoptotic proteins in hRMECs. Polymerase chain reaction showed sirtuin 1 (SIRT1) to be poorly expressed in the retinal tissues of STZ-treated rats and HG-exposed hRMECs, but its expression was upregulated upon treatment with CMS treatment. Furthermore, CMS treatment attenuated the STZ-induced pathologies such as oxidative stress, inflammation, and cell apoptosis. Consistent with the in vivo results, CMS activated the expression of SIRT1, thereby inhibiting oxidative stress, inflammation, and apoptosis of HG-treated hRMECs. From these findings, we concluded that CMS ameliorated DR by inhibiting inflammation, apoptosis and oxidative stress through activation of SIRT1.


Assuntos
Apoptose/efeitos dos fármacos , Cumestrol/farmacologia , Retinopatia Diabética/metabolismo , Células Endoteliais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fitoestrógenos/farmacologia , Retina/efeitos dos fármacos , Sirtuína 1/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Glucose/toxicidade , Humanos , Inflamação/metabolismo , Ratos , Retina/metabolismo , Retina/patologia , Vasos Retinianos/citologia , Sirtuína 1/metabolismo
12.
Chin J Integr Med ; 27(5): 336-344, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33420900

RESUMO

OBJECTIVE: To investigate whether ginsenoside Rb1 (Rb1) can protect human umbilical vein endothelial cells (HUVECs) against high glucose-induced apoptosis and examine the underlying mechanism. METHODS: HUVECs were divided into 5 groups: control group (5.5 mmol/L glucose), high glucose (HG, 40 mmol/L) treatment group, Rb1 (50 µ mol/L) treatment group, Rb1 plus HG treatment group, and Rb1 and 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP, 16 µ mol/L) plus HG treatment group. Cell viability was evaluated by cell counting kit-8 assay. Mitochondrial and intracellular reactive oxygen species were detected by MitoSox Red mitochondrial superoxide indicator and dichloro-dihydro-fluorescein diacetate assay, respectively. Annexin V/propidium iodide staining and fluorescent dye staining were used to measure the apoptosis and the mitochondrial membrane potential of HUVECs, respectively. The protein expressions of apoptosis-related proteins [Bcl-2, Bax, cleaved caspase-3 and cytochrome c (Cyt-c)], mitochondrial biogenesis-related proteins [proliferator-activated receptor gamma coactivator 1-alpha, nuclear respiratory factor-1 and mitochondrial transcription factor A)], acetylation levels of forkhead box O3a and SOD2, and sirtuin-3 (SIRT3) signalling pathway were measured by immunoblotting and immunoprecipitation. RESULTS: Rb1 ameliorated survival in cells in which apoptosis was induced by high glucose (P<0.05 or P<0.01). Upon the addition of Rb1, mitochondrial and intracellular reactive oxygen species generation and malondialdehyde levels were decreased (P<0.01), while the activities of antioxidant enzymes were increased (P<0.05 or P<0.01). Rb1 preserved the mitochondrial membrane potential and reduced the release of Cyt-c from the mitochondria into the cytosol (P<0.01). In addition, Rb1 upregulated mitochondrial biogenesis-associated proteins (P<0.01). Notably, the cytoprotective effects of Rb1 were correlated with SIRT3 signalling pathway activation (P<0.01). The effect of Rb1 against high glucose-induced mitochondria-related apoptosis was restrained by 3-TYP (P<0.05 or P<0.01). CONCLUSION: Rb1 could protect HUVECs from high glucose-induced apoptosis by promoting mitochondrial function and suppressing oxidative stress through the SIRT3 signalling pathway.


Assuntos
Mitocôndrias , Apoptose , Células Endoteliais , Ginsenosídeos , Glucose/metabolismo , Glucose/toxicidade , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo , Sirtuína 3 , Ubiquitina-Proteína Ligases/metabolismo , Cordão Umbilical
13.
J Ethnopharmacol ; 271: 113855, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33485979

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellarin (Scu) is one of the main active ingredients of Erigeron breviscapus (Vant.) Hand.-Mazz which has been used to treat cardiovascular disease including vascular dysfunction caused by diabetes. Scu also has a protective effect on vascular endothelial cells against hyperglycemia. However, molecular mechanisms underlying this effect are not clear. AIM OF THE STUDY: This aim of this study was to investigate the effect of Scu on human umbilical vein endothelial cells (HUVECs) injury induced by high glucose (HG), especially the regulation of PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy. MATERIALS AND METHODS: HUVECs were exposed to HG to induce vascular endothelial cells injury in vitro. Cell viability was assessed by MTT assay. The extent of cell apoptosis was measured by Hoechst staining and flow cytometry. Mitophagy was assayed by fluorescent immunostaining, transmission electron microscope and immunoblot. Besides, virtual docking was conducted to validate the interaction of PINK1 protein and Scu. RESULTS: We found that Scu significantly increased cell viability in HG-treated HUVECs. Scu reduces the expression of Bcl-2, Bax and cytochrome C (Cyt.c) to inhibit apoptosis through a mitochondria-dependent pathway. Meanwhile, Scu improved the overload of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and SOD2 protein expression, and reversed the collapse of mitochondrial membrane potential. Besides, Scu increased autophagic flux, improved the expression of microtubule-associated protein 1 light chain 3 Ⅱ (LC3 II), Beclin 1 and autophagy-related gene 5 (Atg 5) and decreased the expression of Sequestosome1/P62 in HG-treated HUVECs. Furthermore, Scu improved the expressions of PINK1, Parkin, and Mitofusin2, which revealed the enhancement of mitophagy. Moreover, the beneficial effects of Scu on HG-induced low expression of Parkin, overproduction of ROS, and over expressions of P62, Cyt.c and Cleaved caspase-3 were weakened by PINK1 gene knockdown. Molecular docking suggested good interaction of Scu and PINK1 protein. CONCLUSION: These results suggest that Scu may protect vascular endothelial cells against hyperglycemia-induced injury by up-regulating mitophagy via PINK1/Parkin signal pathway.


Assuntos
Apigenina/farmacologia , Glucuronatos/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Mitofagia/efeitos dos fármacos , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Apigenina/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/metabolismo , Inativação Gênica , Glucose/toxicidade , Glucuronatos/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Hiperglicemia/induzido quimicamente , Hiperglicemia/complicações , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitofagia/genética , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases/química , Proteínas Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
14.
Molecules ; 26(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445772

RESUMO

Diabetes increases the incidence rate of chronic renal disease. Pectin-lyase-modified ginseng (GS-E3D), with enhanced ginsenoside Rd content, has been newly developed. In this study, renal protective roles of GS-E3D in type-2 diabetic db/db mice were investigated. The generation of reactive oxygen species (ROS) induced by high glucose (25 mM) was reduced by ES-E3D (75%) and ginsenoside Rd (60%). Diabetic db/db mice received 100 or 250 mg/kg/day of GS-E3D daily via oral gavage for 6 weeks. Albuminuria and urinary 8-hydroxy-2'-deoxyguanosine (8-OhdG, an oxidative stress marker) levels were increased in db/db mice and the levels recovered after GS-E3D treatment. In renal tissues, TUNEL-positive cells were decreased after GS-E3D treatment, and the increased apoptosis-related protein expressions were restored after GS-E3D treatment. Therefore, GS-E3D has a potent protective role in diabetes-induced renal dysfunction through antioxidative and antiapoptotic activities. These results may help patients to select a dietary supplement for diabetes when experiencing renal dysfunction.


Assuntos
Ginsenosídeos/farmacologia , Glucose/toxicidade , Rim/fisiopatologia , Células Mesangiais/metabolismo , Panax/química , Extratos Vegetais/farmacologia , Polissacarídeo-Liases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Células Mesangiais/efeitos dos fármacos , Camundongos
15.
J Cell Mol Med ; 25(2): 1012-1023, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33332718

RESUMO

Podocyte injury is associated with albuminuria and the progression of diabetic nephropathy (DN). NADPH oxidase 4 (NOX4) is the main source of reactive oxygen species (ROS) in the kidney and NOX4 is up-regulated in podocytes in response to high glucose. In the present study, the effects of Salvianolate on DN and its underlying mechanisms were investigated in diabetic db/db mice and human podocytes. We confirmed that the Salvianolate administration exhibited similar beneficial effects as the NOX1/NOX4 inhibitor GKT137831 treated diabetic mice, as reflected by attenuated albuminuria, reduced podocyte loss and mesangial matrix accumulation. We further observed that Salvianolate attenuated the increase of Nox4 protein, NOX4-based NADPH oxidase activity and restored podocyte loss in the diabetic kidney. In human podocytes, NOX4 was predominantly localized to mitochondria and Sal B treatment blocked HG-induced mitochondrial NOX4 derived superoxide generation and thereby ameliorating podocyte apoptosis, which can be abrogated by AMPK knockdown. Therefore, our results suggest that Sal B possesses the reno-protective capabilities in part through AMPK-mediated control of NOX4 expression. Taken together, our results identify that Salvianolate could prevent glucose-induced oxidative podocyte injury through modulation of NOX4 activity in DN and have a novel therapeutic potential for DN.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/patologia , NADPH Oxidase 4/metabolismo , Estresse Oxidativo , Extratos Vegetais/farmacologia , Podócitos/patologia , Adenilato Quinase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Glucose/toxicidade , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Podócitos/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
J Ethnopharmacol ; 268: 113617, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33307053

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Penthorum chinense Pursh is used for promoting diuresis and alleviating "heat"-associated disorders, which were considered to be related to diabetic in Traditional Chinese Medicine (TCM). AIMS OF THIS STUDY: Here, we aimed to evaluate the ability and underlying mechanism of the ethyl acetate fraction of Penthorum chinense Pursh stems (PSE) to inhibit vascular inflammation in high glucose (HG)-induced human umbilical vein endothelial cells (HUVEC cells). MATERIALS AND METHODS: HUVEC cells were pre-treated with PSE following HG treatment. The cell viability, mitochondrial membrane potential (MMP), lactate dehydrogenase (LDH) levels, reactive oxygen species (ROS) generation were analyzed. Inflammatory, and antioxidant,-related proteins were analyzed using western blotting. Molecular docking and drug affinity targeting experiments (DARTS) were utilized to analyze and verify the binding of the Keap1 protein and polyphenols of PSE. RESULTS: HG can significantly increase the activity of lactic dehydrogenase (LDH), destroy the mitochondrial membrane potential (MMP), and promote the generation of reactive oxygen species (ROS), while PSE treatment reversed these changes. Mechanistically, PSE inhibited NF-κB and inflammatory cytokines activation induced by HG through activating the expression of Nrf2 and its downstream antioxidant proteins Heme oxygenase-1 (HO-1), NAD (P)H Quinone Dehydrogenase 1 (NQO1), Glutamate cysteine ligase catalytic subunit (GCLC), Glutamate-cysteine ligase modifier (GCLM). Further study indicated that PSE activated Nrf2 antioxidant pathway mainly by the binding of primary polyphenols from PSE and the Keap1 protein. CONCLUSION: Taken together, the present data highlight the health benefits of polyphenols from Penthorum chinense Pursh. regarding diabetes, proving it to be an important source of health care products. Besides, binding of the Keap1 protein may be an effective strategy to activate Nrf2 antioxidant pathway and prevent diabetes.


Assuntos
Medicamentos de Ervas Chinesas/metabolismo , Glucose/toxicidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Polifenóis/metabolismo , Saxifragaceae , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/uso terapêutico , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/prevenção & controle , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Polifenóis/isolamento & purificação , Polifenóis/uso terapêutico
17.
J Ethnopharmacol ; 272: 113628, 2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-33246115

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Urolithin A is an active metabolite of plant polyphenol ellagic acid generated by intestinal flora, which is derived from strawberry or traditional anti-diabetic Chinese medicine such as Punica granatum L. and Phyllanthus emblica. The present study aimed to whether urolithin A can protect against glycolipid-toxicity-induced apoptosis of pancreatic ß-cells and the underlying mechanisms. MATERIALS AND METHODS: Apoptosis was induced in the pancreas of mice with type 2 diabetes and MIN6 pancreatic ß-cells. CC-8 assay was conducted to determine cell viability. Flow cytometry, JC-1 fluorescent probe, and western blot assays were performed to assess apoptosis. Immunofluorescence and western blot assays were used to detect changes in autophagy. The mechanism of apoptosis was elucidated using autophagy inhibitor chloroquine. RESULTS: Urolithin A intervention significantly reduced pancreatic cell apoptosis in diabetic mice and MIN6 ß cells. This was achieved by the downregulation of cleaved-caspase 3, cleaved-caspase 1, and restoration of cell viability, cell morphology and mitochondrial membrane potential, accompanied with the downregulation of autophagic protein SQSTM1/p62 and upregulation of LC3II. Chloroquine, an autophagy inhibitor, reversed the anti-glucolipotoxic and anti-apoptotic effects of urolithin A. CONCLUSION: These findings suggest that urolithin A protects against glucolipotoxicity-induced apoptosis in pancreatic ß-cells by inducing activation of autophagy.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cumarínicos/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Punica granatum/química , Punica granatum/metabolismo , Substâncias Protetoras/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cloroquina/farmacologia , Cumarínicos/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose/toxicidade , Células Secretoras de Insulina/citologia , Lipídeos/toxicidade , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Substâncias Protetoras/uso terapêutico
18.
Oxid Med Cell Longev ; 2020: 7151946, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963699

RESUMO

Vascular endothelial senescence induced by high glucose and palmitate (HG/PA) contributes to endothelial dysfunction, which leads to diabetic cardiovascular complications. Reduction of endothelial senescence may attenuate these pathogenic processes. This study is aimed at determining whether Ginseng-Sanqi-Chuanxiong (GSC) extracts, traditional Chinese medicine, can ameliorate human aortic endothelial cell (HAEC) senescence under HG/PA-stressed conditions and further explore the underlying mechanism. We found that GSC extracts significantly increased antisenescent activity by reducing the HG/PA-induced mitochondrial ROS (mtROS) levels in senescent HAECs. GSC extracts also induced cellular mitophagy formation, which mediated the effect of GSC extracts on mtROS reduction. Apart from this, the data showed that GSC extracts stimulated mitophagy via the AMPK pathway, and upon inhibition of AMPK by pharmacological and genetic inhibitors, GSC extract-mediated mitophagy was abolished which further led to reverse the antisenescence effect. Taken together, these data suggest that GSC extracts prevent HG/PA-induced endothelial senescence and mtROS production by mitophagy regulation via the AMPK pathway. Thus, the induction of mitophagy by GSC extracts may provide a novel therapeutic candidate for cardiovascular protection in metabolic syndrome.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Senescência Celular/efeitos dos fármacos , Diabetes Mellitus/patologia , Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Mitofagia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glucose/toxicidade , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Ácido Palmítico/toxicidade , Extratos Vegetais/química , Quinazolinonas/farmacologia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Food Chem Toxicol ; 144: 111606, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32738368

RESUMO

Polyphenols from Hibiscus sabdariffa (HS) alleviate obesity-related metabolic complications but the metabolites responsible for such effects are unknown. We aimed to elucidate which of the potential plasma metabolites from a polyphenol-enriched HS (PEHS) extract contributed for the reversion of glucolipotoxicity-induced metabolic stress using 3T3-L1 adipocyte and INS 832/13 pancreatic ß-cell models under glucolipotoxic conditions. PEHS extract, quercetin (Q) and quercetin-3-O-glucuronide (Q3GA) showed stronger capacity to decrease glucolipotoxicity-induced ROS generation than ascorbic acid or chlorogenic acid. PEHS extract, Q and Q3GA decreased secretion of cytokines (leptin, TNF-α, IGF-1, IL-6, VEGF, IL-1α, IL-1ß and CCL2) and reduced CCL2 expression at transcriptional level. In addition, PEHS extract, Q and Q3GA reduced triglyceride accumulation, which occurred through fatty acid synthase (FASN) downregulation, AMPK activation and mitochondrial mass and biogenesis restoration via PPARα upregulation. Electron microscopy confirmed that PEHS extract and Q3GA decreased mitochondrial remodeling and mitophagy. Virtual screening leads us to postulate that Q and Q3GA might act as agonists of these protein targets at specific sites. These data suggest that Q and Q3GA may be the main responsible compounds for the capacity of PEHS extract to revert glucolipotoxicity-induced metabolic stress through AMPK-mediated decrease in fat storage and increase in fatty acid oxidation, though other compounds of the extract may contribute to this capacity.


Assuntos
Glucose/toxicidade , Hibiscus/metabolismo , Extratos Vegetais/farmacologia , Quercetina/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipocinas/metabolismo , Animais , Quimiocina CCL2/metabolismo , Hibiscus/química , Técnicas In Vitro , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos
20.
J Ethnopharmacol ; 262: 113208, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32738388

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicinal herb Salvia miltiorrhiza Bunge(Danshen) and its components have been widely used to treat cardiovascular diseases for hundreds of years in China, including hypertension, diabetes, atherosclerosis, and chronic heart failure. Salvia miltiorrhiza injection (SMI), an aqueous extracts of Salvia miltiorrhiza Bunge, is one of most widely used traditional Chinese medicine injections. SMI is widely used in the treatment of diabetic vascular complications, However, the mechanisms remain to be defined. AIM OF THE STUDY: To investigate protective mechanism of Salvia miltiorrhiza Bunge against ROS generation in VSMCs of diabetic mice and patients. MATERIALS AND METHODS: Salvia miltiorrhiza injection (hereinafter referred to as SMI, 1.5 g mL-1), which was approved by the State Food and Drug Administration (approval number: Z32020161), was obtained from Shenlong Pharmaceutical Co., Ltd. (batch number: 11040314). SMI or vehicle were intraperitoneally administrated to the HFD-fed db/db mice, artery was harvested after 24weeks later. qRT-PCR and Western blot analysis were used to detect the expression of KLF6, KLF5, KLF4, KLF10, KLF12, and HO-1. DCFH-DA staining detected intracellular ROS production. Loss- and gain-of-function experiments of KLF10 were used to investigate the effect of KLF10 on the expression of HO-1. Dual-luciferase reporter assay evaluated the effect of KLF10 on the activity of the HO-1 promoter. RESULTS: KLF10 expression and ROS generation are significantly increased in the arteries of HFD-fed db/db mice, VSMCs of diabetic patients, as well as in high glucose-treated VSMCs. KLF10 overexpression suppresses, while its knockdown facilitates the expression of heme oxygenase (HO-1) mRNA and protein. Further, Salvia miltiorrhiza injection (SMI) abrogates KLF10 upregulation and reduces ROS generation induced by high glucose in VSMCs. Mechanistically, KLF10 negatively regulates the HO-1 gene transcription via directly binding to its promoter. Accordingly, SMI treatment of VSMCs reduces ROS generation through inhibiting KLF10 expression and thus relieving KLF10 repression of the expression of HO-1 gene, subsequently contributing to upregulation of HO-1. CONCLUSION: SMI exerts anti-oxidative effects on VSMCs exposed to high glucose through inhibiting KLF10 expression and thus upregulating HO-1.


Assuntos
Antioxidantes/uso terapêutico , Fatores de Transcrição de Resposta de Crescimento Precoce/antagonistas & inibidores , Glucose/toxicidade , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Músculo Liso Vascular/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Salvia miltiorrhiza , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Linhagem Celular , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fatores de Transcrição de Resposta de Crescimento Precoce/biossíntese , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/biossíntese , Masculino , Camundongos , Músculo Liso Vascular/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA