Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 240(6): 2372-2385, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837235

RESUMO

Glutamate decarboxylase (GAD) is a Ca2+ -calmodulin-activated, cytosolic enzyme that produces γ-aminobutyrate (GABA) as the committed step of the GABA shunt. This pathway bypasses the 2-oxoglutarate to succinate reactions of the tricarboxylic acid (TCA) cycle. GABA also accumulates during many plant stresses. We tested the hypothesis that AtGAD1 (At5G17330) facilitates Arabidopsis acclimation to Pi deprivation. Quantitative RT-PCR and immunoblotting revealed that AtGAD1 transcript and protein expression is primarily root-specific, but inducible at lower levels in shoots of Pi-deprived (-Pi) plants. Pi deprivation reduced levels of the 2-oxoglutarate dehydrogenase (2-OGDH) cofactor thiamine diphosphate (ThDP) in shoots and roots by > 50%. Growth of -Pi atgad1 T-DNA mutants was significantly attenuated relative to wild-type plants. This was accompanied by: (i) an > 60% increase in shoot and root GABA levels of -Pi wild-type, but not atgad1 plants, and (ii) markedly elevated anthocyanin and reduced free and total Pi levels in leaves of -Pi atgad1 plants. Treatment with 10 mM GABA reversed the deleterious development of -Pi atgad1 plants. Our results indicate that AtGAD1 mediates GABA shunt upregulation during Pi deprivation. This bypass is hypothesized to circumvent ThDP-limited 2-OGDH activity to facilitate TCA cycle flux and respiration by -Pi Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fósforo/metabolismo , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aclimatação , Aminobutiratos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Raízes de Plantas/metabolismo , Fosfatos/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Bull Exp Biol Med ; 176(2): 232-234, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38194067

RESUMO

The expression of glutamate decarboxylase GAD65/67, an enzyme of GABA synthesis, and vesicular glutamate transporter 2 (VGLUT2) in the arcuate, dorsomedial, and ventromedial nuclei of the hypothalamus of young (3 months), adult (12 months), and old male rats (24 months) was studied by Western blotting. In old rats, an increase in the expression of GAD65/67 in the arcuate and dorsomedial, VGLUT2 in the arcuate, dorsomedial, and ventromedial nuclei was observed. Thus, an increase in opposite processes of inhibition and excitation is observed in the hypothalamic nuclei during aging.


Assuntos
Hipotálamo , Neurônios , Animais , Masculino , Ratos , Envelhecimento/genética , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo
3.
Zhen Ci Yan Jiu ; 47(8): 703-9, 2022 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-36036104

RESUMO

OBJECTIVE: To observe the effect of electroacupuncture (EA) of Governor Vessel (GV) on the expressions of glutamate decarboxylase 67 (GAD67) and γ-aminobutyric acid transaminase (GABA-T) in the cerebral cortex of rats with post-stroke limb spasticity, so as to explore its mechanism underlying improvement of limb spasticity. METHODS: Twenty four male SD rats were randomly and equally divided into control, sham operation, model, and EA groups. The cerebral ischemia model was established by occlusion of the middle cerebral artery (MCAO). EA (100 Hz, 1-3 mA) was applied to "Dazhui"(GV14), "Jizhong"(GV6) and "Houhui"( anteromedial of transverse process of the sixth lumbar vertebra) for 30 min, once daily for 7 consecutive days. The neurologic deficit score (0-5 points) was evaluated according to Zea Longa's method, and the muscular tension severity (0-5 points) was assessed according to the modified Ashworth muscle tone rating scale, and the tension signals of the quadriceps ferroris of the affected limb were recorded using tonotransducer and BL-420F electrophysiological recorder. The expression levels of GAD67 and GABA-T proteins and mRNAs in the cerebral cortex were detected by immunohistochemistry, fluorescence quantitative real-time PCR and Western blot, separately. RESULTS: After modeling, the neurological deficit score, muscle tone score, and the expression levels of GABA-T mRNA and protein in cerebral cortex were significantly increased (P<0.01, P<0.05), tension signal value and the expression levels of GAD67 mRNA and protein in cerebral cortex were significantly decreased (P<0.01) in the model group relevant to the control and sham operation groups. Following the intervention, the neurological deficit score, muscle tone score, and expression levels of GABA-T mRNA and protein in cerebral cortex were significantly decreased (P<0.01), tension signal value and the expression levels of GAD67 mRNA and protein in cerebral cortex were significantly increased (P<0.01, P<0.05) in the EA group in contrast to the model group. CONCLUSION: EA stimulation of Governor Vessel can ameliorate the limb spasticity symptom in MCAO rats, which may be associated with its functions in increasing the expressions of GAD67 protein and mRNA and inhibiting the expressions of GABA-T protein and mRNA, thereby playing the inhibitory role of GABA.


Assuntos
Isquemia Encefálica , Eletroacupuntura , Glutamato Descarboxilase/metabolismo , Acidente Vascular Cerebral , Animais , Córtex Cerebral , Masculino , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Transaminases , Ácido gama-Aminobutírico
4.
Pharm Biol ; 60(1): 810-824, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35587996

RESUMO

CONTEXT: Moringa oleifera Lam. (Moringaceae) (MO) is an important food plant that has high nutritional and medical value. However, there is limited information on whether its seeds can improve sleep. OBJECTIVE: This study investigated the effects of MO seed ethanol extracts (EEMOS) on sleep activity improvement and examined the underlying mechanisms. MATERIALS AND METHODS: Male ICR mice were placed into six groups (n = 12) and treated as follows: Control (sodium carboxymethyl cellulose, 20 mL/kg), estazolam tablets (2 mg/kg), EEMOS (1, 2 g/kg) and kaempferol (1, 2 mg/kg). These samples were successively given intragastric for 14 d. Locomotor activity assay, pentobarbital-induced sleeping and pentetrazol-induced seizures tests were utilized to examine the sedative-hypnotic effects (SHE) of EEMOS. RESULTS: Compared with the control group, the results revealed that EEMOS (2 g/kg) and KA (2 mg/kg) possessed good SHE and could significantly elevate the levels of γ-aminobutyric acid and reduce the levels of glutamic acid in the mouse hypothalamus (p < 0.05). Moreover, SHE was blocked by picrotoxin, flumazenil and bicuculline (p < 0.05). EEMOS (2 g/kg) and KA (2 mg/kg) significantly upregulated the protein expression levels of glutamic acid decarboxylase-65 (GAD65) and α1-subunit of GABAA receptors in the hypothalamus of mice (p < 0.05), not affecting glutamic acid decarboxylase-67 (GAD67) and γ2-subunit expression levels (p > 0.05). Additionally, they cause a significant increase in Cl- influx in human cerebellar granule cells at a concentration of 8 µg/mL (p < 0.05). DISCUSSION AND CONCLUSIONS: These findings demonstrated that EEMOS could improve sleep by regulating GABAA-ergic systems, and encourage further clinical trials to treat insomnia.


Assuntos
Moringa oleifera , Pentobarbital , Animais , Etanol/farmacologia , Glutamato Descarboxilase/metabolismo , Hipnóticos e Sedativos/farmacologia , Quempferóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Pentobarbital/farmacologia , Extratos Vegetais/farmacologia , Receptores de GABA-A/metabolismo , Sementes , Sono , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
5.
J Chem Neuroanat ; 121: 102089, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35283254

RESUMO

The lateral hypothalamus (LHA) is still a poorly understood brain region. Based on published Dlx and Gad gene expression patterns in the embryonic and adult hypothalamus respectively, three large areas are identified in the LHA. A central tuberal LHA region is already well described as it contains neurons producing the peptides melanin-concentrating hormone or hypocretin. This region is rich in GABAergic neurons and is specified by Dlx gene expression in the rodent embryo. Rostrally and caudally bordering the tuberal LHA, two Dlx-GAD-GABA poor regions are then easily delineated. The three regions show different organizational schema. The tuberal region is reticularly organized, connected with the cerebral cortex and the spinal cord, and its embryonic development occurs along the tractus postopticus. The region anterior to it is associated with the stria medullaris in both embryonic and adult subjects. The posterior LHA region is made of differentiated nuclei and includes the subthalamic nucleus. Therefore, the LHA is divided into three distinct parts: in addition to the well-known tuberal LHA, caudal and anterior LHA regions exist that have specific anatomical and functional characteristics. The hypothalamus is made up of several dozens of nuclei or areas that are more or less well differentiated and whose boundaries and arrangements are drawn differently according to authors and atlases (Allen Institute, 2004; Paxinos and Franklin, 2019; Paxinos and Watson, 2013; Swanson, 2004). The dominant hypothesis for more than 50 years is that these structures are distributed within three antero-posterior areas (anterior, tuberal, posterior) and more or less three longitudinal zones (lateral, medial and periventricular) (Fig. 1). In addition to these regions, several adjacent territories are often associated to the hypothalamus. The preoptic area is functionally related to the hypothalamus, but it is better seen as a telencephalic structure based on developmental data (Croizier et al., 2015; Puelles and Rubenstein, 2015). Lately, the zona incerta and the subthalamic nucleus (STN) have also been associated to the hypothalamus on the basis of their connections and development for the STN (Altman and Bayer, 1986; Barbier and Risold, 2021; Swaab et al., 2021). However, the zona incerta is still included in the 'pre-thalamus' or "ventral thalamus" in the embryo (Puelles and Rubenstein, 2015). Thus, the boundaries of the hypothalamus remain blurred around what we can call a 'core' made of the anterior to posterior regions (Brooks, 1988). In addition, unlike other large brain regions that are characterized early on by a molecular signature, i.e. by the embryonic expression of specific molecular markers, data illustrating the distribution of dozens of transcription factors involved in brain patterning and cell lineage specification confirmed the extremely heterogeneous and mosaic nature of the anterior and posterior regions of the hypothalamus (Alvarez-Bolado, 2019; Puelles et al., 2013; Puelles and Rubenstein, 2015). The rich nuclear organization of the medial and periventricular zones of the hypothalamus is consistent with the mosaic expression of developmental genes. The LHA, however, is often perceived as much more homogeneous in its cytoarchitectural organization. At the same time, there is little information regarding the expression of developmental genes in the anterior and posterior territories of the LHA. Most studies focus on the tuberal LHA which expresses many of these genes. Admittedly, even in the adult hypothalamus, the internal boundaries of the LHA are difficult to identify and the same is true in the embryo. Developmental data alone are insufficient to achieve a better understanding of the LHA anatomical organization and for this region as for medial and periventricular zones, a coherence must be established between development and adult anatomical organization. Among the most useful neurochemical markers to identify large regions of the forebrain, those involved in the identification of GABAergic and glutamatergic neurons have proven to be particularly efficient. Indeed, GABAergic neurons are not ubiquitously distributed. Large regions of the forebrain are rich in such cells, including the basal telencephalon, but others contain few or no GABAergic cells and are rich in glutamatergic neurons instead (for example the dorsal thalamus that is free of GABA-neurons in rodents). The same applies for the hypothalamus: several structures of the hypothalamus are free of GABAergic neurons, as, for example, the mammillary nuclei (Hahn et al., 2019). Recently, we also identified a GABA-poor posterior LHA territory that includes the (STN), and is localized caudal to the GABA-rich tuberal LHA (Barbier et al., 2020; Barbier and Risold, 2021; Chometton et al., 2016b). Therefore, the LHA seems partitioned into GABA-rich/GABA-poor regions. However, to define or confirm distinct neuroanatomical entities, these regions must have a specific embryological origin, and show specific hodological patterns and functions. Hence, the purpose of this short review is to identify divisions of the LHA based on developmental and neurochemical criteria. Such an analysis seems to us relevant in order to allow later functional studies on regions whose boundaries will be based on objective criteria.


Assuntos
Glutamato Descarboxilase , Roedores , Animais , Feminino , Glutamato Descarboxilase/metabolismo , Humanos , Hipotálamo/metabolismo , Gravidez , Prosencéfalo/metabolismo , Fatores de Transcrição/metabolismo , Ácido gama-Aminobutírico
6.
Microb Cell Fact ; 21(1): 33, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255900

RESUMO

BACKGROUND: Bifidobacteria are gram-positive, probiotic, and generally regarded as safe bacteria. Techniques such as transformation, gene knockout, and heterologous gene expression have been established for Bifidobacterium, indicating that this bacterium can be used as a cell factory platform. However, there are limited previous reports in this field, likely because of factors such as the highly anaerobic nature of this bacterium. Bifidobacterium adolescentis is among the most oxygen-sensitive Bifidobacterium species. It shows strain-specific gamma-aminobutyric acid (GABA) production. GABA is a potent bioactive compound with numerous physiological and psychological functions. In this study, we investigated whether B. adolesentis could be used for mass production of GABA. RESULTS: The B. adolescentis 4-2 strain isolated from a healthy adult human produced approximately 14 mM GABA. It carried gadB and gadC, which encode glutamate decarboxylase and glutamate GABA antiporter, respectively. We constructed pKKT427::Pori-gadBC and pKKT427::Pgap-gadBC plasmids carrying gadBC driven by the original gadB (ori) and gap promoters, respectively. Recombinants of Bifidobacterium were then constructed. Two recombinants with high production abilities, monitored by two different promoters, were investigated. GABA production was improved by adjusting the fermentation parameters, including the substrate concentration, initial culture pH, and co-factor supplementation, using response surface methodology. The optimum initial cultivation pH varied when the promoter region was changed. The ori promoter was induced under acidic conditions (pH 5.2:4.4), whereas the constitutive gap promoter showed enhanced GABA production at pH 6.0. Fed-batch fermentation was used to validate the optimum fermentation parameters, in which approximately 415 mM GABA was produced. The conversion ratio of glutamate to GABA was 92-100%. CONCLUSION: We report high GABA production in recombinant B. adolescentis. This study provides a foundation for using Bifidobacterium as a cell factory platform for industrial production of GABA.


Assuntos
Bifidobacterium adolescentis , Bifidobacterium/genética , Bifidobacterium/metabolismo , Bifidobacterium adolescentis/genética , Bifidobacterium adolescentis/metabolismo , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Ácido gama-Aminobutírico
7.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299369

RESUMO

Absence seizures are associated with generalised synchronous 2.5-4 Hz spike-wave discharges causing brief and sudden alteration of awareness during childhood, which is known as childhood absence epilepsy (CAE). CAE is also associated with impaired learning, psychosocial challenges, and physical danger. Absence seizures arise from disturbances within the cortico-thalamocortical (CTC) network, including dysfunctional feed-forward inhibition (FFI); however, the precise mechanisms remain unclear. In epileptic stargazers, a genetic mouse model of CAE with chronic seizures, levels of γ-aminobutyric acid (GABA), and expression of GABA receptors are altered within the CTC network, implicating altered GABAergic transmission in absence seizures. However, the expression of GABA synthesising enzymes (GAD65 and GAD67) and GABA transporters (GAT-1 and 3) have not yet been characterised within absence seizure models. We found a specific upregulation of GAD65 in the somatosensory cortex but not the thalamus of epileptic stargazer mice. No differences were detected in GAD67 and GAT-3 levels in the thalamus or somatosensory cortex. Then, we assessed if GAD65 upregulation also occurred in Gi-DREADD mice exhibiting acute absence seizures, but we found no change in the expression profiles of GAD65/67 or GAT-3. Thus, the upregulation of GAD65 in stargazers may be a compensatory mechanism in response to long-term dysfunctional FFI and chronic absence seizures.


Assuntos
Glutamato Descarboxilase/metabolismo , Isoformas de Proteínas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Modelos Animais de Doenças , Epilepsia Tipo Ausência/metabolismo , Feminino , Masculino , Camundongos , Neurônios/metabolismo , Receptores de GABA/metabolismo , Convulsões/metabolismo , Córtex Somatossensorial/metabolismo , Tálamo/metabolismo
8.
Neurobiol Aging ; 105: 1-15, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34004491

RESUMO

The age-related loss of GABA in the inferior colliculus (IC) likely plays a role in the development of age-related hearing loss. Perineuronal nets (PNs), specialized aggregates of extracellular matrix, increase with age in the IC. PNs, associated with GABAergic neurotransmission, can stabilize synapses and inhibit structural plasticity. We sought to determine whether PN expression increased on GABAergic and non-GABAergic IC cells that project to the medial geniculate body (MG). We used retrograde tract-tracing in combination with immunohistochemistry for glutamic acid decarboxylase and Wisteria floribunda agglutinin across three age groups of Fischer Brown Norway rats. Results demonstrate that PNs increase with age on lemniscal and non-lemniscal IC-MG cells, however two key differences exist. First, PNs increased on non-lemniscal IC-MG cells during middle-age, but not until old age on lemniscal IC-MG cells. Second, increases of PNs on lemniscal IC-MG cells occurred on non-GABAergic cells rather than on GABAergic cells. These results suggest that synaptic stabilization and reduced plasticity likely occur at different ages on a subset of the IC-MG pathway.


Assuntos
Envelhecimento/patologia , Neurônios GABAérgicos/patologia , Neurônios GABAérgicos/fisiologia , Colículos Inferiores/citologia , Colículos Inferiores/patologia , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Tálamo/citologia , Tálamo/patologia , Animais , Vias Auditivas/fisiologia , Corpos Geniculados/citologia , Corpos Geniculados/patologia , Glutamato Descarboxilase/metabolismo , Perda Auditiva/etiologia , Perda Auditiva/patologia , Masculino , Lectinas de Plantas , Ratos , Receptores de N-Acetilglucosamina
9.
Mol Brain ; 14(1): 33, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588899

RESUMO

GABAergic interneurons play a critical role in tuning neural networks in the central nervous system, and their defects are associated with neuropsychiatric disorders. Currently, the mDlx enhancer is solely used for adeno-associated virus (AAV) vector-mediated transgene delivery into cortical interneurons. Here, we developed a new inhibitory neuron-specific promoter (designated as the mGAD65 promoter), with a length of 2.5 kb, from a mouse genome upstream of exon 1 of the Gad2 gene encoding glutamic acid decarboxylase (GAD) 65. Intravenous infusion of blood-brain barrier-penetrating AAV-PHP.B expressing an enhanced green fluorescent protein under the control of the mGAD65 promoter transduced the whole brain in an inhibitory neuron-specific manner. The specificity and efficiency of the mGAD65 promoter for GABAergic interneurons, which was assessed at the motor cortex, were almost identical to or slightly higher than those of the mDlx enhancer. Immunohistochemical analysis revealed that the mGAD65 promoter preferentially transduced parvalbumin (PV)-expressing interneurons. Notably, the mGAD65 promoter transduced chandelier cells more efficiently than the mDlx enhancer and robustly labeled their synaptic boutons, called the cartridge, targeting the axon initial segments of excitatory pyramidal neurons. To test the ability of the mGAD65 promoter to express a functional molecule, we virally expressed G-CaMP, a fluorescent Ca2+ indicator, in the motor cortex, and this enabled us to monitor spontaneous and drug-induced Ca2+ activity in GABAergic inhibitory neurons. These results suggest that the mGAD65 promoter is useful for AAV-mediated targeting and manipulation of GABAergic neurons with the dominance of cortical PV-expressing neurons, including chandelier cells.


Assuntos
Encéfalo/metabolismo , Dependovirus/metabolismo , Neurônios GABAérgicos/metabolismo , Plasmídeos/metabolismo , Transdução Genética , Animais , Cálcio/metabolismo , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Injeções Intravenosas , Interneurônios/metabolismo , Camundongos Endogâmicos C57BL , Córtex Motor/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Regiões Promotoras Genéticas
10.
Food Chem ; 338: 128126, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33091993

RESUMO

Tomato fruits contain much organic acids and γ-aminobutyric acid (GABA) during ripening which are beneficial to human health. The effects of 4 kJ/m2 UV-C treatment on the contents of organic acids and GABA, and the expression of related genes in tomato fruits during storage at 13 °C were investigated. The results showed that UV-C treatment significantly increased the organic acids and total soluble protein contents, whereas decreased the free amino acids and glutamate contents. Besides, UV-C treatment enhanced GAD activity while reduced GABA-T activity, which resulted in accumulation of GABA. Moreover, the genes involved in the biosynthesis of organic acids and GABA were up-regulated, including CS, PEPC1, PEPC2, mMDH, cMDH, GAD1, GAD2, and GAD3, while GABA-T1 and GABA-T3 which involved in GABA degradation were obviously decreased by UV-C treatment. These results indicated that UV-C treatment might be an effective approach to accumulate organic acids and GABA during tomato fruits ripening.


Assuntos
Armazenamento de Alimentos , Frutas/metabolismo , Frutas/efeitos da radiação , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos da radiação , Raios Ultravioleta , Ácido gama-Aminobutírico/metabolismo , Aminoácidos/metabolismo , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo
11.
J Mol Neurosci ; 71(5): 1082-1094, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33231812

RESUMO

The ventromedial hypothalamic nucleus-ventrolateral part (VMNvl) is an estradiol-sensitive structure that controls sex-specific behavior. Electrical reactivity of VMNvl neurons to hypoglycemia infers that cellular energy stability is monitored there. Current research investigated the hypothesis that estradiol elicits sex-dimorphic patterns of VMNvl metabolic sensor activation and gluco-regulatory neurotransmission during hypoglycemia. Rostral-, middle-, and caudal-VMNvl tissue was separately micropunch-dissected from letrozole (Lz)- or vehicle-injected male and estradiol- or vehicle-implanted ovariectomized (OVX) female rats for Western blot analysis of total and phosphorylated 5'-AMP-activated protein kinase (AMPK) protein expression and gluco-stimulatory [neuronal nitric oxide synthase (nNOS); steroidogenic factor-1 (SF1) or -inhibitory (glutamate decarboxylase65/67 (GAD)] transmitter marker proteins after sc insulin (INS) or vehicle injection. In both sexes, hypoglycemic up-regulation of phosphoAMPK was estradiol-dependent in rostral and middle, but not caudal VMNvl. AMPK activity remained elevated after recovery from hypoglycemia over the rostro-caudal VMNvl in female, but only in the rostral segment in male. In each sex, hypoglycemia correspondingly augmented or suppressed nNOS profiles in rostral and middle versus caudal VMNvl; these segmental responses persisted longer in female. Rostral and middle segment SF1 protein was inhibited by estradiol-independent mechanisms in hypoglycemic males, but increased by estradiol-reliant mechanisms in female. After INS injection, GAD expression was inhibited in the male rostral VMNvl without estradiol involvement, but this hormone was required for broader suppression of this profile in the female. Neuroanatomical variability of VMNvl metabolic transmitter reactivity to hypoglycemia underscores the existence of functionally different subgroups in that structure. The regional distribution and estradiol sensitivity of hypoglycemia-sensitive VMNvl neurons of each neurochemical phenotype evidently vary between sexes.


Assuntos
Estradiol/metabolismo , Glucose/metabolismo , Hipoglicemia/metabolismo , Hipotálamo/metabolismo , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Estradiol/farmacologia , Feminino , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Hipotálamo/efeitos dos fármacos , Insulina/metabolismo , Insulina/farmacologia , Masculino , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Proteínas Quinases/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
12.
Neurosci Lett ; 736: 135287, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32763361

RESUMO

Within the reticular thalamic nucleus neurons express gamma aminobutyric acid (GABA) and these cells project to the ventral posteromedial thalamic nucleus. When GABA activity decreases the activity of excitatory cells in the ventral posteromedial nucleus would be expected to increase. In this study, we addressed the hypothesis that attenuating GABAergic cells in the reticular thalamic nucleus increases excitatory activity in the ventral posteromedial nucleus increasing varicella zoster virus (VZV) associated pain in the orofacial region. Adeno-associated virus (AAV) was infused in the reticular thalamic nucleus of Gad1-Cre rats. This virus transduced a G inhibitory designer receptor exclusively activated by designer drugs (DREADD) gene that was Cre dependent. A dose of estradiol that was previously shown to reduce VZV pain and increase GABAergic activity was administered to castrated and ovariectomized rats. Previous studies suggest that estradiol attenuates herpes zoster pain by increasing the activity of inhibitory neurons and decreasing the activity of excitatory cells within the lateral thalamic region. The ventral posteromedial nucleus was infused with AAV containing a GCaMP6f expression construct. A glass lens was implanted for miniscope imaging. Our results show that the activity of GABA cells within the reticular thalamic region decreased with clozapine N-oxide treatment concomitant with increased calcium activity of excitatory cells in the ventral posteromedial nucleus and an increased orofacial pain response. The results suggest that estradiol attenuates herpes zoster pain by increasing the activity of inhibitory neurons within the reticular thalamus that then inhibit excitatory activity in ventral posteromedial nucleus causing a reduction in orofacial pain.


Assuntos
Estradiol/farmacologia , Dor Facial/virologia , Glutamato Descarboxilase/metabolismo , Neuralgia/virologia , Tálamo/metabolismo , Animais , Dor Facial/metabolismo , Dor Facial/fisiopatologia , Feminino , Herpesvirus Humano 3 , Masculino , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Ratos , Tálamo/efeitos dos fármacos , Tálamo/fisiopatologia
13.
Sci Rep ; 10(1): 12240, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699288

RESUMO

Tea plant often suffers from low temperature induced damage during its growth. How to improve the cold resistance of tea plant is an urgent problem to be solved. Nitric oxide (NO), γ-aminobutyric acid (GABA) and proline have been proved that can improve the cold resistance of tea plants, and signal transfer and biosynthesis link between them may enhance their function. NO is an important gas signal material in plant growth, but our understanding of the effects of NO on the GABA shunt, proline and NO biosynthesis are limited. In this study, the tea roots were treated with a NO donor (SNAP), NO scavenger (PTIO), and NO synthase inhibitor (L-NNA). SNAP could improve activities of arginine decarboxylase, ornithine decarboxylase, glutamate decarboxylase, GABA transaminase and Δ1-pyrroline-5-carboxylate synthetase and the expression level of related genes during the treatments. The contents of putrescine and spermidine under SNAP treatment were 45.3% and 37.3% higher compared to control at 24 h, and the spermine content under PTIO treatment were 57.6% lower compare to control at 12 h. Accumulation of proline of SNAP and L-NNA treatments was 52.2% and 43.2% higher than control at 48 h, indicating other pathway of NO biosynthesis in tea roots. In addition, the NO accelerated the consumption of GABA during cold storage. These facts indicate that NO enhanced the cold tolerance of tea, which might regulate the metabolism of the GABA shunt and of proline, associated with NO biosynthesis.


Assuntos
Camellia sinensis/metabolismo , Óxido Nítrico/metabolismo , Raízes de Plantas/metabolismo , Poliaminas/metabolismo , Prolina/metabolismo , Chá/metabolismo , Ácido gama-Aminobutírico/metabolismo , Carboxiliases/metabolismo , Temperatura Baixa , Resposta ao Choque Frio/fisiologia , Óxidos N-Cíclicos/metabolismo , Glutamato Descarboxilase/metabolismo , Imidazóis/metabolismo , Doadores de Óxido Nítrico/metabolismo , Ornitina Descarboxilase/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Putrescina/metabolismo , S-Nitroso-N-Acetilpenicilamina/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
14.
Brain Res ; 1744: 146917, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32474018

RESUMO

Psychosocial stress and biological predispositions are linked to mood and personality disorders related to psychiatric behaviors. Targeting neuroinflammation and oxidative stress has been recognized as a potential strategy for the prevention of psychosocial stress-induced psychiatric disorders. Morin, a bioactive compound isolated from mulberry leaf has been shown to produce antiamnesic, antipsychotic and anti-inflammatory effects relative to ginseng, a well-known adaptogen. Hence, the present study investigated the effect of morin on social-defeat stress (SDS)-induced behavioral, neurochemical, neuroimmune and neurooxidative changes in mice using intruder-resident paradigm. The intruder male mice were distributed into 6 groups (n = 10). Groups 1 (normal-control) and 2 (SDS-control) received normal saline, groups 3-5 had morin (25-100 mg/kg) while group 6 received ginseng (50 mg/kg) intraperitoneally daily for 14 days. Thirty minutes after treatment from days 7-14 onwards, mice in groups 2-6 were exposed to SDS for 10 min physical and psychological confrontations respectively with aggressive-resident mice. Neurobehavioral effects (locomotor activity, cognitive performance, anxiety- and depressive-like behavior) were assessed on day 14. Biomarkers of oxidative/nitrergic stress and neuroinflammation; acetylcholinesterase (AChE) and glutamic-acid decarboxylase-67 (GAD67) were measured in the striatum, prefrontal-cortex and hippocampus. Behavioral deficits induced by SDS were attenuated by morin and ginseng. Both morin and ginseng decreasedmalondialdehyde, nitrite levels and increased glutathione concentrations in the brain regions. They also reduced inflammatory mediators (TNF-α, IL-6, COX-2 and NF-κB), AChE activity and Nox-2 expression in the specific brain regions. However, morin increased the levels of GAD67 in the striatum, prefrontal-cortex and hippocampus in contrast to ginseng. Our results suggest that morin mitigates SDS-induced neurobehavioral deficits through enhancement of GAD67, inhibition of AChE activity, oxidative stress, Nox-2 and neuroinflammatory pathways.


Assuntos
Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Flavonoides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Psicológico/metabolismo , Animais , Encéfalo/metabolismo , Glutamato Descarboxilase/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , NADPH Oxidases/metabolismo , Estresse Oxidativo/fisiologia , Estresse Psicológico/complicações
15.
Amino Acids ; 52(5): 771-780, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32372390

RESUMO

Gamma-aminobutyric acid (GABA) biosynthesis depended to a great extent on the biotransformation characterization of glutamate decarboxylase (GAD) and process conditions. In this paper, the enhancing effect of D101 macroporous adsorption resin (MAR) on the GABA production was investigated based on the whole-cell biotransformation characterization of Enterococcus faecium and adsorption characteristics of D101 MAR. The results indicated that the optimal pH for reaction activity of whole-cell GAD and pure GAD was 4.4 and 5.0, respectively, and the pH range retained at least 50% of GAD activity was from 4.8 to 5.6 and 4.0-4.8, respectively. No substrate inhibition effect was observed on both pure GAD and whole-cell GAD, and the maximum activity could be obtained when the initial L-glutamic acid (L-Glu) concentration exceeded 57.6 mmol/L and 96.0 mmol/L, respectively. Besides, GABA could significantly inhibit the activity of whole-cell GAD rather than pure GAD. When the initial GABA concentration of the reaction solution remained 100 mmol/L, 33.51 ± 9.11% of the whole-cell GAD activity was inhibited. D101 MAR exhibited excellent properties in stabilizing the pH of the conversion reaction system, supplementing free L-Glu and removing excess GABA. Comparison of the biotransformation only in acetate buffer, the GABA production, with 50 g/100 mL of D101 MAR, was significantly increased by 138.71 ± 5.73%. D101 MAR with pre-adsorbed L-Glu could significantly enhance the production of GABA by gradual replenishment of free L-Glu, removing GABA and maintaining the pH of the reaction system, which would eventually make the GABA production more economical and eco-friendly.


Assuntos
Biotransformação , Enterococcus faecium/metabolismo , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Resinas Sintéticas/química , Ácido gama-Aminobutírico/metabolismo , Adsorção , Enterococcus faecium/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Porosidade , Resinas Sintéticas/metabolismo
16.
PLoS Biol ; 18(3): e3000638, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32208418

RESUMO

Caenorhabditis elegans and its cognate bacterial diet comprise a reliable, widespread model to study diet and microbiota effects on host physiology. Nonetheless, how diet influences the rate at which neurons die remains largely unknown. A number of models have been used in C. elegans as surrogates for neurodegeneration. One of these is a C. elegans strain expressing a neurotoxic allele of the mechanosensory abnormality protein 4 (MEC-4d) degenerin/epithelial Na+ (DEG/ENaC) channel, which causes the progressive degeneration of the touch receptor neurons (TRNs). Using this model, our study evaluated the effect of various dietary bacteria on neurodegeneration dynamics. Although degeneration of TRNs was steady and completed at adulthood in the strain routinely used for C. elegans maintenance (Escherichia coli OP50), it was significantly reduced in environmental and other laboratory bacterial strains. Strikingly, neuroprotection reached more than 40% in the E. coli HT115 strain. HT115 protection was long lasting well into old age of animals and was not restricted to the TRNs. Small amounts of HT115 on OP50 bacteria as well as UV-killed HT115 were still sufficient to produce neuroprotection. Early growth of worms in HT115 protected neurons from degeneration during later growth in OP50. HT115 diet promoted the nuclear translocation of DAF-16 (ortholog of the FOXO family of transcription factors), a phenomenon previously reported to underlie neuroprotection caused by down-regulation of the insulin receptor in this system. Moreover, a daf-16 loss-of-function mutation abolishes HT115-driven neuroprotection. Comparative genomics, transcriptomics, and metabolomics approaches pinpointed the neurotransmitter γ-aminobutyric acid (GABA) and lactate as metabolites differentially produced between E. coli HT115 and OP50. HT115 mutant lacking glutamate decarboxylase enzyme genes (gad), which catalyze the conversion of GABA from glutamate, lost the ability to produce GABA and also to stop neurodegeneration. Moreover, in situ GABA supplementation or heterologous expression of glutamate decarboxylase in E. coli OP50 conferred neuroprotective activity to this strain. Specific C. elegans GABA transporters and receptors were required for full HT115-mediated neuroprotection. Additionally, lactate supplementation also increased anterior ventral microtubule (AVM) neuron survival in OP50. Together, these results demonstrate that bacterially produced GABA and other metabolites exert an effect of neuroprotection in the host, highlighting the role of neuroactive compounds of the diet in nervous system homeostasis.


Assuntos
Caenorhabditis elegans/fisiologia , Escherichia coli/fisiologia , Neurônios/patologia , Ácido gama-Aminobutírico/metabolismo , Fatores Etários , Animais , Bactérias/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colágeno/genética , Dieta , Escherichia coli/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Bacteriana da Expressão Gênica , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Interneurônios/patologia , Interneurônios/fisiologia , Lactatos/metabolismo , Lactatos/farmacologia , Mecanorreceptores/patologia , Mecanorreceptores/fisiologia , Mutação , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Ácido gama-Aminobutírico/farmacologia
17.
Biosci Biotechnol Biochem ; 84(5): 1069-1072, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31931681

RESUMO

Gamma-aminobutyric acid (GABA) is produced by Lactobacillus brevis using date residue fermentation. In this study, the GABA production method was improved, for which L. brevis strain JCM 1059T was the most efficient among the four L. brevis strains examined. This was presumably due to a difference in the expression level of the gene encoding glutamate decarboxylase that catalyzes GABA synthesis.Abbreviation: GABA: gamma-aminobutyric acid.


Assuntos
Glutamato Descarboxilase/genética , Levilactobacillus brevis/enzimologia , Levilactobacillus brevis/genética , Phoeniceae/química , Extratos Vegetais/metabolismo , Ácido gama-Aminobutírico/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Glutamato Descarboxilase/metabolismo , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Behav Brain Res ; 377: 112247, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31545978

RESUMO

Maternal infection during pregnancy is considered a key risk factor for developing schizophrenia in offspring. There is evidence that maternal exposure to infectious agents is associated with fetal zinc deficiency. Due to the essential role of zinc in brain function and development, in the present study, we activated maternal immune system using lipopolysaccharide (LPS) as a model of schizophrenia to examine whether zinc supplementation throughout pregnancy can reverse LPS-induced deleterious effects. To test the hypothesis, pregnant rats were treated with intraperitoneal injection of either saline or LPS (0.5 mg/kg) at gestational day 15 and 16, and zinc supplementation (30 mg/kg) was administered throughout pregnancy by gavage. At postnatal day 60, Y-maze was used to evaluate working memory of offspring. Moreover, the expression levels of catechol O-methyltransferase (COMT) and glutamate decarboxylase 67 (GAD67) were measured in the frontal cortex of the brain samples. Only male offspring prenatally exposed to LPS showed a significant impairment in working memory. In addition, prenatal LPS exposure causes a moderate decrease in GAD67 expression level in the male pups, while COMT expression was found unchanged. Interestingly, zinc supplementation restored the alterations in working memory as well as GAD67 mRNA level in the male rats. No alteration was detected for neither working memory nor COMT/GAD67 genes expression in female offspring. This study demonstrates that zinc supplementation during pregnancy can attenuate LPS-induced impairments in male pups. These results support the idea to consume zinc supplementation during pregnancy to limit neurodevelopmental deficits induced by infections in offspring.


Assuntos
Suplementos Nutricionais , Glutamato Descarboxilase , Lipopolissacarídeos/farmacologia , Memória de Curto Prazo , Transtornos do Neurodesenvolvimento/prevenção & controle , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Caracteres Sexuais , Oligoelementos/farmacologia , Zinco/farmacologia , Animais , Catecol O-Metiltransferase/metabolismo , Feminino , Glutamato Descarboxilase/efeitos dos fármacos , Glutamato Descarboxilase/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Memória de Curto Prazo/fisiologia , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/fisiopatologia , Córtex Pré-Frontal/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , RNA Mensageiro , Ratos , Ratos Wistar , Oligoelementos/administração & dosagem , Zinco/administração & dosagem
19.
Food Chem ; 305: 125440, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494496

RESUMO

Tea (Camellia sinensis) contains two active glutamate decarboxylases (CsGADs), whose unclear properties were examined here. CsGAD1 was 4-fold higher than CsGAD2 in activity. Their Km values for L-glutamate were around 5 mM. CsGAD1 and CsGAD2 performed best at 55 and 40 °C, respectively, and were both stimulated by calcium/calmodulin (Ca2+/CaM). Over 40 °C, their calmodulin-binding domains degraded. CsGADs were most active at pH 5.6, and were stimulated by Ca2+/CaM at pH 5.6-6.6, but inactivated at pH 3.6. Ca2+/CaM restored the CsGAD1 activity suppressed by inhibitors. CsGADs and CsCaM were localized to the cytosol. CsGAD1 was more highly expressed in most tissues, while CsGAD2 expression was more induced under stresses. The characteristics we first elucidated here revealed that CsGAD1 is the predominant isoform in tea plant, with CsGAD2 exhibiting a supplementary role under certain conditions. The information will contribute to regulation of GABA tea quality.


Assuntos
Camellia sinensis/enzimologia , Glutamato Descarboxilase/metabolismo , Proteínas de Plantas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Secas , Estabilidade Enzimática , Ácido Glutâmico/metabolismo , Concentração de Íons de Hidrogênio , Isoenzimas/metabolismo , Cinética , Temperatura
20.
Neurosci Lett ; 712: 134498, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31526832

RESUMO

Broiler and layer chicks have been selected for higher and lower food intake and body weight gain, respectively. It has recently been reported that glutamate decarboxylase (Gad1) mRNA, a gamma-aminobutyric acid (GABA) synthetic enzyme gene, is a reliable proxy for GABA release. Previous studies have revealed that GABAergic system has a stimulatory role on food intake in both mammals and birds. Over the recent years, evidence has identified the presence of GABAergic neurons as either the first- or second-order neurons within the various feeding nuclei of hypothalamus of laboratory rodents. They respond to the negative energy balance representing a critical role for GABA in the regulation of food intake. In the current study, the mRNA abundance of Gad 1 and Gad 2 was measured within the hypothalamus of both broiler and layer free fed, 12 h-fasted and 12 h-fasted / 3 h refed chicks. Furthermore, the effect of intracerebroventricular (ICV) injection of GABA was studied on food intake of chicks. The results indicated an increase in both Gad 1 and 2 expressions during fasting which tended to return to the baseline after refeeding. However, this increase was greater in broilers than in layers. The results also showed that ICV injection of GABA had no effect on food intake with the exception of an increase in free fed broilers. This study suggests a role for hypothalamic GABAergic system in birds that respond to negative energy balance, which seems to be more considerable in broilers than in layers.


Assuntos
Metabolismo Energético/fisiologia , Glutamato Descarboxilase/metabolismo , Hipotálamo/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Galinhas , Ingestão de Alimentos/fisiologia , Jejum/metabolismo , Feminino , Glutamato Descarboxilase/genética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA