Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 561
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611727

RESUMO

The syntheses of Ag-based nanoparticles (NPs) with the assistance of plant extracts have been shown to be environmentally benign and cost-effective alternatives to conventional chemical syntheses. This study discusses the application of Paliurus spina-christi, Juglans regia, Humulus lupulus, and Sambucus nigra leaf extracts for in situ synthesis of Ag-based NPs on cotton fabric modified with citric acid. The presence of NPs with an average size ranging from 57 to 99 nm on the fiber surface was confirmed by FESEM. XPS analysis indicated that metallic (Ag0) and/or ionic silver (Ag2O and AgO) appeared on the surface of the modified cotton. The chemical composition, size, shape, and amounts of synthesized NPs were strongly dependent on the applied plant extract. All fabricated nanocomposites exhibited excellent antifungal activity against yeast Candida albicans. Antibacterial activity was significantly stronger against Gram-positive bacteria Staphylococcus aureus than Gram-negative bacteria Escherichia coli. In addition, 99% of silver was retained on the samples after 24 h of contact with physiological saline solution, implying a high stability of nanoparticles. Cytotoxic activity towards HaCaT and MRC5 cells was only observed for the sample synthetized in the presence of H. lupulus extract. Excellent antimicrobial activity and non-cytotoxicity make the developed composites efficient candidates for medicinal applications.


Assuntos
Anti-Infecciosos , Nanopartículas , Prata/farmacologia , Gossypium , Têxteis , Anti-Infecciosos/farmacologia , Escherichia coli , Extratos Vegetais/farmacologia
2.
Plant Sci ; 344: 112079, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38588981

RESUMO

The cotton boll weevil (CBW, Anthonomus grandis) stands as one of the most significant threats to cotton crops (Gossypium hirsutum). Despite substantial efforts, the development of a commercially viable transgenic cotton event for effective open-field control of CBW has remained elusive. This study describes a detailed characterization of the insecticidal toxins Cry23Aa and Cry37Aa against CBW. Our findings reveal that CBW larvae fed on artificial diets supplemented exclusively with Cry23Aa decreased larval survival by roughly by 69%, while supplementation with Cry37Aa alone displayed no statistical difference compared to the control. However, the combined provision of both toxins in the artificial diet led to mortality rates approaching 100% among CBW larvae (LC50 equal to 0.26 PPM). Additionally, we engineered transgenic cotton plants by introducing cry23Aa and cry37Aa genes under control of the flower bud-specific pGhFS4 and pGhFS1 promoters, respectively. Seven transgenic cotton events expressing high levels of Cry23Aa and Cry37Aa toxins in flower buds were selected for greenhouse bioassays, and the mortality rate of CBW larvae feeding on their T0 and T1 generations ranged from 75% to 100%. Our in silico analyses unveiled that Cry23Aa displays all the hallmark characteristics of ß-pore-forming toxins (ß-PFTs) that bind to sugar moieties in glycoproteins. Intriguingly, we also discovered a distinctive zinc-binding site within Cry23Aa, which appears to be involved in protein-protein interactions. Finally, we discuss the major structural features of Cry23Aa that likely play a role in the toxin's mechanism of action. In view of the low LC50 for CBW larvae and the significant accumulation of these toxins in the flower buds of both T0 and T1 plants, we anticipate that through successive generations of these transgenic lines, cotton plants engineered to overexpress cry23Aa and cry37Aa hold promise for effectively managing CBW infestations in cotton crops.


Assuntos
Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Gossypium , Proteínas Hemolisinas , Larva , Plantas Geneticamente Modificadas , Gorgulhos , Gossypium/genética , Gossypium/parasitologia , Animais , Gorgulhos/genética , Plantas Geneticamente Modificadas/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Larva/efeitos dos fármacos , Bacillus thuringiensis/genética , Controle Biológico de Vetores
3.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503565

RESUMO

AIMS: This study aimed to assess the impact of rocket (Eruca sativa) extract on Verticillium wilt in eggplants, explore rhizospheric microorganisms for disease biocontrol, and evaluate selected strains' induced systemic resistance (ISR) potential while characterizing their genomic and biosynthetic profiles. METHODS AND RESULTS: Rocket extract application led to a significant reduction in Verticillium wilt symptoms in eggplants compared to controls. Isolated microorganisms from treated soil, including Paraburkholderia oxyphila EP1, Pseudomonas citronellolis EP2, Paraburkholderia eburnea EP3, and P. oxyphila EP4 and EP5, displayed efficacy against Verticillium dahliae, decreasing disease severity and incidence in planta. Notably, strains EP3 and EP4 triggered ISR in eggplants against V. dahliae. Genomic analysis unveiled shared biosynthetic gene clusters, such as ranthipeptide and non-ribosomal peptide synthetase-metallophore types, among the isolated strains. Additionally, metabolomic profiling of EP2 revealed the production of metabolites associated with amino acid metabolism, putative antibiotics, and phytohormones. CONCLUSIONS: The application of rocket extract resulted in a significant reduction in Verticillium wilt symptoms in eggplants, while the isolated microorganisms displayed efficacy against V. dahliae, inducing systemic resistance and revealing shared biosynthetic gene clusters, with metabolomic profiling highlighting potential disease-suppressing metabolites.


Assuntos
Verticillium , Verticillium/metabolismo , Doenças das Plantas/prevenção & controle , Extratos Vegetais/farmacologia , Gossypium , Resistência à Doença
4.
Int J Biol Macromol ; 263(Pt 1): 130072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346615

RESUMO

MYB transcription factor despite their solid involvement in growth are potent regulator of plant stress response. Herein, we identified a MYB gene named as StoMYB41 in a wild eggplant species Solanum torvum. The expression level of StoMYB41 was higher in root than the tissues including stem, leaf, and seed. It induced significantly by Verticillium dahliae inoculation. StoMYB41 was localized in the nucleus and exhibited transcriptional activation activity. Silencing of StoMYB41 enhanced susceptibility of Solanum torvum against Verticillium dahliae, accompanied by higher disease index. The significant down-regulation of resistance marker gene StoABR1 comparing to the control plants was recorded in the silenced plants. Moreover, transient expression of StoMYB41 could trigger intense hypersensitive reaction mimic cell death, darker DAB and trypan blue staining, higher ion leakage, and induced the expression levels of StoABR1 and NbDEF1 in the leaves of Solanum torvum and Nicotiana benthamiana. Taken together, our data indicate that StoMYB41 acts as a positive regulator in Solanum torvum against Verticillium wilt.


Assuntos
Ascomicetos , Solanum melongena , Solanum , Verticillium , Solanum/genética , Verticillium/metabolismo , Ascomicetos/metabolismo , Solanum melongena/genética , Doenças das Plantas/genética , Resistência à Doença/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256211

RESUMO

Antimicrobial resistance (AMR) is a growing concern for the future of mankind. Common antibiotics fail in the treatment of microbial infections at an alarming rate. Morbidity and mortality rates increase, especially among immune-compromised populations. Medicinal plants and their essential oils, as well as iodine could be potential solutions against resistant pathogens. These natural antimicrobials abate microbial proliferation, especially in synergistic combinations. We performed a simple, one-pot synthesis to prepare our formulation with polyvinylpyrrolidone (PVP)-complexed iodine (I2), Thymus Vulgaris L. (Thyme), and Aloe Barbadensis Miller (AV). SEM/EDS, UV-vis, Raman, FTIR, and XRD analyses verified the purity, composition, and morphology of AV-PVP-Thyme-I2. We investigated the inhibitory action of the bio-formulation AV-PVP-Thyme-I2 against 10 selected reference pathogens on impregnated sterile discs, surgical sutures, cotton gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thyme-I2 were studied by disc diffusion methods and compared with those of the antibiotics gentamycin and nystatin. The results confirm AV-PVP-Thyme-I2 as a strong antifungal and antibacterial agent against the majority of the tested microorganisms with excellent results on cotton bandages and face masks. After storing AV-PVP-Thyme-I2 for 18 months, the inhibitory action was augmented compared to the fresh formulation. Consequently, we suggest AV-PVP-Thyme-I2 as an antimicrobial agent against wound infections and a spray-on contact killing agent.


Assuntos
Anti-Infecciosos , Iodo , Thymus (Planta) , Iodóforos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Povidona-Iodo , Gossypium , Polímeros
6.
Theor Appl Genet ; 137(1): 23, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231256

RESUMO

KEY MESSAGE: Integrated QTL mapping and WGCNA condense the potential gene regulatory network involved in oil accumulation. A glycosyl hydrolases gene (GhHSD1) for oil biosynthesis was confirmed in Arabidopsis, which will provide useful knowledge to understand the functional mechanism of oil biosynthesis in cotton. Cotton is an economical source of edible oil for the food industry. The genetic mechanism that regulates oil biosynthesis in cottonseeds is essential for the genetic enhancement of oil content (OC). To explore the functional genomics of OC, this study utilized an interspecific backcross inbred line population to dissect the quantitative trait locus (QTL) interlinked with OC. In total, nine OC QTLs were identified, four of which were novel, and each QTL explained 3.62-34.73% of the phenotypic variation of OC. The comprehensive transcript profiling of developing cottonseeds revealed 3,646 core genes differentially expressed in both inbred parents. Functional enrichment analysis determined 43 genes were annotated with oil biosynthesis processes. Implementation of weighted gene co-expression network analysis showed that 803 differential genes had a significant correlation with the OC phenotype. Further integrated analysis identified seven important genes located in OC QTLs. Of which, the GhHSD1 gene located in stable QTL qOC-Dt3-1 exhibited the highest functional linkages with the other network genes. Phylogenetic analysis showed significant evolutionary differences in the HSD1 sequences between oilseed- and starch- crops. Furthermore, the overexpression of GhHSD1 in Arabidopsis yielded almost 6.78% higher seed oil. This study not only uncovers important genetic loci for oil accumulation in cottonseed, but also provides a set of new candidate genes that potentially influence the oil biosynthesis pathway in cottonseed.


Assuntos
Arabidopsis , Gossypium , Gossypium/genética , Óleo de Sementes de Algodão , Filogenia , Genômica
7.
Phytopathology ; 114(1): 61-72, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37530500

RESUMO

Endophytes play important roles in promoting plant growth and controlling plant diseases. Verticillium wilt is a vascular wilt disease caused by Verticillium dahliae, a widely distributed soilborne pathogen that causes significant economic losses on cotton each year. In this study, an endophyte KRS015, isolated from the seed of the Verticillium wilt-resistant Gossypium hirsutum 'Zhongzhimian No. 2', was identified as Bacillus subtilis by morphological, phylogenetic, physiological, and biochemical analyses. The volatile organic compounds (VOCs) produced by KRS015 or its cell-free fermentation extract had significant antagonistic effects on various pathogenic fungi, including V. dahliae. KRS015 reduced Verticillium wilt index and colonization of V. dahliae in treated cotton seedlings significantly; the disease reduction rate was ∼62%. KRS015 also promoted plant growth, potentially mediated by the growth-related cotton genes GhACL5 and GhCPD-3. The cell-free fermentation extract of KRS015 triggered a hypersensitivity response, including reactive oxygen species (ROS) and expression of resistance-related plant genes. VOCs from KRS015 also inhibited germination of conidia and the mycelial growth of V. dahliae, and were mediated by growth and development-related genes such as VdHapX, VdMcm1, Vdpf, and Vel1. These results suggest that KRS015 is a potential agent for controlling Verticillium wilt and promoting growth of cotton.


Assuntos
Acremonium , Ascomicetos , Verticillium , Bacillus subtilis/genética , Filogenia , Doenças das Plantas/microbiologia , Verticillium/fisiologia , Gossypium/genética , Extratos Vegetais , Resistência à Doença/fisiologia , Regulação da Expressão Gênica de Plantas
8.
Plant Sci ; 340: 111937, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38043729

RESUMO

Due to the increasing demand for high-quality and high fiber-yielding cotton (Gossypium spp.), research into the development of stress-resilient cotton cultivars has acquired greater significance. Various biotic and abiotic stressors greatly affect cotton production and productivity, posing challenges to the future of the textile industry. Moreover, the content and quality of cottonseed oil can also potentially be influenced by future environmental conditions. Apart from conventional methods, genetic engineering has emerged as a potential tool to improve cotton fiber quality and productivity. Identification and modification of genome sequences and the expression levels of yield-related genes using genetic engineering approaches have enabled to increase both the quality and yields of cotton fiber and cottonseed oil. Herein, we evaluate the significance and molecular mechanisms associated with the regulation of cotton agronomic traits under both normal and stressful environmental conditions. In addition, the importance of gossypol, a toxic phenolic compound in cottonseed that can limit consumption by animals and humans, is reviewed and discussed.


Assuntos
Gossypium , Gossipol , Humanos , Gossypium/metabolismo , Óleo de Sementes de Algodão/metabolismo , Fibra de Algodão , Gossipol/metabolismo , Genômica
9.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068920

RESUMO

Upland cotton is the fifth-largest oil crop in the world, with an average supply of nearly 20% of vegetable oil production. Cottonseed oil is also an ideal alternative raw material to be efficiently converted into biodiesel. However, the improvement in kernel oil content (KOC) of cottonseed has not received sufficient attention from researchers for a long time, due to the fact that the main product of cotton planting is fiber. Previous studies have tagged QTLs and identified individual candidate genes that regulate KOC of cottonseed. The regulatory mechanism of oil metabolism and accumulation of cottonseed are still elusive. In the current study, two high-density genetic maps (HDGMs), which were constructed based on a recombinant inbred line (RIL) population consisting of 231 individuals, were used to identify KOC QTLs. A total of forty-three stable QTLs were detected via these two HDGM strategies. Bioinformatic analysis of all the genes harbored in the marker intervals of the stable QTLs revealed that a total of fifty-one genes were involved in the pathways related to lipid biosynthesis. Functional analysis via coexpression network and RNA-seq revealed that the hub genes in the co-expression network that also catalyze the key steps of fatty acid synthesis, lipid metabolism and oil body formation pathways (ACX4, LACS4, KCR1, and SQD1) could jointly orchestrate oil accumulation in cottonseed. This study will strengthen our understanding of oil metabolism and accumulation in cottonseed and contribute to KOC improvement in cottonseed in the future, enhancing the security and stability of worldwide food supply.


Assuntos
Óleo de Sementes de Algodão , Locos de Características Quantitativas , Humanos , Óleo de Sementes de Algodão/metabolismo , Óleos de Plantas , Gossypium/genética , Gossypium/metabolismo , Fibra de Algodão
10.
Trop Anim Health Prod ; 55(6): 405, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971707

RESUMO

The cotton plant (Gossypium hirsutum) is a shrub native to many arid and semi-arid regions around the world, while the nutritional value of its wastes has been less scientifically investigated. Different components of whole cotton plant wastes (WCPW) including leaf blade, cotton pod, stem, root, bract, petiole, and cottonseed were evaluated for their nutritional values by standard laboratory methods. After that, we tested the WCPW for partial substitution (0, 20, 40, and 60% substitution or 0, 10, 20, and 30% of dietary dry matter (DM)) with dietary common forage in a completely randomized design with 32 feedlot male lambs for 90 days. A diverse range of chemical and mineral compositions was found among the different WCPW's components. The cottonseed had the highest crude protein (CP) and ether extract (EE) contents, while the lowest neutral detergent fiber (NDF) and acid detergent fiber (ADF) were observed in the leaf blade (P < 0.0001). The highest contents of calcium, phosphorus, sodium, magnesium, and iron were also observed in the leaf blade (P < 0.0001). Higher potential gas production, in vitro organic matter digestibility (OMD), in vitro dry matter digestibility (DMD), and total volatile fatty acids (TVFA) were also related to the leaf blade (P < 0.0001). Bract had the highest acid-base buffering capacity (P < 0.0001). The lambs fed on 30% of dietary DM with WCPW exhibited lower final body weight (BW), average daily gain (ADG), CP or NDF digestibility, ruminal TVFA, propionate, plasma total protein, and higher feed conversion ratio (FCR) compared to the control group. Generally, WCPW can be substituted up to 40% of common forages (or 20% of diet DM) without any adverse effect on growth performance and blood metabolites of feedlot lambs, especially during feed shortages.


Assuntos
Fibras na Dieta , Gossypium , Ovinos , Animais , Fibras na Dieta/metabolismo , Óleo de Sementes de Algodão/metabolismo , Detergentes/análise , Detergentes/metabolismo , Detergentes/farmacologia , Digestão , Ração Animal/análise , Carneiro Doméstico , Dieta/veterinária , Rúmen/metabolismo
11.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37941465

RESUMO

Understanding the resources bees use is essential because we depend greatly on their ecosystem services, and this information could help guide conservation efforts. One way to identify the flowers that bees visit is to collect pollen directly from the bee and then identify the pollen with plant taxa. However, the current method for processing such pollen samples, acetolysis, is designed for samples such as those collected across individuals (e.g., pollen trap), bee nests, or, at the very least, from pollen pellets collected from live bees or from the exhaustive removal of pollen from lethally collected individuals. Smaller samples, including those down to just a few pollen grains sampled from live bees, could facilitate additional opportunities for bee-pollen research, if they can be processed effectively. We present a revised acetolysis methodology designed specifically for processing small pollen samples, so that they can then be used for more accurate identification. Using pollen samples from cotton swabs directly applied to live bees in the field, we demonstrate the effectiveness of our methodology for processing small pollen samples, including samples too small to be visually detected. This methodology can permit nonlethal collections in the field from a greater number of bee species.


Assuntos
Ecossistema , Polinização , Animais , Abelhas , Flores , Gossypium , Pólen
12.
BMC Plant Biol ; 23(1): 520, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37884892

RESUMO

Studies of boron (B) and silicon (Si) synergy in cotton crops have shown promising results; however, the focus was on the foliar application of B and Si. Nonetheless, B is an element with little mobility in the plant and its best form of application is in the soil. Thus, the objective of this study was to evaluate the synergistic effect of soil applied B and foliar applied sSi on fiber quality and crop yield of cotton. For this purpose, a field experiment was carried out using cotton cultivar FM 985 GLTP. The soil's B in the experimental site is classified as low for cotton cultivation. The experiment was conducted in a randomized complete-block design, in a 3 × 2 factorial scheme, with three doses of B: 0.0 kg ha-1 (deficiency), 2.0 kg ha-1 (recommended dose), and 4.0 kg ha-1 (high dose) in the absence and presence (920 g L-1) of Si, with four replications. One week after the 4th application of Si, B and Si leaf content was determined. At boll opening, crop yield was estimated, and fiber quality analysis was realized. Boron deficiency reduced cotton yield, in 11 and 9%, compared to the application of 2 and 4 kg ha-1 of B, respectively. The presence of Si, however, increased plant yield in 5% in the treatments with 0 and 2 kg ha-1 of B, respectively. Cotton fiber length and elongation were not influenced by the B doses and Si presence. Fiber breaking strength was increased in 5% by the presence of Si and was not influenced by B deficiency. Micronaire was 8% smaller in the treatment with 0 kg ha-1 of B and 6% smaller in the absence of Si. Short fiber index was 4% greater in the plants of the treatment with 0 kg ha-1 of B. The results of this study reports that the complementation with Si via foliar application increases fiber quality by enhance breaking strength and micronaire. In conclusion, the interaction between soil-applied B and foliar-applied Si is beneficial for cotton cultivation, resulting in high cotton yield with better fiber quality.


Assuntos
Fibra de Algodão , Solo , Boro , Silício/farmacologia , Folhas de Planta , Gossypium
13.
Sci Rep ; 13(1): 16131, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752178

RESUMO

A systematic study is currently demonstrated approach for approving the superior role of silver and palladium metallic particles in acting the role of mordant with acquiring the dyed cotton fabrics excellence in color fastness with additional functions of antimicrobial potentiality and UV-protection action. Whereas, samples were dyed with extract of red peanuts skin as natural textile colorant (RPN dye). The represented data revealed that, in absence of mordant, the samples treated with metal precursors prior to dyeing were exhibited with the excellent color strength, color fastness, antimicrobial action and UV-protection action. Color fastness (washing, rubbing and light fastness) was estimated to be in the range of very good-excellent. Sample pretreated with silver salt and dyed in the absence of mordant was graded with excellent UV-protection action (UPF 31.5, UVB T% 2.6% and UVB blocking percent 97.4%). Antimicrobial potency against E. coli, S. aureus and Candida albicans through inhibition zone and the reduction percent was approved to be in the range of excellence (93.01-99.51%) for the samples dyed in absence of mordant and pretreated with either silver or palladium precursors.


Assuntos
Arachis , Prata , Corantes , Eritema , Escherichia coli , Gossypium , Paládio , Extratos Vegetais/farmacologia , Prata/farmacologia , Staphylococcus aureus , Têxteis
14.
Trop Anim Health Prod ; 55(4): 254, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392276

RESUMO

It aimed to evaluate the effects of different whole oilseeds in lipid-rich diets on nutrient intake, apparent digestibility, ingestive behavior, and ruminal and blood parameters of steers. A control diet (without oilseed) and four diets containing whole oilseeds (cotton, canola, sunflower, and soybean) were tested. All diets used the whole-plant corn silage at 400 g/kg as roughage. Five diets, being a control diet (without oilseed) and four diets containing whole oilseeds (cotton, canola, sunflower, and soybean), were tested. All diets used the whole-plant corn silage at 400 g/kg as roughage. Five rumen fistulated crossbreed steers, in a 5 × 5 Latin square design were distributed using five periods of 21 days. The steers fed cottonseed and canola diets had lower dry matter intakes (6.6 kg/day). Steers showed higher averages of time in rumination for treatments with sunflower, soybean, and cottonseed (406, 362, and 361 min/day, respectively). There was no treatment effect for the ruminal pH and ammonia (NH3) variables. There was an effect of the treatment on the volatile fatty acid concentrations. The animals that received soybean showed a higher plasma urea concentration (50.7 mg/dL). Animals fed the control diet showed lower serum cholesterol levels (111.8 mg/dL) than those fed diets containing whole cottonseed, canola, sunflower, and soybean (152.7, 137.1, 146.9, and 138.2 mg/dL, respectively). We recommended using whole soybean or sunflower seeds to formulate lipid-rich diets with 70 g/kg of ether extract for crossbreed steers in the feedlot.


Assuntos
Asteraceae , Brassica napus , Helianthus , Animais , Bovinos , Óleo de Sementes de Algodão , Dieta/veterinária , Ingestão de Alimentos , Ingestão de Energia , Fibras na Dieta , Gossypium
15.
Funct Integr Genomics ; 23(2): 197, 2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37270747

RESUMO

Cottonseed is an invaluable resource, providing protein, oil, and abundant minerals that significantly contribute to the well-being and nutritional needs of both humans and livestock. However, cottonseed also contains a toxic substance called gossypol, a secondary metabolite in Gossypium species that plays an important role in cotton plant development and self-protection. Herein, genome-wide analysis and characterization of the terpene synthase (TPS) gene family identified 304 TPS genes in Gossypium. Bioinformatics analysis revealed that the gene family was grouped into six subgroups TPS-a, TPS-b, TPS-c, TPS-e, TPS-f, and TPS-g. Whole-genome, segmental, and tandem duplication contributed to the evolution of TPS genes. According to the analysis of selection pressure, it was predicted that TPS genes experience predominantly negative selection, with positive selection occurring subsequently. RT-qPCR analysis in TM-1 and CRI-12 lines revealed GhTPS48 gene as the candidate gene for silencing experiments. To summarize, comprehensive genome-wide studies, RT-qPCR, and gene silencing experiments have collectively demonstrated the involvement of the TPS gene family in the biosynthesis of gossypol in cotton.


Assuntos
Alquil e Aril Transferases , Gossipol , Humanos , Gossipol/metabolismo , Gossypium/genética , Óleo de Sementes de Algodão/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas
16.
Genes (Basel) ; 14(6)2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37372323

RESUMO

Tetraploid cultivated cotton (Gossypium spp.) produces cottonseeds rich in protein and oil. Gossypol and related terpenoids, stored in the pigment glands of cottonseeds, are toxic to human beings and monogastric animals. However, a comprehensive understanding of the genetic basis of gossypol and gland formation is still lacking. We performed a comprehensive transcriptome analysis of four glanded versus two glandless tetraploid cultivars distributed in Gossypium hirsutum and Gossypium barbadense. A weighted gene co-expression network analysis (WGCNA) based on 431 common differentially expressed genes (DEGs) uncovered a candidate module that was strongly associated with the reduction in or disappearance of gossypol and pigment glands. Further, the co-expression network helped us to focus on 29 hub genes, which played key roles in the regulation of related genes in the candidate module. The present study contributes to our understanding of the genetic basis of gossypol and gland formation and serves as a rich potential source for breeding cotton cultivars with gossypol-rich plants and gossypol-free cottonseed, which is beneficial for improving food safety, environmental protection, and economic gains of tetraploid cultivated cotton.


Assuntos
Gossipol , Animais , Humanos , Gossipol/metabolismo , Gossypium/genética , Gossypium/metabolismo , Óleo de Sementes de Algodão/metabolismo , Tetraploidia , Melhoramento Vegetal , Perfilação da Expressão Gênica
17.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239883

RESUMO

Cotton (Gossypium spp.) is the fifth largest oil crop in the world, and cottonseed provides abundant vegetable oil resources and industrial bioenergy fuels for people; therefore, it is of practical significance to increase the oil content of cotton seeds for improving the oil yield and economic benefits of planting cotton. Long-chain acyl-coenzyme A (CoA) synthetase (LACS) capable of catalyzing the formation of acyl-CoAs from free fatty acids has been proven to significantly participate in lipid metabolism, of which whole-genome identification and functional characterization of the gene family have not yet been comprehensively analyzed in cotton. In this study, a total of sixty-five LACS genes were confirmed in two diploid and two tetraploid Gossypium species, which were divided into six subgroups based on phylogenetic relationships with twenty-one other plants. An analysis of protein motif and genomic organizations displayed structural and functional conservation within the same group but diverged among the different group. Gene duplication relationship analysis illustrates the LACS gene family in large scale expansion through WGDs/segmental duplications. The overall Ka/Ks ratio indicated the intense purifying selection of LACS genes in four cotton species during evolution. The LACS genes promoter elements contain numerous light response cis-elements associated with fatty acids synthesis and catabolism. In addition, the expression of almost all GhLACS genes in high seed oil were higher compared to those in low seed oil. We proposed LACS gene models and shed light on their functional roles in lipid metabolism, demonstrating their engineering potential for modulating TAG synthesis in cotton, and the genetic engineering of cottonseed oil provides a theoretical basis.


Assuntos
Genoma de Planta , Gossypium , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Família Multigênica , Filogenia , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo
18.
J Sci Food Agric ; 103(13): 6463-6472, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37218075

RESUMO

BACKGROUND: Waste cotton flowers, as a by-product of cotton cultivation, are enriched with bioactive substances that render them a promising natural source of health-promoting benefits. In this study, ultrasound-assisted extraction (UAE), subcritical water extraction (SWE), and conventional extraction (CE) approaches were applied to extract bioactive compounds from waste cotton flowers, and the metabolic profiles, bioactive components, antioxidants, and α-amylase inhibition of different extractions were systematically analyzed and compared. RESULTS: It was observed that UAE and CE extracts had similar metabolic profiles compared with SWE. The flavonoids and amino acids and derivatives were more prone to be extracted by UAE and CE, whereas phenolic acids tended to accumulate in SWE extract. The UAE extract had the highest amounts of total polyphenols (214.07 mg gallic acid equivalents per gram dry weight) and flavonoids (33.23 mg rutin equivalents per gram dry weight) as well as the strongest inhibition on oxidation (IC50 = 10.80 µg mL-1 ) and α-amylase activity (IC50 = 0.62 mg mL-1 ), indicating that chemical composition was closely related to biological activity. Additionally, microstructures and thermal behaviors of the extracts were investigated and highlighted the ability of UAE. CONCLUSION: Overall, it can be concluded that UAE is an efficient, green, and economical extraction method to produce bioactive compounds from cotton flowers, and the UAE extracts could be used in food and medicine industries because of their high antioxidant and α-amylase inhibitory activity. This study provides a scientific basis for the development and comprehensive utilization of cotton by-products. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Gossypium , alfa-Amilases , Antioxidantes/química , Flavonoides/análise , Flores/química , Metaboloma , Fenóis/química , Extratos Vegetais/química , Água/análise
19.
Arch Insect Biochem Physiol ; 113(3): e22017, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37185885

RESUMO

In the context of climate change, the Ivorian cotton industry is facing with the loss of sensitivity of pests (Helicoverpa armigera) and the appearance of new so-called emerging insects. Faced with this situation, cotton producers tend to use insecticide products in high doses, in excess of the norm. However, the misuse of chemical products poses many health risks. Therefore, to limit the use of chemicals, aqueous extracts of local plants with insecticidal properties were examined in the laboratory and in the field. Four local plant species were selected [Anacardium occidentale (Anarcardier); Azadirachta indica (Neem); Hyptis suaveolens (Hyptis) and Tephrosia vogelii (Tephrosia)]. After determining the chemical profiles of the four extracts by high performance liquid chromatography (HPLC)-mass spectrometry, their inhibitory activities were assessed in cholinesterase and tyrosinase. The sensitivity of Helicoverpa armigera larvae was evaluated by ingesting the aqueous extracts at several concentrations ranging from 2% to 64% in an artificial nutrient substrate. Then, the mortality rates of the larvae during 72 h were evaluated and the lethal concentrations were determined. The results of chemical analyses (HPLC) showed that the richest aqueous extract in phytochemicals with 54 elements detected was that of cashew (A. occidentale). T. vogelii, A. indica and H. suaveolens presented 44, 45, and 39 chemical compounds, respectively. In addition, the total phenolic content was higher in A. occidentale (110.67 mg gallic acid equivalents/g) followed by A. indica (42.43 mg gallic acid equivalents/g). The highest antioxidant ability was observed with the aqueous extract of cashew (A. occidentale). Anti-enzymatic activities such as acetylcholinesterase, butyrylcholinesterase and tyrosinase inhibition were most pronounced in A. occidentale (2.35 ± 0.02 mg galanthamine equivalent/g, 3.77 ± 0.01 mg galanthamine equivalent/g and 71.28 ± 0.07 mg kojic acid equivalent/g, respectively). The most toxic aqueous extract for H. armigera larvae was that of cashew with a lethal concentration LC50 = 11.68%. Moreover, the principal component analysis performed showed that the insecticidal activity is strongly correlated with the antioxidant and enzymatic activities of the aqueous extracts. Then, the hierarchical ascending classification showed cashew as the best plant. For the sustainability of cotton production, it would be necessary to limit the use of chemical-synthetic insecticides through the use of plant extracts, especially from cashew leaves.


Assuntos
Inseticidas , Mariposas , Animais , Larva , Inseticidas/farmacologia , Inseticidas/química , Antioxidantes/farmacologia , Côte d'Ivoire , Gossypium , Galantamina , Acetilcolinesterase , Butirilcolinesterase , Monofenol Mono-Oxigenase , Extratos Vegetais/farmacologia , Ácido Gálico
20.
Plant Physiol Biochem ; 200: 107781, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37230024

RESUMO

Cottonseed has a high utilization value due to its luxuriant oil and protein, but low phosphorus (P) in cropland reduces its yield and quality. A limited understanding of the physiological mechanism underlying these results restricted the exploration of P efficient management in cotton cultivation. A 3-year experiment was performed with Lu 54 (low-P sensitive) and Yuzaomian 9110 (low-P tolerant) under 0 (deficient-P), 100 (critical-P), and 200 (excessive-P) kg P2O5 ha-1 in a field having 16.9 mg kg-1 available P to explore the key pathway for P to regulate cottonseed oil and protein formation. P application markedly increased cottonseed oil and protein yields, with the enhanced acetyl-CoA and oxaloacetate contents during 20-26 days post anthesis being a vital reason. Notably, during the crucial period, decreased phosphoenolpyruvate carboxylase activity weakened the carbon allocation to protein, making malonyl-CoA content increase greater than free amino acid; Meanwhile, P application accelerated the carbon storage in oil but retarded that in protein. Consequently, cottonseed oil yield increased more than protein. Oil and protein synthesis in Lu 54 was more susceptible to P, resulting in greater increments in oil and protein yields than Yuzaomian 9110. Based on acetyl-CoA and oxaloacetate contents (the key substrates), the critical P content in the subtending leaf to cotton boll needed by oil and protein synthesis in Lu 54 (0.35%) was higher than Yuzaomian 9110 (0.31%). This study provided a new perception of the regulation of P on cottonseed oil and protein formation, contributing to the efficient P management in cotton cultivation.


Assuntos
Óleo de Sementes de Algodão , Proteínas de Plantas , Óleo de Sementes de Algodão/química , Óleo de Sementes de Algodão/metabolismo , Acetilcoenzima A , Proteínas de Plantas/metabolismo , Gossypium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA