Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Blood Adv ; 7(24): 7433-7444, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37934892

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults, but first-line immunochemotherapy fails to produce a durable response in about one-third of the patients. Because tumor cells often reprogram their metabolism, we investigated the importance of glutaminolysis, a pathway converting glutamine to generate energy and various metabolites, for the growth of DLBCL cells. Glutaminase-1 (GLS1) expression was robustly detected in DLBCL biopsy samples and cell lines. Both pharmacological inhibition and genetic knockdown of GLS1 induced cell death in DLBCL cells regardless of their subtype classification, whereas primary B cells remained unaffected. Interestingly, GLS1 inhibition resulted not only in reduced levels of intermediates of the tricarboxylic acid cycle but also in a strong mitochondrial accumulation of reactive oxygen species. Supplementation of DLBCL cells with α-ketoglutarate or with the antioxidant α-tocopherol mitigated oxidative stress and abrogated cell death upon GLS1 inhibition, indicating an essential role of glutaminolysis in the protection from oxidative stress. Furthermore, the combination of the GLS1 inhibitor CB-839 with the therapeutic BCL2 inhibitor ABT-199 not only induced massive reactive oxygen species (ROS) production but also exhibited highly synergistic cytotoxicity, suggesting that simultaneous targeting of GLS1 and BCL2 could represent a novel therapeutic strategy for patients with DLBCL.


Assuntos
Antineoplásicos , Glutaminase , Linfoma Difuso de Grandes Células B , Estresse Oxidativo , Humanos , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio , Antineoplásicos/uso terapêutico
2.
J Med Chem ; 64(8): 4588-4611, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33792311

RESUMO

The inhibition of glutaminase 1 (GLS1) represents a potential treatment of malignant tumors. Structural analysis led to the design of a novel series of macrocyclic GLS1 allosteric inhibitors. Through extensive structure-activity relationship studies, a promising candidate molecule 13b (LL202) was identified with robust GLS1 inhibitory activity (IC50 = 6 nM) and high GLS1 binding affinity (SPR, Kd = 24 nM; ITC, Kd = 37 nM). The X-ray crystal structure of the 13b-GLS1 complex was resolved, revealing a unique binding mode and providing a novel structural scaffold for GLS1 allosteric inhibitors. Importantly, 13b clearly adjusted the cellular metabolites and induced an increase in the ROS level by blocking glutamine metabolism. Furthermore, 13b exhibited a similar in vivo antitumor activity as CB839. This study adds to the growing body of evidence that macrocyclization provides an alternative and complementary approach for the design of small-molecule inhibitors, with the potential to improve the binding affinity to the targets.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Glutaminase/antagonistas & inibidores , Compostos Macrocíclicos/química , Sítio Alostérico , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Glutaminase/metabolismo , Glicólise/efeitos dos fármacos , Meia-Vida , Humanos , Compostos Macrocíclicos/metabolismo , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/uso terapêutico , Camundongos , Camundongos Nus , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade
3.
Phytomedicine ; 82: 153434, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33529962

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most frequent, lethal and aggressive tumour of the central nervous system in adults. The discovery of novel anti-GBM agents based on the isocitrate dehydrogenase (IDH) mutant phenotypes and classifications have attracted comprehensive attention. PURPOSE: Diterpenoids are a class of naturally occurring 20-carbon isoprenoid compounds, and have previously been shown to possess high cytotoxicity for a variety of human tumours in many scientific reports. In the present study, 31 cassane diterpenoids of four types, namely, butanolide lactone cassane diterpenoids (I) (1-10), tricyclic cassane diterpenoids (II) (11-15), polyoxybutanolide lactone cassane diterpenoids (III) (16-23), and fused furan ring cassane diterpenoids (IV) (24-31), were tested for their anti-glioblastoma activity and mechanism underlying based on IDH1 mutant phenotypes of primary GBM cell cultures and human oligodendroglioma (HOG) cell lines. RESULTS: We confirmed that tricyclic-type (II) and compound 13 (Caesalpin A, CSA) showed the best anti-neoplastic potencies in IDH1 mutant glioma cells compared with the other types and compounds. Furthermore, the structure-relationship analysis indicated that the carbonyl group at C-12 and an α, ß-unsaturated ketone unit fundamentally contributed to enhancing the anti-glioma activity. Studies investigating the mechanism demonstrated that CSA induced oxidative stress via causing glutathione reduction and NOS activation by negatively regulating glutaminase (GLS), which proved to be highly dependent on IDH mutant type glioblastoma. Finally, GLS overexpression reversed the CSA-induced anti-glioma effects in vitro and in vivo, which indicated that the reduction of GLS contributed to the CSA-induced proliferation inhibition and apoptosis in HOG-IDH1-mu cells. CONCLUSION: Therefore, the present results demonstrated that compared with other diterpenoids, tricyclic-type diterpenoids could be a targeted drug candidate for the treatment of secondary IDH1 mutant type glioblastoma through negatively regulating GLS.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Diterpenos/farmacologia , Glioblastoma/patologia , Glutaminase/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Mutação , Linhagem Celular Tumoral , Humanos , Estresse Oxidativo
4.
J Med Chem ; 63(21): 12957-12977, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33118821

RESUMO

Inhibition of glutaminase-1 (GLS-1) hampers the proliferation of tumor cells reliant on glutamine. Known glutaminase inhibitors have potential limitations, and in vivo exposures are potentially limited due to poor physicochemical properties. We initiated a GLS-1 inhibitor discovery program focused on optimizing physicochemical and pharmacokinetic properties, and have developed a new selective inhibitor, compound 27 (IPN60090), which is currently in phase 1 clinical trials. Compound 27 attains high oral exposures in preclinical species, with strong in vivo target engagement, and should robustly inhibit glutaminase in humans.


Assuntos
Inibidores Enzimáticos/química , Glutaminase/antagonistas & inibidores , Triazóis/farmacocinética , Administração Oral , Animais , Linhagem Celular Tumoral , Cães , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Glutaminase/genética , Glutaminase/metabolismo , Meia-Vida , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Microssomos/metabolismo , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade , Triazóis/química , Triazóis/metabolismo
5.
BMC Cancer ; 20(1): 470, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450839

RESUMO

BACKGROUND: Glutamine serves as an important nutrient with many cancer types displaying glutamine dependence. Following cellular uptake glutamine is converted to glutamate in a reaction catalysed by mitochondrial glutaminase. This glutamate has many uses, including acting as an anaplerotic substrate (via alpha-ketoglutarate) to replenish TCA cycle intermediates. CB-839 is a potent, selective, orally bioavailable inhibitor of glutaminase that has activity in Triple receptor-Negative Breast Cancer (TNBC) cell lines and evidence of efficacy in advanced TNBC patients. METHODS: A panel of eleven breast cancer cell lines was used to investigate the anti-proliferative effects of the glutaminase inhibitors CB-839 and BPTES in different types of culture medium, with or without additional pyruvate supplementation. The abundance of the TCA cycle intermediate fumarate was quantified as a measure if TCA cycle anaplerosis. Pyruvate secretion by TNBC cultures was then assessed with or without AZD3965, a monocarboxylate transporter 1 (MCT1) inhibitor. Finally, two dimensional (2D) monolayer and three dimensional (3D) spheroid assays were used to compare the effect of microenvironmental growth conditions on CB-839 activity. RESULTS: The anti-proliferative activity of CB-839 in a panel of breast cancer cell lines was similar to published reports, but with a major caveat; growth inhibition by CB-839 was strongly attenuated in culture medium containing pyruvate. This pyruvate-dependent attenuation was also observed with a related glutaminase inhibitor, BPTES. Studies demonstrated that exogenous pyruvate acted as an anaplerotic substrate preventing the decrease of fumarate in CB-839-treated conditions. Furthermore, endogenously produced pyruvate secreted by TNBC cell lines was able to act in a paracrine manner to significantly decrease the sensitivity of recipient cells to glutaminase inhibition. Suppression of pyruvate secretion using the MCT1 inhibitor AZD3965, antagonised this paracrine effect and increased CB-839 activity. Finally, CB-839 activity was significantly compromised in 3D compared with 2D TNBC culture models, suggesting that 3D microenvironmental features impair glutaminase inhibitor responsiveness. CONCLUSION: This study highlights the potential influence that both circulating and tumour-derived pyruvate can have on glutaminase inhibitor efficacy. Furthermore, it highlights the benefits of 3D spheroid cultures to model the features of the tumour microenvironment and improve the in vitro investigation of cancer metabolism-targeted therapeutics.


Assuntos
Benzenoacetamidas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Glutaminase/antagonistas & inibidores , Glutamina/metabolismo , Ácido Pirúvico/metabolismo , Tiadiazóis/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Proliferação de Células , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral
6.
Talanta ; 205: 120126, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450397

RESUMO

Inspired by the porous and fibrous structure of commercially available bamboo, herein we created an l-glutaminase enzyme reactor based on bamboo sticks. The enzyme was immobilized onto the bamboo sticks through a glutaraldehyde modification to achieve covalent bonding. The enzymatic hydrolysis efficiency of the prepared l-glutaminase@bamboo sticks based porous enzyme reactor was evaluated by chiral ligand exchange capillary electrochromatography using l-glutamine as the substrate. l-glutaminase@bamboo exhibited improved enzymatic hydrolysis performances, including high hydrolysis efficiency (maximum rate Vmax: two fold higher than the free enzyme), prolonged stability (14 days) and good reusability. l-Glutaminase@bamboo sticks also expanded application capability in pharmaceutical industry in enzyme inhibitor screening. These excellent properties could be attributed to the micropores of bamboo sticks, which led to the fast enzymatic kinetics. The results suggest that the pores of bamboo sticks played an important role in the proposed enzyme reactor during the hydrolysis of l-glutamine and l-glutaminase inhibitor screening.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Poaceae/química , Estabilidade Enzimática , Enzimas Imobilizadas/antagonistas & inibidores , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glutaminase/química , Glutaral/metabolismo , Cinética , Porosidade , Propriedades de Superfície
7.
Cells ; 8(1)2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646605

RESUMO

Metformin has been shown to inhibit glutaminase (GLS) activity and ammonia accumulation thereby reducing the risk of hepatic encephalopathy in type 2 diabetic patients. Since tumour cells are addicted to glutamine and often show an overexpression of glutaminase, we hypothesize that the antitumoral mechanism of metformin could be ascribed to inhibition of GLS and reduction of ammonia and ammonia-induced autophagy. Our results show that, in different tumour cell lines, micromolar doses of metformin prevent cell growth by reducing glutamate, ammonia accumulation, autophagy markers such as MAP1LC3B-II and GABARAP as well as degradation of long-lived proteins. Reduced autophagy is then accompanied by increased BECN1/BCL2 binding and apoptotic cell death. Interestingly, GLS-silenced cells reproduce the effect of metformin treatment showing reduced MAP1LC3B-II and GABARAP as well as ammonia accumulation. Since metformin is used as adjuvant drug to increase the efficacy of Cisplatin-based neoadjuvant chemotherapy, we co-treated tumour cells with micromolar doses of metformin in the presence of cisplatin observing a marked reduction of MAP1LC3B-II and an increase of caspase 3 cleavage. In conclusion, our work demonstrates that the anti-tumoral action of metformin is due to the inhibition of glutaminase and autophagy and could be used to improve the efficacy of chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Glutaminase/antagonistas & inibidores , Glutamina/metabolismo , Metformina/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Amônia/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Cisplatino/farmacologia , Células HeLa , Humanos , Células MCF-7 , Proteínas Associadas aos Microtúbulos/metabolismo , Terapia Neoadjuvante
8.
J Med Chem ; 62(2): 589-603, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30543285

RESUMO

Kidney-type glutaminase [KGA/isoenzyme glutaminase C (GAC)] is becoming an important tumor metabolism target in cancer chemotherapy. Its allosteric inhibitor, CB839, showed early promise in cancer therapeutics but limited efficacy in in vivo cancer models. To improve the in vivo activity, we explored a bioisostere replacement of the sulfur atom in bis-2-(5-phenylacetamido-1,2,4-thiadiazol)ethyl sulfide and CB839 analogues with selenium using a novel synthesis of the selenadiazole moiety from carboxylic acids or nitriles. The resulting selenadiazole compounds showed enhanced KGA inhibition, more potent induction of reactive oxygen species, improved inhibition of cancer cells, and higher cellular and tumor accumulation than the corresponding sulfur-containing molecules. However, both CB839 and its selenium analogues show incomplete inhibition of the tested cancer cells, and a partial reduction in tumor size was observed in both the glutamine-dependent HCT116 and aggressive H22 liver cancer xenograft models. Despite this, tumor tissue damage and prolonged survival were observed in animals treated with the selenium analogue of CB839.


Assuntos
Antineoplásicos/química , Azóis/química , Inibidores Enzimáticos/química , Glutaminase/antagonistas & inibidores , Regulação Alostérica , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Azóis/farmacologia , Azóis/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Glutaminase/metabolismo , Humanos , Rim/enzimologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Selênio/química , Relação Estrutura-Atividade , Tiadiazóis/química , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Transplante Heterólogo
9.
J Pharmacol Exp Ther ; 368(3): 382-390, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552293

RESUMO

Glutamate is the principal excitatory neurotransmitter in the brain and is at the base of a wide variety of neuropathologies, including epilepsy, autism, Fragile X, and obsessive compulsive disorder. Glutamate has also become the target for novel drugs in treatment and in fundamental research settings. However, much remains unknown on the working mechanisms of these drugs and the effects of chronic administration on the glutamatergic system. This study investigated the chronic effects of two glutamate-modulating drugs with imaging techniques to further clarify their working mechanisms for future research opportunities. Animals were exposed to saline (1 ml/kg), (5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) (0.3 mg/kg), or ebselen (10 mg/kg) for 7 consecutive days. At the sixth injection, animals underwent a positron emission tomography (PET)/computed tomography (CT) with (3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-11C-methyl-oxime) (ABP-688) to visualize the metabotropic G protein-coupled glutamate receptor 5 (mGluR5). After the seventh injection, animals underwent a magnetic resonance spectroscopy (MRS) scan to visualize glutamate and glutamine content. Afterward, results were verified by mGluR5 immunohistochemistry (IHC). PET/CT analysis revealed that animals receiving chronic MK-801 or ebselen had a significant (P < 0.05) higher binding potential (2.90 ± 0.47 and 2.87 ± 0.46, respectively) when compared with saline (1.97 ± 0.39) in the caudate putamen. This was confirmed by mGluR5 IHC, with 60.83% ± 6.30% of the area being highlighted for ebselen and 57.14% ± 9.23% for MK-801 versus 50.21% ± 5.71% for the saline group. MRS displayed significant changes on the glutamine level when comparing chronic ebselen (2.20 ± 0.40 µmol/g) to control (2.72 ± 0.34 µmol/g). Therefore, although no direct effects on glutamate were visualized, the changes in glutamine suggest changes in the total glutamate-glutamine pool. This highlights the potential of both drugs to modulate glutamatergic pathologies.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Glutaminase/metabolismo , Imagem Molecular/métodos , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Maleato de Dizocilpina/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Glutaminase/antagonistas & inibidores , Glutamina/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
10.
Phytochemistry ; 152: 22-28, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29715600

RESUMO

Human kidney-type glutaminase (KGA) is an important target that is often over expressed in many cancer cells but very few effective inhibitors of this enzyme have yet reached clinical trials. Caudatan A and caudatan B, two undescribed tetracyclic flavans with an unusual ether bond between the C-4 and C-2' were isolated from the roots of Ohwia caudata (Thunb.) H.Ohashi. Caudatan A exhibited stronger inhibitory activity and caudatan B showed moderate effect from the results of inhibitory activities evaluations on KGA. The molecular docking and primary structure-activity relationship analysis revealed that the less steric hindrance at ring A was necessary to the effect. Therefore, combined its better solubility than that of bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES), caudatan A might be the potential candidate as the inhibitor of KGA for further studies.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Glutaminase/antagonistas & inibidores , Rim/enzimologia , Animais , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Glutaminase/isolamento & purificação , Glutaminase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Raízes de Plantas/química , Ratos , Relação Estrutura-Atividade
11.
Biochem Biophys Res Commun ; 477(3): 374-82, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27338638

RESUMO

We found that non-small cell lung cancer (NSCLC) is remarkably sensitive to the regulation of glutamine supply by testing the metabolic dependency of 11 cancer cell lines against regulation of glycolysis, autophagy, fatty acid synthesis, and glutamine supply. Glutamine is known as a key supplement of cancer cell growth that is converted to α-ketoglutarate for anabolic biogenesis via glutamate by glutaminase 1 (GLS1). GLS1 inhibition using 10 µM of bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) showed about 50% cell growth arrest by SRB assay. By testing the synergistic effects of conventional therapeutics, BPTES combined with 5-fluorouracil (5-FU), an irreversible inhibitor of thymidylate synthase, significant effects were observed on cell growth arrest in NSCLC. We found that GLS1 inhibition using BPTES reduced metabolic intermediates including thymidine and carbamoyl phosphate. Reduction of thymidine and carbamoyl-phosphate synthesis by BPTES treatment exacerbated pyrimidine supply by combination with 5-FU, which induced cell death synergistically in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Glutaminase/antagonistas & inibidores , Neoplasias Pulmonares/metabolismo , Timidina/biossíntese , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/enzimologia
12.
J Neuroimmune Pharmacol ; 10(1): 162-78, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25649846

RESUMO

We previously have shown that cerebellar fastigial nucleus (FN) modulates immune function, but pathways or mechanisms underlying this immunomodulation require clarification. Herein, an anterograde and retrograde tracing of nerve tracts between the cerebellar FN and hypothalamus/thalamus was performed in rats. After demonstrating a direct cerebellar FN-hypothalamic/thalamic glutamatergic projection, 6-diazo-5-oxo-L-norleucine (DON), an inhibitor of glutaminase that catalyzes glutamate synthesis, was injected bilaterally in the cerebellar FN and simultaneously, D,L-threo-ß-hydroxyaspartic acid (THA), an inhibitor of glutamate transporters on cell membrane, was bilaterally injected in the lateral hypothalamic area (LHA) or the ventrolateral (VL) thalamic nucleus. DON treatment in the FN alone decreased number of glutamatergic neurons that projected axons to the LHA and also diminished glutamate content in both the hypothalamus and the thalamus. These effects of DON were reduced by combined treatment with THA in the LHA or in the VL. Importantly, DON treatment in the FN alone attenuated percentage and cytotoxicity of natural killer (NK) cells and also lowered percentage and cytokine production of T lymphocytes. These DON-caused immune effects were reduced or abolished by combined treatment with THA in the LHA, but not in the VL. Simultaneously, DON treatment elevated level of norepinephrine (NE) in the spleen and mesenteric lymphoid nodes, and THA treatment in the LHA, rather than in the VL, antagonized the DON-caused NE elevation. These findings suggest that glutamatergic neurons in the cerebellar FN regulate innate and adaptive immune functions and the immunomodulation is conveyed by FN-hypothalamic glutamatergic projections and sympathetic nerves that innervate lymphoid tissues.


Assuntos
Núcleos Cerebelares/citologia , Núcleos Cerebelares/imunologia , Ácido Glutâmico/fisiologia , Hipotálamo/imunologia , Hipotálamo/fisiologia , Imunidade/fisiologia , Sistema Nervoso Simpático/imunologia , Sistema Nervoso Simpático/fisiologia , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacologia , Axônios/efeitos dos fármacos , Diazo-Oxo-Norleucina/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Glutaminase/antagonistas & inibidores , Região Hipotalâmica Lateral/imunologia , Região Hipotalâmica Lateral/fisiologia , Injeções , Células Matadoras Naturais/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Linfócitos T/efeitos dos fármacos , Tálamo/imunologia , Tálamo/fisiologia
13.
Biochem Biophys Res Commun ; 443(1): 32-6, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24269238

RESUMO

Glutaminase plays a critical role in the generation of glutamate, a key excitatory neurotransmitter in the CNS. Excess glutamate release from activated macrophages and microglia correlates with upregulated glutaminase suggesting a pathogenic role for glutaminase. Both glutaminase siRNA and small molecule inhibitors have been shown to decrease excess glutamate and provide neuroprotection in multiple models of disease, including HIV-associated dementia (HAD), multiple sclerosis and ischemia. Consequently, inhibition of glutaminase could be of interest for treatment of these diseases. Bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and 6-diazo-5-oxo-l-norleucine (DON), two most commonly used glutaminase inhibitors, are either poorly soluble or non-specific. Recently, several new BPTES analogs with improved physicochemical properties were reported. To evaluate these new inhibitors, we established a cell-based microglial activation assay measuring glutamate release. Microglia-mediated glutamate levels were significantly augmented by tumor necrosis factor (TNF)-α, phorbol 12-myristate 13-acetate (PMA) and Toll-like receptor (TLR) ligands coincident with increased glutaminase activity. While several potent glutaminase inhibitors abrogated the increase in glutamate, a structurally related analog devoid of glutaminase activity was unable to block the increase. In the absence of glutamine, glutamate levels were significantly attenuated. These data suggest that the in vitro microglia assay may be a useful tool in developing glutaminase inhibitors of therapeutic interest.


Assuntos
Ácido Glutâmico/metabolismo , Glutaminase/antagonistas & inibidores , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Complexo AIDS Demência/enzimologia , Animais , Bioensaio , Isquemia Encefálica/enzimologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Camundongos , Microglia/enzimologia , Microglia/metabolismo , Esclerose Múltipla/enzimologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia , Receptores Toll-Like/agonistas , Fator de Necrose Tumoral alfa/farmacologia
14.
Biochem Biophys Res Commun ; 438(2): 243-8, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23850693

RESUMO

Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC(1280))) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease.


Assuntos
Apomorfina/química , Azóis/química , Benzofenantridinas/química , Glutaminase/antagonistas & inibidores , Compostos Organosselênicos/química , Complexo AIDS Demência/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Glutaminase/química , Glutaminase/metabolismo , Humanos , Concentração Inibidora 50 , Isoindóis , Neoplasias/tratamento farmacológico , RNA Interferente Pequeno/metabolismo , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA