Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 16(3): 695-705, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25629918

RESUMO

In the present study, we were able to produce composites of wheat gluten (WG) protein and a novel genetically modified potato starch (MPS) with attractive mechanical and gas barrier properties using extrusion. Characterization of the MPS revealed an altered chain length distribution of the amylopectin fraction and slightly increased amylose content compared to wild type potato starch. WG and MPS of different ratios plasticized with either glycerol or glycerol and water were extruded at 110 and 130 °C. The nanomorphology of the composites showed the MPS having semicrystalline structure of a characteristic lamellar arrangement with an approximately 100 Å period observed by small-angle X-ray scattering and a B-type crystal structure observed by wide-angle X-ray scattering analysis. WG has a structure resembling the hexagonal macromolecular arrangement as reported previously in WG films. A larger amount of ß-sheets was observed in the samples 70/30 and 30/70 WG-MPS processed at 130 °C with 45% glycerol. Highly polymerized WG protein was found in the samples processed at 130 °C versus 110 °C. Also, greater amounts of WG protein in the blend resulted in greater extensibility (110 °C) and a decrease in both E-modulus and maximum stress at 110 and 130 °C, respectively. Under ambient conditions the WG-MPS composite (70/30) with 45% glycerol showed excellent gas barrier properties to be further explored in multilayer film packaging applications.


Assuntos
Glutens/química , Nanocompostos/química , Amido/química , Configuração de Carboidratos , Cristalização , Glutens/ultraestrutura , Glicerol/química , Nanocompostos/ultraestrutura , Oxigênio/química , Permeabilidade , Polimerização , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Solanum tuberosum/química , Amido/ultraestrutura , Resistência à Tração , Triticum/química , Água/química , Difração de Raios X
2.
J Agric Food Chem ; 56(21): 10292-302, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-18837505

RESUMO

Wheat starch is used to make baked products for celiac patients in several European countries but is avoided in the United States because of uncertainty about the amounts of associated grain storage (gluten) proteins. People with celiac disease (CD) must avoid wheat, rye, and barley proteins and products that contain them. These proteins are capable of initiating damage to the absorptive lining of the small intestine in CD patients, apparently as a consequence of undesirable interactions with the innate and adaptive immune systems. In this study, starch surface-associated proteins were extracted from four commercial wheat starches, fractionated by high-performance liquid chromatography and gel electrophoresis, and identified by tandem mass spectrometry analysis. More than 150 proteins were identified, many of which (for example, histones, purothionins, and glutenins) had not been recognized previously as starch-associated. The commercial starches were analyzed by the R-5 enzyme-linked immunosorbent assay method to estimate the amount of harmful gluten protein present. One of these starches had a low gluten content of 7 ppm and actually fell within the range proposed as a new Codex Alimentarius Standard for naturally gluten-free foods (maximum 20 ppm). This low level of gluten indicates that the starch should be especially suitable for use by celiac patients, although wheat starches with levels up to 100 ppm are deemed safe in the proposed Codex standards.


Assuntos
Doença Celíaca/dietoterapia , Glutens/análise , Amido/análise , Triticum/química , Dieta com Restrição de Proteínas , Glutens/ultraestrutura , Humanos , Dados de Sequência Molecular , Extratos Vegetais/análise , Amido/ultraestrutura , Triticum/ultraestrutura , Estados Unidos
3.
Bioresour Technol ; 99(16): 7665-71, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18337091

RESUMO

The aim of the present work has been to study the influence of hydrophobic liquids on the morphology and the properties of thermo-molded plastics based on glycerol-plasticized wheat gluten (WG). While the total amount of castor oil and glycerol was remained constant at 30 wt%, castor oil with various proportions with respect to glycerol was incorporated with WG by mixing at room temperature and the resultant mixtures were thermo-molded at 120 degrees C to prepare sheet samples. Moisture absorption, morphology, dynamic mechanical properties, and tensile properties (Young's modulus, tensile strength and elongation at break) of the plastics were evaluated. Experimental results showed that the physical properties of WG plastic were closely related to glycerol to castor oil ratio. Increasing in castor oil content reduces the moisture absorption markedly, which is accompanied with a significant improvement in tensile strength and Young's modulus. These observations were further confirmed in 24 wt% glycerol-plasticized WG plastics containing 6 wt% silicone oil or polydimethylsiloxane (PDMS) liquid rubber.


Assuntos
Glutens/química , Plásticos/química , Triticum/metabolismo , Óleo de Rícino/química , Dimetilpolisiloxanos/química , Glutens/ultraestrutura , Glicerol/química , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Plastificantes/química , Silicones/química , Resistência à Tração , Temperatura de Transição , Triticum/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA