Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Brain Res ; 1749: 147145, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33035499

RESUMO

Degeneration of striatal neurons and cortical atrophy are pathological characteristics of glutaric acidemia type I (GA-I), a disease characterized by accumulation of glutaric acid (GA). The mechanisms that lead to neuronal loss and cognitive impairment are still unclear. The purpose of this study was to verify if acute exposure to GA during the neonatal period is sufficient to trigger apoptotic processes and lead to learning delay in early and late period. Besides, whether N-acetylcysteine (NAC) would protect against impairment induced by GA. Pups mice received a dose of GA (2.5 µmol/ g) or saline, 12 hs after birth, and were treated with NAC (250 mg/kg) or saline, up to 21th day of life. Although GA exhibited deficits in the procedural and working memories in 21 and 40-day-old mice, NAC protected against cognitive impairment. In striatum and cortex, NAC prevented glial cells activation (GFAP and Iba-1), decreased NGF, Bcl-2 and NeuN, the increase of lipid peroxidation and PARP induced by GA in both ages. NAC protected against increased p75NTR induced by GA, but not in cortex of 21-day-old mice. Thus, we showed that the integrity of striatal and cortical pathways has an important role for learning and suggested that sustained glial reactivity in neonatal period can be an initial trigger for delay of cognitive development. Furthermore, NAC protected against cognitive impairment induced by GA. This work shows that early identification of the alterations induced by GA is important to avoid future clinical complications and suggest that NAC could be an adjuvant treatment for this acidemia.


Assuntos
Acetilcisteína/farmacologia , Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Glutaratos/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Apoptose/efeitos dos fármacos , Córtex Cerebral/metabolismo , Cognição/efeitos dos fármacos , Corpo Estriado/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos
2.
Biochem Biophys Res Commun ; 533(4): 1393-1399, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33092792

RESUMO

Cytosolic carboxypeptidases (CCPs) comprise a unique subfamily of M14 carboxypeptidases and are erasers of the reversible protein posttranslational modification- polyglutamylation. Potent inhibitors for CCPs may serve as leading compounds targeting imbalanced polyglutamylation. However, no efficient CCP inhibitor has yet been reported. Here, we showed that 2-phosphonomethylpentanedioic acid (2-PMPA), a potent inhibitor of the distant M28 family member glutamate carboxypeptidase II (GCPII), rather than the typical M14 inhibitor 2-benzylsuccinic acid, could efficiently inhibit CCP activities. 2-PMPA inhibited the recombinant Nna1 (a.k.a. CCP1) for hydrolyzing a synthetic peptide in a mixed manner, with Ki and Ki' being 0.11 µM and 0.24 µM respectively. It inhibited Nna1 for deglutamylating tubulin, the best-known polyglutamylated protein, with an IC50 of 0.21 mM. Homology modeling predicted that the R-form of 2-PMPA is more favorable to bind Nna1, unlike that GCPII prefers to S-form. This work for the first time identified a potent inhibitor for CCP family.


Assuntos
Glutamato Carboxipeptidase II/antagonistas & inibidores , Compostos Organofosforados/farmacologia , Inibidores de Proteases/farmacologia , Carboxipeptidases/antagonistas & inibidores , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Citosol/enzimologia , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Glutamato Carboxipeptidase II/química , Glutamato Carboxipeptidase II/metabolismo , Glutaratos/farmacologia , Cinética , Simulação de Acoplamento Molecular , Compostos Organofosforados/química , Inibidores de Proteases/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Ácido Succínico/farmacologia
3.
Cell ; 175(1): 101-116.e25, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30220459

RESUMO

IDH1 mutations are common in low-grade gliomas and secondary glioblastomas and cause overproduction of (R)-2HG. (R)-2HG modulates the activity of many enzymes, including some that are linked to transformation and some that are probably bystanders. Although prior work on (R)-2HG targets focused on 2OG-dependent dioxygenases, we found that (R)-2HG potently inhibits the 2OG-dependent transaminases BCAT1 and BCAT2, likely as a bystander effect, thereby decreasing glutamate levels and increasing dependence on glutaminase for the biosynthesis of glutamate and one of its products, glutathione. Inhibiting glutaminase specifically sensitized IDH mutant glioma cells to oxidative stress in vitro and to radiation in vitro and in vivo. These findings highlight the complementary roles for BCATs and glutaminase in glutamate biosynthesis, explain the sensitivity of IDH mutant cells to glutaminase inhibitors, and suggest a strategy for maximizing the effectiveness of such inhibitors against IDH mutant gliomas.


Assuntos
Glioma/metabolismo , Ácido Glutâmico/biossíntese , Transaminases/fisiologia , Linhagem Celular Tumoral , Glioma/fisiopatologia , Ácido Glutâmico/efeitos dos fármacos , Glutaratos/metabolismo , Glutaratos/farmacologia , Homeostase/efeitos dos fármacos , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/fisiologia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/fisiologia , Mutação , Oxirredução/efeitos dos fármacos , Proteínas da Gravidez/genética , Proteínas da Gravidez/fisiologia , Transaminases/antagonistas & inibidores , Transaminases/genética
4.
Mol Cell ; 60(4): 661-75, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26585387

RESUMO

Elucidating the tumorigenic mechanism of R-2-hydroxyglutarate (R-2HG) is critical for determining how NADP(+)-IDH mutations cause cancer. Here we report that R-2HG induces cancerous metabolism and apoptosis resistance through promoting hypersuccinylation. By competitive inhibition of the mitochondrial tricarboxylic acid cycle enzyme succinate dehydrogenase (SDH), R-2HG preferentially induced succinyl-CoA accumulation and hypersuccinylation in the mitochondria. IDH1 mutation-bearing glioma samples and cells were hypersuccinylated in the mitochondria. IDH1 mutation or SDH inactivation resulted in hypersuccinylation, causing respiration inhibition and inducing cancerous metabolism and mitochondrial depolarization. These mitochondrial dysfunctions induced BCL-2 accumulation at the mitochondrial membrane, leading to apoptosis resistance of hypersuccinylated cells. Relief of hypersuccinylation by overexpressing the desuccinylase SIRT5 or supplementing glycine rescued mitochondrial dysfunctions, reversed BCL-2 accumulation, and slowed the oncogenic growth of hypersuccinylated IDH1(R132C)-harboring HT1080 cells. Thus, R-2HG-induced hypersuccinylation contributes to the tumorigenicity of NADP(+)-IDH mutations, suggesting the potential of hypersuccinylation inhibition as an intervention for hypersuccinylation-related tumors.


Assuntos
Glutaratos/farmacologia , Isocitrato Desidrogenase/genética , Mitocôndrias/efeitos dos fármacos , Mutação , Neoplasias Experimentais/metabolismo , Ácido Succínico/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Mitocôndrias/metabolismo , Neoplasias Experimentais/genética , Succinato Desidrogenase/antagonistas & inibidores
5.
Free Radic Biol Med ; 83: 201-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25701435

RESUMO

Patients affected by L-2-hydroxyglutaric aciduria (L-2-HGA) are biochemically characterized by elevated L-2-hydroxyglutaric acid (L-2-HG) concentrations in cerebrospinal fluid, plasma, and urine due to a blockage in the conversion of L-2-HG to α-ketoglutaric acid. Neurological symptoms associated with basal ganglia and cerebelar abnormalities whose pathophysiology is still unknown are typical of this neurometabolic disorder. In the present study we evaluated the early effects (30min after injection) of an acute in vivo intrastriatal and intracerebellar L-2-HG administration on redox homeostasis in rat striatum and cerebellum, respectively. Histological analyses of these brain structures were also carried out 7 days after L-2-HG treatment (long-term effects). L-2-HG significantly decreased the concentrations of reduced (GSH) and total glutathione (tGS), as well as of glutathione peroxidase (GPx) and reductase (GR) activities, but did not change the activities of superoxide dismutase and catalase in striatum. Furthermore, the concentrations of oxidized glutathione (GSSG) and malondialdehyde (MDA), as well as 2',7'-dichlorofluorescein (DCFH) oxidation and hydrogen peroxide (H2O2) production, were increased, whereas carbonyl formation and nitrate plus nitrite concentrations were not altered by L-2-HG injection. It was also found that the melatonin, ascorbic acid plus α-tocopherol, and creatine totally prevented most of these effects, whereas N-acetylcysteine, the noncompetitive glutamate NMDA antagonist MK-801, and the nitric oxide synthase inhibitor L-NAME were not able to normalize the redox alterations elicited by L-2-HG in striatum. L-2-HG intracerebellar injection similarly provoked a decrease of antioxidant defenses (GSH, tGS, GPx, and GR) and an increase of the concentrations of GSSG, MDA, and H2O2 in cerebellum. These results strongly indicate that the major accumulating metabolite in L-2-HGA induce oxidative stress by decreasing the antioxidant defenses and enhancing reactive oxygen species in striatum and cerebellum of adolescent rats. Regarding the histopathological findings, L-2-HG caused intense vacuolation, lymphocyte and macrophage infiltrates, eosinophilic granular bodies, and necrosis in striatum. Immunohistochemistry revealed that L-2-HG treatment provoked an increase of GFAP and a decrease of NeuN immunostaining, indicating reactive astroglyosis and reduction of neuronal population, respectively, in striatum. Similar macrophage infiltrates, associated with less intense vacuolation and lymphocytic infiltration, were observed in cerebellum. However, we did not observe necrosis, eosinophilic granular bodies, and alteration of GFAP and NeuN content in L-2-HG-teated cerebellum. From the biochemical and histological findings, it is presumed that L-2-HG provokes striatal and cerebellar damage in vivo possibly through oxidative stress induction. Therefore, we postulate that antioxidants may serve as adjuvant therapy allied to the current treatment based on a protein-restricted diet and riboflavin and L-carnitine supplementation in patients affected by L-2-HGA.


Assuntos
Cerebelo/patologia , Corpo Estriado/patologia , Glutaratos/administração & dosagem , Neostriado/patologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Western Blotting , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Vias de Administração de Medicamentos , Glutaratos/farmacologia , Glutationa/metabolismo , Técnicas Imunoenzimáticas , Infusões Intraventriculares , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Ratos
6.
PLoS One ; 9(9): e102936, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25254647

RESUMO

Pyridoxine is used as a supplement for treating conditions such as vitamin deficiency as well as neurological disorders such as depression, epilepsy and autism. A significant neurologic complication of pyridoxine therapy is peripheral neuropathy thought to be a result of long-term and high dose usage. Although pyridoxine-induced neuropathy is transient and can remit after its withdrawal, the process of complete recovery can be slow. Glutamate carboxypeptidase II (GCP II) inhibition has been shown to improve symptoms of both chemotherapy- and diabetic-induced neuropathy. This study evaluated if GCP II inhibition could behaviorally and physiologically improve pyridoxine-induced neuropathy. In the current study, high doses of pyridoxine (400 mg/kg, twice a day for seven days) were used to induce neuropathy in rats. An orally bioavailable GCP II inhibitor, 2-(3-mercaptopropyl) pentanedioic acid (2-MPPA), was administered daily at a dose of 30 mg/kg starting from the onset of pyridoxine injections. Body weight, motor coordination, heat sensitivity, electromyographical (EMG) parameters and nerve morphological features were monitored. The results show beneficial effects of GCP II inhibition including normalization of hot plate reaction time, foot fault improvements and increased open field distance travelled. H wave frequency, amplitude and latency as well as sensory nerve conduction velocity (SNCV) were also significantly improved by 2-MPPA. Lastly, GCP II inhibition resulted in morphological protection in the spinal cord and sensory fibers in the lumbar region dorsal root ganglia (DRG). In conclusion, inhibition of GCP II may be beneficial against the peripheral sensory neuropathy caused by pyridoxine.


Assuntos
Comportamento Animal/efeitos dos fármacos , Glutamato Carboxipeptidase II/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/fisiopatologia , Inibidores de Proteases/farmacologia , Piridoxina/efeitos adversos , Animais , Feminino , Glutaratos/farmacologia , Glutaratos/uso terapêutico , Atividade Motora/efeitos dos fármacos , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Inibidores de Proteases/uso terapêutico , Ratos , Ratos Sprague-Dawley , Sensação/efeitos dos fármacos , Compostos de Sulfidrila/farmacologia , Compostos de Sulfidrila/uso terapêutico
7.
Neurotoxicol Teratol ; 28(4): 509-16, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16814516

RESUMO

In this study, we developed an in vivo method to determine drug effects on oxidation-induced apoptosis in the zebrafish brain caused by treatment with L-hydroxyglutaric acid (LGA). We confirmed that LGA-induced apoptosis was caused by oxidation by examining the presence of an oxidative product, nitrotyrosine. Next, we examined the effects of 14 characterized neuroprotectants on LGA-treated zebrafish, including: D-methionine (D-Met), Indole-3-carbinol, deferoxamine (DFO), dihydroxybenzoate (DHB), deprenyl, L-NAME (N(G)-nitro-L-arginine methyl ester), n-acetyl L-cysteine (L-NAC), 2-oxothiazolidine-4-carboxylate (OTC), lipoic acid, minocycline, isatin, cortisone, ascorbic acid and alpha-tocopherol. Eleven of 14 neuroprotectants and 7 of 7 synthetic anti-oxidants exhibit significant protection in zebrafish. Buthionine sulfoximine (BSO), used as a negative control, exhibited no significant protective effects. In addition, three blood-brain barrier (BBB) impermeable compounds exhibited no significant effects. Our results in zebrafish were similar to results reported in mammals supporting the utility of this in vivo method for identifying potential neuroprotective anti-oxidants.


Assuntos
Fármacos Neuroprotetores/farmacologia , Peixe-Zebra/fisiologia , Acridinas/toxicidade , Animais , Anticorpos , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Glutaratos/farmacologia , Interpretação de Imagem Assistida por Computador , Microscopia de Fluorescência , Óxido Nítrico/biossíntese , Oxirredução , Tirosina/análogos & derivados , Tirosina/imunologia
8.
Biochimie ; 87(5): 421-4, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15820748

RESUMO

With the cloning of pig renal organic anion transporter 1 (pOAT1) (Biochimie 84 (2002) 1219) we set up a model system for comparative studies of cloned and natively isolated membrane located transport proteins. Meanwhile, another transport protein involved in p-aminohippurate (PAH) uptake on the basolateral side of the proximal tubule cells was identified, designated organic anion transporter 3 (OAT3). To explore the contribution of pOAT1 to the PAH clearance in comparison to OAT3, it was the aim of this study to extend our model by cloning of the pig ortholog of OAT3. Sequence comparisons of human organic anion transporter 3 (hOAT3) with the expressed sequence tag (EST) database revealed a clone and partial sequence of the pig renal organic anion transporter 3 (pOAT3) ortholog. Sequencing of the entire open reading frame resulted in a protein of 543 amino acid residues encoded by 1632 base pairs (EMBL Acc. No. AJ587003). It showed high homologies of 81%, 80%, 76%, and 77% to the human, rabbit, rat, and mouse OAT3, respectively. A functional characterization of pOAT3 in Xenopus laevis oocytes yielded an apparent Km (Kt) for [3H]estrone sulfate of 7.8 +/- 1.3 microM. Moreover, pOAT3 mediated [3H]estrone sulfate uptake was almost abolished by 0.5 mM of glutarate, dehydroepiandosterone sulfate, or probenecid consistent with the hallmarks of OAT3 function.


Assuntos
Estrona/análogos & derivados , Rim/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Sequência de Aminoácidos , Animais , DNA Complementar , Sulfato de Desidroepiandrosterona/farmacologia , Estrona/metabolismo , Glutaratos/farmacologia , Humanos , Rim/efeitos dos fármacos , Camundongos , Dados de Sequência Molecular , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Probenecid/farmacologia , Coelhos , Ratos , Homologia de Sequência de Aminoácidos , Suínos , Uricosúricos/farmacologia , Xenopus laevis/metabolismo , Ácido p-Aminoipúrico/farmacocinética
9.
Anal Biochem ; 283(1): 49-55, 2000 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-10929807

RESUMO

Secretion of small molecules from the systemic blood circulation into urine is one of the physiologically essential functions of the kidney. The human organic anion transporter (hOAT1) is a key component in the renal tubular secretion of negatively charged molecules including a variety of important therapeutics. In some cases, compounds interacting with hOAT1 may induce pharmacokinetic drug-drug interactions or cause nephrotoxicity. We developed a fluorescence-based, 96-well format assay using CHO cells stably expressing hOAT1, which allows for the evaluation of interactions between small molecules and hOAT1. The assay is based on the inhibition of the transport of 6-carboxyfluorescein, a high-affinity hOAT1 substrate (Km = 3.9 microM), which was identified as one of several fluorescent organic anions. The relative inhibition potency of various known hOAT1 substrates determined using the 6-carboxyfluorescein-based inhibition assay correlated well with their Km values, indicating that the fluorescent assay exhibits a proper specificity. This in vitro assay can be employed to evaluate the mechanism of renal clearance of organic anions, to assess potential drug-drug interactions and/or nephrotoxic effects of various therapeutics, and to screen for novel hOAT1 inhibitors that could serve as efficient nephroprotectants.


Assuntos
Proteínas de Transporte/metabolismo , Espectrometria de Fluorescência/métodos , Animais , Proteínas de Transporte de Ânions , Ânions/metabolismo , Sulfonatos de Arila/química , Compostos de Boro/química , Células CHO , Cricetinae , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Fluoresceína/química , Fluoresceínas/química , Fluoresceínas/metabolismo , Corantes Fluorescentes/química , Glutaratos/farmacologia , Humanos , Concentração Inibidora 50 , Cinética , Modelos Químicos , Fatores de Tempo , Transfecção
10.
FEBS Lett ; 438(3): 321-4, 1998 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-9827570

RESUMO

The functional characteristics of rat organic anion transporter OAT1 were investigated using Xenopus laevis oocytes. Uptake of p-aminohippurate (PAH) by the oocytes expressing OAT1 was markedly inhibited by glutarate, alpha-ketoglutarate and probenecid, moderately inhibited by folate and methotrexate, but not inhibited by taurocholate or tetraethylammonium. Methotrexate and folate were transported by OAT1, but probenecid, a typical inhibitor of organic anion transporter, was not transported. Inhibition of PAH uptake by aliphatic dicarboxylates with various alkyl chain lengths was maximal at 5 (glutarate) and 6 (adipate) carbon atoms. OAT1-mediated PAH uptake was markedly inhibited by phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-dibutyrate and mezerein, but not by 4alpha-phorbol 12,13-didecanoate. The inhibitory effect of PMA was attenuated in the presence of staurosporine, suggesting that OAT1 is regulated by protein kinase C. These results suggest that the substrate recognition of OAT1 is comparable to that of renal basolateral organic anion transporter, and the transport activity is regulated by protein kinase C.


Assuntos
Proteínas de Transporte/metabolismo , Diterpenos , Rim/metabolismo , Animais , Proteínas de Transporte de Ânions , Ânions/metabolismo , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Primers do DNA , DNA Complementar , Ácidos Dicarboxílicos/farmacologia , Feminino , Ácido Fólico/farmacologia , Glutaratos/farmacologia , Cinética , Metotrexato/farmacologia , Oócitos/fisiologia , Ésteres de Forbol/farmacologia , Probenecid/farmacologia , Ratos , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estaurosporina/farmacologia , Terpenos/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Xenopus laevis , Ácido p-Aminoipúrico/farmacocinética
11.
Zentralbl Bakteriol B ; 168(5-6): 517-24, 1979 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-506562

RESUMO

All organic peracids are capable of damaging enzymes of the microbial cell irreversibly by oxidation and can thus kill microbes. When using organic peracids as a disinfectant it is expedient to prepare them immediately prior to use. This is possible by employing mixtures in powder form of acid depots (anhydrides, amides, esters) and hydrogen peroxide depots which react together with water only at the time of preparing the solution to form a balanced system, the active complex proper, comprising organic peracid, organic acid, hydrogen peroxide and water.


Assuntos
Bactérias/efeitos dos fármacos , Ácidos Carboxílicos/farmacologia , Desinfetantes , Fungos/efeitos dos fármacos , Peróxidos/farmacologia , Benzoatos/farmacologia , Ácidos Carboxílicos/síntese química , Fenômenos Químicos , Química , Desinfetantes/síntese química , Avaliação Pré-Clínica de Medicamentos , Glutaratos/farmacologia , Peróxido de Hidrogênio/farmacologia , Ácido Peracético/farmacologia , Peróxidos/síntese química , Especificidade da Espécie , Esporos Bacterianos/efeitos dos fármacos , Succinatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA